

QuickBuild 1.0.1 User's Guide
Copyright © 2005-2006 PMEase Inc.

Table of Contents

1. Introduction .. 1
Background ... 1
Basic concepts ... 1

Configuration ... 1
Build .. 1
Repository ... 1
Builder ... 2
Notifier .. 2
Step .. 2
Login mappings ... 3
Schedule .. 3
Triggering instance .. 3
Build queue .. 3
Configuration's working directory ... 3
Configuration's checkouts directory .. 3
Configuration's publish directory .. 3
Build's publish directory .. 4
Build's artifacts directory ... 4
Build's JUNIT html report directory .. 4
Build's Clover html report directory .. 4

2. User interfaces .. 5
Dashboard ... 5
Configurations ... 7
Build queues .. 9
Find builds .. 10
Administration .. 11

Manage groups .. 12
Manage users ... 13

3. Configure repositories .. 15
Configure Base Clearcase ... 15
Configure Clearcase UCM repository ... 16
Configure CVS repository ... 17
Configure File system repository .. 18
Configure Perforce repository ... 18
Configure Subversion repository .. 19
Configure Visual Sourcesafe repository .. 22
Configure StarTeam repository ... 25
Configure Accurev repository ... 27
Configure QuickBuild repository .. 27

4. OGNL expressions ... 29
5. Velocity templates .. 32
6. Security ... 34

User authentication ... 34
User authorization ... 34

Set queue permissions ... 34
Set configuration permissions ... 34

7. Remote and parallel build support .. 36
Mechanism .. 36
Deadlock prevention ... 36

8. Data management ... 37
Backup and restore database ... 37

 ii

 QuickBuild 1.0.1 User's Guide

Data migration between different databases ... 37
Migrate data from QuickBuild PREVIEW2 and PREVIEW3 .. 37
Migrate data from Luntbuild 1.2.x .. 37

9. REST API ... 39
10. Use cases .. 40

General use cases .. 40
Working with your first build .. 40
Working with Maven ... 42
Working with project dependencies .. 43
Working with multiple branches ... 44
Working with build promotion .. 44
Sharing working directories ... 45
Sharing build versions ... 46
Using date and iteration as part of build version ... 46
Managing major, minor, and iteration part of a version string .. 46
Specifying label to build against .. 47
Updating information of many projects ... 47
Working with build queues .. 47
Working with public configurations .. 48

Remote and parallel use cases ... 48
Building multi-platform products .. 48
Working with parallel builds ... 49
Performing automation/smoking tests on a machine other than build machine 50

REST API use cases .. 52
Set up real-time continuous integration build .. 52
Trigger other builds after build of particular project ... 53

 iii

List of Tables

3.1. Date/Time format characters ... 23
6.1. Configuration permissions ... 35

 iv

Chapter 1. Introduction

Background

QuickBuild is a build automation and management tool working with Apache Ant [http://ant.apache.org], NAnt,
Maven [http://maven.apache.org], or any other build tools with command line interface. With QuickBuild, daily builds
and continuous integration builds can be set easily. Refer to the following articles for benefits of daily builds and
continuous integration builds, if you are not familiar with them:

� Continuous Integration [http://www.martinfowler.com/articles/continuousIntegration.html]

� Daily Builds Are Your Friend [http://www.joelonsoftware.com/articles/fog0000000023.html]

Basic unit of work in QuickBuild is a build. Build execution is triggered by a schedule, or by the user manually.
Typically, a build in QuickBuild performs following steps:

1. Checks out source code from the repository (CVS, Subversion for instance).

2. Runs an Ant/NAnt/Maven/Command build script in the source tree.

3. Labels the current source code based on the current build version.

4. Publishes the build log and other build artifacts.

Beyond the ability to automate your builds, QuickBuild put extra emphasis on build management, with which you can
manage all kinds of builds (such as QA/release builds) simply and efficiently. Build configuration, monitoring, and
access to the build artifacts are all done using an intuitive web interface. Your development and testing team will have
a central area to access the build information.

Basic concepts

Configuration

Configuration holds all configuration information in order to generate builds. These information includes what to
build, how to build, and when to build, etc. Configurations are organized in a tree structure. To refer to a configuration,
name of all its ancestor configurations should be put together and connected with period, plus its own name, for
example: root.department1.project1.nightly. Child configurations can inherit build settings from parent, and can
selectively override some of them. This behavior is referred as inherit and override rule, which makes build
management of many projects very easy.

Build

Build always associates with a version, and is generated by running of configuration. When a particular configuration
is triggered (either by user or by scheduling system), the build necessary condition of configuration will be evaluated.
If the result is true, the configuration will run, and a new build will be generated. Lately information about this build
can be accessed online, including published artifacts, build logs, revision logs, etc.

Repository

Repository stands for a place stores files needed for generating builds. It provides "what to build" information for a
configuration. It includes but not limited to version control systems, such as CVS, ClearCase, Subversion, etc. Also
ordinary directories can also be treated as a repository (in case you store your source codes in a plain file system
folder, instead of some version control system). Generally any place be able to store build artifacts (either source

 1

http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.joelonsoftware.com/articles/fog0000000023.html

codes, or intermediate build artifacts such as libraries which may be used for further build process) can be treated as a
repository. The repository object obeys the inherit and override rule, which means repositories defined in descendent
configurations with the same name will override those defined in ancestor configuration.

Builder

Builder defines how to perform a build. After necessary files have been checked out from configured repositories,

es how to notify users about information of recent build. Notification message can be customized

 make the build process more flexible, the step concept is introduced in QuickBuild. It defines the build

� checkout

This step helps to check out codes from specified repository.

� build

This step helps to perform build with specified builder.

� label

This step helps to create a label in related repositories in order to make a snapshot of files used for this build.

� publish

This step helps to publish files so that they can be accessed online from QuickBuild web interface.

This step is only needed for files that are not under control of QuickBuild. For example, in your build script, you do

� label

This step helps to create a label in related repositories in order to remember correct version of files used for this

� notify

This step helps to notify proper persons about status of current build.

� serial composition

QuickBuild will call related builders to actually run the build. Currently, Ant builder, NAnt builder, Maven Builder
and a command line builder are supported. However, any builder facilities with a command line interface should be
able to work with QuickBuild. The builder object obeys inherit and override rule.

Notifier
Notifier defin
through using of Velocity templates. Currently QuickBuild supports Email notifier, Jabber notifier, MSN messenger
Notifier, and Google Talk notifier. Thanks for the inherit and override rule, you can define notifiers in high level
configuration, and reuse them in descendents to minimize your configuration work.

Step
In order to
process for a particular configuration, and you can control which parts of the build process can be executed
simultaneously, and which parts should e executed serially. The step object obeys inherit and override rule. Currently,
the following steps can be used:

Note

not copy generated artifacts to the directory denoted by artifactsDir property. In this case, this publish step will
make them visible through the web interface by creating soft links to these files.

build.

 Introduction

This is a composition step that helps to create a step comprised of other steps. Included child steps will be executed
serially.

� omposition

step that helps to create a step comprised of other steps. Included child steps will be executed
simultaneously.

Lo ngs

 repository logins to QuickBuild users in order to do certain things, such as sending out
 users who has checked in codes into repository recently, etc. You can define multiple

 "When to build" aspect of the configuration. By defining a schedule, builds can be triggered at
 triggered periodically.

lled a triggering instance, which will be put into build queue when all working
sed up. Execution of a triggering instance does not necessarily generate a new build.

ssociates with a build queue (if not set explicitly, parent configuration's build queue will be
 to control maximum concurrent builds in this configuration (and its descendents if choose to

rking directory

 to hold configuration logs, checkouts directory, and child
stalled QuickBuild under /opt/quickbuild, the default

uration's checkouts directory

 named by checkouts under configuration's working
sitories.

d to hold produced builds, and child configuration publish
 under /opt/quickbuild, the default publish directory for

parallel c

This is a composition

gin mappi
Login mapping is used to map
failure build notifications to
login mappings, and associate different login mappings with different repositories. This is very useful when you have
multiple repositories and login name for a particular user is not consistent through out these repositories. The login
mapping object obeys override and inherit rule.

Schedule

Schedule defines
specified time, or can be

Triggering instance

Triggering of a configuration is ca
threads for that queue have been u
This is determined by build necessary condition. However, if you set value of build necessary condition as true (by
choosing force build from the build necessary condition drop down menu), new build will always be generated when
this triggering instance get the chance to be executed.

Build queue

Every configuration a
used), which is used
inherit). When a configuration is triggered, some of the triggering will be queued if all configured working threads in
the queue have been used up.

Configuration's wo
Every configuration has an working directory which is used
configuration working directories. Let's assume that you've in
working directory for configuration root.department1.project1.nightly will be
/opt/quickbuild/working/root/department1/project1/nightly. If you've changed working directory setting
for a particular parent , working directories of child configurations will be derived in the same way starting from that
directory.

Config
Configuration's checkouts directory is located in a sub directory
directory. It is used to hold checked out stuffs from various repo

Configuration's publish directory

Every configuration has an publish directory which is use
directories. Let's assume that you've installed QuickBuild
configuration root.department1.project1.nightly will be

 3

/opt/quickbuild/publish/root/department1/project1/nightly. If you've changed publish directory setting
for a particular rectories of child configurations will be derived in the same way starting from that
directory.

Build's

 parent , publish di

 publish directory

cts directory, various logs and reports generated by a build. It is named by
ed under builds sub directory under configuration's publish directory.

shed artifacts for a particular build, and is located under a sub directory
artifacts ctory.

tory

l reports generated by a particular build, and is located
junitHtmlReports 's publish directory.

l reports generated by a particular build, and is located
cloverHtmlReports 's publish directory.

Build publish directory is used to hold artifa
version number of the build, and is locat
Continue with the example in last section, if build project1-3.0.0 is produced by configuration
root.department1.project1.nightly, its publish directory will be
/opt/quickbuild/publish/root/department1/project1/nightly/builds/project1-3.0.0.

Build's artifacts directory

Build artifacts directory is used to hold publi
named by of build's publish dire

Build's JUNIT html report direc
Build JUNIT html report directory is used to hold JUNIT htm
under a sub directory named by of build

Build's Clover html report directory

Build Clover html report directory is used to hold Clover htm
under a sub directory named by of build

Chapter 2. User interfaces

This chapter explains some typical user interfaces in QuickBuild application.

Dashboard

Dashboard is the first page of QuickBuild user interface. It gives an overview of all configurations and its build status.
From this page, you can do most of your daily jobs, such as start/stop builds, monitor build status, access build logs,
etc. Here is the screenshot for dashboard page followed by expanation of each number indicated function areas.

1. Main navigation area

From this area, user can navigate to different function areas of QuickBuild:

DASHBOARD Navigate to this page.

CONFIGURATIONS Navigate to configuration details.

BUILD QUEUES Navigate to build queue details.

FIND BUILDS Navigate to builds search page.

ADMINISTRATION Navigate to administrative pages.

2. Configuration name

Displays configuration name. Detail information of the configuration will be displayed when click on this link.

3. Open/Close button

Click on this to open or close a particular configuration node.

4. Queued builds

 5

Number of queued builds for this configuration. When click on this link, detail information about the queue
bound to current configuration will be displayed.

5.

ory builds for this configuration. When click on this link, detail information about the history
isplayed.

6.

or latest build of current configuration. GREEN means a successful build, RED means a
nning gear means a running build. Build log about this build will be displayed when click

7.

bout current configuration. Build detail will be displayed when click on the build version.

8. C

Configuration status indicator. GREEN means recent triggering of current configuration is successful. RED
rrent configuration is failed, while a running gear means the configuration is

ation, while build status means status of the build process. When a configuration has been triggered, it

9.

You can manu ly trigger the configuration by clicking on this button. When a configuration is running, a stop
layed which can be used to forcely stop current running cycle of current configuration.

ge after
e.

configuration, if there are more than one triggering instance waiting in the build queue, stoping the
ation will only stop and remove current triggering instance, which will cause other waiting triggering

instance being executed consequently. If you want to stop and remove all triggering instance, just go to detail

 also kills all external OS
ted by your builder (for example, Ant builder will spawn a Java process to run build script).

However on Windows platform, if your builder is executed through a Windows batch file, processes created in

History builds

Number of hist
builds will be d

Build status indicator

Build status indicator f
failed build, while a ru
on this status indicator icon.

Latest build

Latest build a

onfiguration status indicator

means recent triggering of cu
currently running. Configuration log about this build will be displayed when click on this status indicator icon.
Note

ration status is different from build status. Configuration status means triggering status of aConfigu
configur
may fail to generate new build (for instance, error occurs when determine next build version). This will result in
a failed configuration triggering. On the other hand, a new build can be generated and run, but the build process
fails for some reason(for instance, a compiling error). This will result in a failed build, but triggering of the
configuration is still successful, because this configuration has been successfully triggered in regardless of actual
build status. Information about the build process will be logged into build log, and information about triggering of
the configuration (such as checking build necessary condition, calculating next build version, etc.) will be logged
into configuration log.

Start/Stop icon

al
icon will be disp
Note

ou click on the start/stop button, and does not see any changes in the page, just try to refresh the paWhen y
some tim
Note

ticular For par
configur

page about the build queue, and remove all waiting and running triggering instances.
Warning

n interrupts all threads involved in a running configuration. Normally itThe stop actio
processes crea

that batch file will not get killed. In this case, you should kill these processes manually, otherwise when you stop
a configuration and run it again, you may encounter errors stating that checkouts directory can not be deleted,

 User interfaces

which normally means the spawned OS process is still running and accessing that directory. This is true for
QuickBuild's Ant and Maven builder (executed by ant.bat and maven.bat) on windows platform.

Auto refresh switch

You can turn on auto-refresh by clicking on ON/OFF link re. By m ge auto-refreshing, the p

10.

 he aking pa age will be
ed, which helps build status monitoring.

11.

lick on RETURN key.

, you can change your profile, password, access system log, and access system help.

13. e setting

uration.

ons

This page shows detail information about particular configuration. User can navigate to this page by selecting
ain navigation area, or clicking on a particular configuration from the dash board

ee of configurations, and right side is detail information about selected configuration

automatically refresh

Quick search

You can search builds by input partial of a build version, and c

12. From this area
Note

System log is only available to administrator.

Schedul

View or edit schedule setting for current config

Configurati

CONFIGURATIONS from the m
page. Left side of the page is a tr
in the tree.

 7

1. Selected configuration

User can click on particular configuration in the tree in order to view or edit information about that configuration.

2. Reveal selected configuration

User can expand or collapse the whole configuration tree. When the tree is collapsed, user can click on the reveal
link to only reveal selected configuration, and its ancestors, while keeping other configurations closed.

3. Tabs of a configuration

Build information Display build information for selected configuration.

Basic settings Display or edit basic setting for selected configuration.

Repositories Display or edit repository information about selected configuration.

Builders Display or edit builder information about selected configuration.

Steps Display or edit step information about selected configuration.
Note

Step order in this tab does not make sense. Actual order of execution is
determined by the serial composition step.

Login mappings Display or edit login mapping information about selected configuration.

Child configurations Display, create, delete, or move child configurations of selected configuration.
Warning

Before delete or move child configurations, you should make sure that there are
no builds currently running inside them. Otherwise, the operation will fail.

4.

elected configuration. Log level can be controlled in basic settings tab.

5.

 create a new

7. performed on a b

ove current build

Promote currrent b current build
has a label in repo e set of source
codes in destinate c

Rebuild Re-generate current build. This action is only available when current build has a label in repository,
because QuickBuil

Delete Delete this build including all published artifacts. Artifacts published through soft links are not
ted.

Configuration log

Click here to access log about s

History builds information

Display number of history builds. List of history builds will be displayed when click on this link.

6. Trigger button

Click this button to triggering instance inside a configuration.

Actions can be uild

Move To M into another configuration.

Promote uild into another configuration. This action is only available when
sitory, because QuickBuild tries to retrieve and rebuild the sam

ation. onfigur

d tries to retrieve and rebuild the same set of source codes.

affec

 User interfaces

8. build

Build log records log informatio . Log level can be controlled through basic settings tab. Revision
log records change logs since las
in Ant. Clover html report is a li
for details.

e new directory.

ifacts. For
upload an installation guide here.

Bu
T uild queues configured in the system. For every queue, there is a running
builds section and waiting builds section. Running builds section lists all current running builds, and number of
runn s aiting builds section lists all waiting builds. Builds
are put into waiting list for two reasons:

� There are no

� A ild
 one

Logs and reports of a

n about a build
t build. JUNIT html report is a link to html reports generated by junitreport task
nk to html reports generated by clover-report task in Ant. Refer to this use case

9. Published artifacts

User can download published artifacts here. Exising artifacts can also be deleted here.

10. Upload new artifact or creat

User can upload new artifact or create new directory so that they are available as part of published art
example you can

ild queues

his page shows detail information about b

ing builds i actually number of occupied working threads. W

available working threads

nother bu is running and blocks current build (for example, if two configurations share the same working
directory, build in one configuration will block builds in another configuration).

Summary section gives information about total number of running and waiting builds.

1. Summary section

 9

2. Actions section

In this section, user can perform actions such as browse available queues, or create new queue.

iting builds, and click on this button to remove them from waiting list.

Find builds

In this page user can find particular builds by specifying search criterias such as version, dat ranges, status,
conf n these results.

3. Working threads

Display total number of working threads configured in current queue.

4. Version being built

Display the version currently being built. If the current build is a promotion build, from version and to version
will be displayed as well.

5. Version to build

Displays version to build. This value only available when you trigger a rebuild, or build manually with build
version specified. For scheduled builds or manual builds without version specified, version to build can only be
determined when this build is running.

6. Stop selected builds from running list

User can select runnings builds, and click on this button to stop them forcely.
Warning

On windows platform, if the builder command is a batch file (for example ant.bat), process created by
commands in this batch file may still exist even the build is stopped.

7. Remove selected builds from waiting list

User can select wa

e
iguration. Right side of the page is search results. User can perform actions such as move, delete o

 User interfaces

Administration

In the administration tab, you'll be able to perform tasks such as edit system setting, manage licenses, manage users
and groups. When the administration tab is selected, the first task "System settings" will be presented. You can choose
other tasks through task navigation bar in left of the screen.

 11

The following section gives explanation on some typical interfaces of administration tab.

Manage groups

User groups are designed to manage user permissions efficiently. By assigning a user to a particular group, you
authorize that user doing operations permitted by that group. The following page depicts how to configure permissions
for a group.

 User interfaces

1. Authorize queues for the group

From here you can set queue permissions for a group. For detailed information, refer to security chapter.

2. Set configuration permissions

From here you can set configuration permissions for a group. For detailed information, refer to security chapter.

Manage users

The following is the user management page. From here, you can create/delete/edit users. For detailed information,
refer to security chapter.

 13

1. Last authentication source

Indicates the authentication source of this user's last login. Currently two authentication sources are supported,
one is config file, which is only used for administrator, and another one is database, which is used by all users
created through this page.

Chapter 3. Configure repositories

This chapter describes how to configure various repositories.

Configure Base Clearcase

You should have Clearcase client installed on the build machine. Also you should make sure that the account running
your application server or servlet container is able to access your Clearcase server and that it can make snapshot views.
Here is the list of properties you should configure for this repository:

Clearcase view stgloc name Name of the Clearcase server-side view storage location which will be used
as-stgloc option when creating Clearcase view for the current project. Either
this property or "Explicit path for view storage" property should be specified.

Explicit path for view storage This property is required only when the Clearcase view stgloc name property is
empty. If specified, it should be parent directory of .vws directory for created
snapshot view. For example, if you specify \\server1\dir1 here, QuickBuild will
use \\server1\dir1\<view tag>.vws as the -vws option to create Clearcase view.
Here <view tag> will be replaced by actual view tag.
Note

This value should be a writable UNC path on Windows platform.

Config spec Config spec used by QuickBuild to create Clearcase snapshot view for a build.
If you copy the config spec from your dynamic view, do not forget to add load
lines after the config spec for each directory you need, like this:
include \\server\ClearCase\configspecs\myconfigspec.txt
load \myvob\modules\module1
load \myvob\modules\module2

Modification detection config This property will take effect if there are some LATEST versions from some
branch to fetch in the above config spec. It is used by QuickBuild to determine,
if there are any changes in the repository since the last build. This property
consists of multiple entries with each entry per line. Each entry is of the format
<path>:<branch>. <path> is a path inside a vob. This path should start from the
vob name, for example: \myvob\modules\mymodule. <branch> stands for
name of the branch. For sub branches, you don't need to specify the names of
any "super" -branches, just the name of the actual branch is enough.

Extra options when creating snapshot view

 You may optionally specify extra options for the cleartool mkview sub
command used by QuickBuild to create related Clearcase snapshot view for the
current project. Options that can be specified here are restricted to -tmode,
-ptime, and -cachesize. For example you can specify -tmode insert_cr to use
Windows end of line text mode.

Path to cleartool executable Specify path to your cleartool executable file. For example:
/usr/local/bin/cleartool. It should be specified here, if it does not exist in the
system path.

Quiet period Number of seconds current repository should be quiet (without checkins)
before QuickBuild decides to check out the code from this repository for a
build. This is used to avoid checking out code in the middle of some other

 15

checkins. This property is optional. When set as 0, quiet period will not be used
before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings"
tab of the configuration.

Configure Clearcase UCM repository

You should have Clearcase client installed on the build machine. Also you should make sure that the account running
your application server or servlet container is able to access your Clearcase server and that it can make snapshot views.
Here is the list of properties you should configure for this repository:

Clearcase view stgloc name Name of the Clearcase view storage location, which will be used as -stgloc
option when creating Clearcase view for this project.

Project VOB tag Tag for the project vob, for example: \pvob1.

Explicit path for view storage This property is required only when the Clearcase view stgloc name property is
empty. If specified, it should be parent directory of .vws directory for created
snapshot view. For example, if you specify \\server1\dir1 here, QuickBuild
will use \\server1\dir1\<view tag>.vws as the -vws option to create Clearcase
view. Here <view tag> will be replaced by actual view tag.
Note

This value should be a writable UNC path on Windows platform.

UCM stream name Name of the UCM stream.

What to build Specifies baselines you want to build inside the stream. Multiple baselines are
separated by space. The following values have particular meaning:

<latest> means build with all the latest code from every
component.

<latest_bls> means build with all the latest baselines from every
component.

<rec_bls> means build with all the recommended baselines.

<found_bls> means build with all the foundation baselines.

Modification detection config This property will only take effect when the What to build property equals to
<latest>. It is used by QuickBuild to determine, if there are any changes in the
repository since the last build. This property consists of multiple entries with
each entry per line. Each entry is of the format <path>:<branch>. <path> is a
path inside a vob. This path should start from the vob name, for example:
\myvob\modules\mymodule. <branch> stands for the name of the branch. For
sub branches, you needn't specify the names of any "super" -branches, just the
name of the actual branch is enough.

Extra options when creating snapshot view

 You may optionally specify extra options for the cleartool mkview sub
command used by QuickBuild to create related clearcase snapshot view for the
current project. Options that can be specified here are restricted to -tmode,
-ptime, and -cachesize. For example you can specify -tmode insert_cr to use

 Configure repositories

Windows end of line text mode.

Path to cleartool executable Specify path to your cleartool executable file. For example:
/usr/local/bin/cleartool. It should be specified here, if it does not exist
in the system path.

Quiet period Number of seconds current repository should be quiet (without checkins)
before QuickBuild decides to check out the code from this repository for a
build. This is used to avoid checking out code in the middle of some other
checkins. This property is optional. When set as 0, quiet period will not be used
before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings"
tab of the configuration.

Configure CVS repository

In order to use this adaptor, install appropriate CVS client based on your platform from http://www.cvshome.org or
http://www.cvsnt.org if you are using Windows platform.
Note

Please keep time of the build server machine in sync with the Cvs server machine to allow build server to detect
repository changes in Cvs server more accurately. Please make sure that times recorded in the Cvs revision log are in
UTC time format instead of local time format.
Here is the list of properties you should configure for this repository:

Cvs root The Cvs root for this repository, for example,
:pserver:administrator@localhost:d:/cvs_repository. If you are using ssh, the
:ext: protocol will need to be specified, and proper ssh environment needs to be
set outside of Luntbuild. Please refer to your Cvs User's Guide for details.

Cvs password The Cvs password for above Cvs root if connecting using pserver protocol.

Is cygwin cvs? This property indicates whether or not the cvs executable being used is a
cygwin one. The possible values are "yes" or "no". When omitted, the "no"
value is assumed.

Disable "-S" option for log command?

 This property indicates whether or not the "-S" option for the log command
should be disabled. The possible values are "yes" or "no". When omitted, the
"no" value is assumed. The -S option used in the log command can speed up
modification detection, however some earlier versions of Cvs do not support
this option. In this case you should enter "yes" value to disable it.

Disable history command? This property indicates whether or not to disable the history command when
performing modification detection. The possible values are "yes" or "no".
When omitted, the "no" value is assumed. Using the history command in
conjunction with the log command can speed up modification detection,
however some Cvs repositories may not hold history information of commits.
In this case you should enter "yes" value to disable it.

CVS executable path Path to your cvs executable. For example: C:\program files\cvsnt\cvs.exe.

Quiet period Number of seconds current repository should be quiet (without checkins)
before QuickBuild decides to check out the code from this repository for a

 17

http://www.cvshome.org/
http://www.cvsnt.org/

build. This is used to avoid checking out code in the middle of some other
checkins. This property is optional. When set as 0, quiet period will not be used
before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings"
tab of the configuration.

Modules Here are list of properties you should configure for a module entry.

Source path Represents a module path in the CVS repository, for example /testcvs, /testcvs/web, or
testcvs, but you can not define a source path using / or \.

Branch Specify the branch for the above source path. When left empty, main branch is assumed.

Label Specify the label for the above source path. If specified, it will take preference over branch.
When left empty, latest version of the specified branch will be retrieved.

At lease one module should be configured for this repository. Source path represents a module path in the
CVS repository, for example /testcvs, /testcvs/web, or testcvs, but you can not define a source path using
"/" or "\". Branch stands for a CVS branch and Label stands for a CVS tag. Only one of these properties
will take effect for a particular module. If both of them are not empty, label will take preference over
branch. If both of them are empty, QuickBuild will get the latest code from main branch for a particular
module.

Configure File system repository

Source directory This is an optional property. If specified, changes can be detected in the source directory
based on modification time, and modified files under this directory will be copied to the
configuration's checkouts directory to perform build.

Quiet period Number of seconds current repository should be quiet (without checkins) before
QuickBuild decides to check out the code from this repository for a build. This is used to
avoid checking out code in the middle of some other checkins. This property is optional.
When set as 0, quiet period will not be used before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map repository login to
QuickBuild user. It can be configured at "login mappings" tab of the configuration.

Note

Label step has no effect on this repository.

Configure Perforce repository

You should have Perforce client installed on the build machine. Contact http://www.perforce.com for licensing
information. Here is the list of properties for this repository:

Perforce port The Perforce port in the format of <port>, or <servername>:<port>, where
<servername> and <port> will be replaced by the actual Perforce server name and
the port number.

User name User name to access the above Perforce server. This user should have the rights to
create and edit client specifications and to checkout and label code.

Password Password for the above user. Can be blank, if your Perforce server does not use
password based security.

http://www.perforce.com/

 Configure repositories

Line end Set line ending character(s) for client text files. The following values are possible:

local: use mode native to the client
unix: UNIX style
mac: Macintosh style
win: Windows style
share: writes UNIX style but reads UNIX, Mac or Windows style
This property is optional. If not specified, the value will default to "local".

Path to p4 executable Specify path to your p4 executable file, for example: /usr/local/bin/p4. It should be
specified here, if it does not exist in the system path.

Quiet period Number of seconds current repository should be quiet (without checkins) before
QuickBuild decides to check out the code from this repository for a build. This is
used to avoid checking out code in the middle of some other checkins. This property
is optional. When set as 0, quiet period will not be used before checking out code to
build.

Login mapping Choose login mapping for this repository. Login mapping is used to map repository
login to QuickBuild user. It can be configured at "login mappings" tab of the
configuration.

Modules Here are list of properties you should configure in order to define a module.

Depot path Specify the Perforce depot side path, such as //depot/testperforce/...

Label Specify the label for the above depot path. When empty, the latest version (head) of the above
depot path will be retrieved.

Client side path Specify the client side path, such as /testperforce/...
Note

You should not put client name in this path. Before check out, QuickBuild will
automatically generate a proper client name before this path, to form a client
path like //<generated client name>/testperforce/...
Note

To exclude files or directories, create a separate module for each exclusion
and precede the Depot path property with a minus (-) sign, for example:

Depot path: -//depot/module1/...
Client path: /module1/...

At lease one module should be configured for Perforce repository. QuickBuild will construct client
specification from module information configured here, and check out codes from Perforce repository
accordingly. The user specified in Perforce connection information at the project level should have
enough access rights to create and edit Perforce client specification.

Configure Subversion repository

In order to use this repository, Subversion client software should be installed on your build machine. You can
download subversion from http://subversion.tigris.org [http://subversion.tigris.org/].
Note

Please keep time of the build server machine in sync with the Subversion server machine to allow build server to detect
repository's changes in Subversion server more accurately.
Here are list of properties for this repository:

 19

http://subversion.tigris.org/

Repository url base The base part of Subversion url, for example, you can enter
svn://buildmachine.foobar.com/, or file:///c:/svn_repository, or
svn://buildmachine.foobar.com/myproject/othersubdirectory, etc. Other
definitions such as tags directory, branches directory, or modules are relative to
this base url.
Note

If you are using https:// schema, you should make sure that svn server certificate
has been accepted permanently by your build machine.

Directory for trunk Directory used to hold trunk for this url base. This directory is relative to the url
base. Leave it blank, if you didn't define any trunk directory in the above url base.

Directory for branches Directory used to hold branches for this url base. This directory is relative to the
url base. If left blank, "branches" will be used as the default value.

Directory for tags Directory used to hold tags for this url base. This directory is relative to the url
base. If left blank, "tags" will be used as the default value.

Username User name to use to login to Subversion.

Password Password to use to login to Subversion.

Path to svn executable Specify path to your svn executable file. For example: /usr/local/bin/svn. It should
be specified here, if it does not exist in the system path.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings" tab
of the configuration.

Quiet period Number of seconds current repository should be quiet (without checkins) before
QuickBuild decides to check out the code from this repository for a build. This is
used to avoid checking out code in the middle of some other checkins. This
property is optional. When set as 0, quiet period will not be used before checking
out code to build.

Modules Here are list of properties you should configure in order to define a Subversion module:

Source path Represents a path in the Subversion repository, for example /, testsvn/web, or
/testsvn. This path is considered to be relative to the url base defined above.
When branch or label properties are defined, this path will be mapped to
another path in the svn repository.

Branch Specify the branch for above source path. When left empty, trunk is assumed.
Note

Subversion does not internally has the notion of branch. Value specified here
will be used by QuickBuild to do url mapping for the above source path so that
actual effect is just like a branch in CVS repository.

Label Specify the label for the above source path. If specified, it will take preference
over branch. When left empty, head version of the specified branch is
assumed.
Note

Subversion does not internally has the notion of label. Value specified here
will be used by QuickBuild to do url mapping for the above source path so that

 Configure repositories

actual effect is just like a tag in CVS repository.

Destination path If specified, the contents from Subversion repository will be retrieved to the
destination path relative to the configuration's checkouts directory. Otherwise
the contents will be retrieved to source path (with no regard to branch or label)
relative to the configuration's checkouts directory.

At least one module should be defined for Subversion repository. Source path represents a path in the
Subversion repository, for example testsvn, testsvn/web, or /testsvn. This path will be mapped to another
path in the Svn repository based on other properties. In order to demonstrate this path mapping, we define
following properties:

Repository url base: svn://localhost
Directory for trunk: trunk
Directory for branches: branches
Directory for tags: tags

We will examine the following module settings and give them the url mapping:

Source path: testsvn/web, branch: <empty>, label: <empty>, destination path: <empty>

 QuickBuild will check out code from url
svn://localhost/trunk/testsvn/web to directory <configuration's

checkouts directory>/testsvn/web.

Source path: testsvn/web, branch: dev2.0, label: <empty>, destination path: <empty>

 QuickBuild will check out code from url
svn://localhost/branches/dev2.0/testsvn/web to directory
<configuration's checkouts directory>/testsvn/web.

Source path: testsvn/web, branch: <empty>, label: v1.0, destination path: <empty>

 QuickBuild will check out code from url
svn://localhost/tags/v1.0/testsvn/web to directory <configuration's
checkouts directory>/testsvn/web.

Source path: testsvn/web, branch: dev2.0, label: v1.0, destination path: testsvn/web/dev2.0

 QuickBuild will check out code from url
svn://localhost/tags/v1.0/testsvn/web to directory <configuration's
checkouts directory>/testsvn/web/dev2.0.
Note

Branch definition is ignored here because label definition takes preference.

When QuickBuild tags a version for example v1.0 for code checked out to directory <configuration's
checkouts directory>/testsvn/web, the following command will be issued: svn copy
<configuration's checkouts directory>/testsvn/web svn://localhost/tags/v1.0/testsvn/web

Of course you can avoid the above url mapping, by giving Directory for trunk property empty value, and
giving Branch and Label properties both empty values. This way, you can control where to check out the
code from, and where to put checked out code to, by just using the Source path and Destination path
properties (in this case, source path will only be prefixed with repository url base property defined at the
project level).

As you may realized, if QuickBuild need to create label v1.0 for moduleA and moduleB, two directories

 21

will be created in Subversion repository, respectively svn://localhost/tags/v1.0/moduleA, and
svn://localhost/tags/v1.0/moduleB. In this way under a certain url base, only one tags directory is
needed to hold tag information for every module. This is the preferred tags or branches schema in
QuickBuild. However, the suggested schema in Subversion user manual (every module has its own
trunk, branches, or tags directory) is also supported by defining multiple repositories:

1. Create a Subversion repository with the following properties

Repository url base svn://localhost/moduleA

Directory for trunk trunk

Directory for branches branches

Directory for tags tags

Modules Define moduleA with the following properties:

Source path /

Branch moduleA

2. Create the second Subversion repository with the following properties

Repository url base svn://localhost/moduleB

Directory for trunk trunk

Directory for branches branches

Directory for tags tags

Modules Define moduleB with the following properties:

Source path /

Branch moduleB

3. Create two checkout steps to check out codes from the above two repositories respectively, and
include these two steps in the default step.

Configure Visual Sourcesafe repository

In order to use this repository, visual sourcesafe need to be installed in your build machine. Download Visual
Sourcesafe from http://download.microsoft.com.
Warning

You need to run the application server (Tomcat by default) that hosts QuickBuild as a foreground process (instead of a
NT service) in order to work with Sourcesafe repository.
Note

In order to keep output of history command of Visual Sourcesafe accurate, time setting of all developer workstations,
and the build server should be kept in sync.
Note

Currently only English version of Sourcesafe is supported.

http://download.microsoft.com/

 Configure repositories

The following list of properties needs to be configured:

Sourcesafe path The directory where your srcsafe.ini resides in. For example: \\machine1\directory1.
Note

You should login to the remote machine first.

Username User name to use to login the above Sourcesafe database.

Password Password for the above user name.

Datetime format Specify the date/time format used for the Sourcesafe history command. This property is
optional. If left empty, Luntbuild will use "M/dd/yy;h:mm:ssa" as the default value. The
default value is suitable for English language operating systems using US locale. For other
English speaking countries with different date format like UK, Australia, and Canada the
Visual Sourcesafe Date format to use (assuming you're using the appropriate locale setup as
Visual Sourcesafe honors the local locale settings) should be as follows:

'd/M/yy;H:mm'

If QuickBuild is running on non-english operating systems, use the following method to
determine the datetime format:

Open Visual Sourcesafe installed on your build machine, select an existing VSS database
and choose to view one of the projects with files in it. There should be a list of files shown
with several fields including the "Date-Time" field. You should use the datetime format
property from value specified in this field. For example, if one of the values of this field is
04-07-18 20:19, the datetime format property should be yy-MM-dd;HH:mm. The semicolon
between date and time format should be specified. You are encouraged to specify the
property as yy-MM-dd;HH:mm:ss to add the accuracy. Take another example, if the value
shown in Visual Sourcesafe is 7/18/04 8:19p, the datetime format should be M/dd/yy;h:mma.
Format M/dd/yy;h:mm:ssa would increase the accuracy in this case.

The following is a list of format character meanings copied from JDK document:

Table 3.1. Date/Time format characters

Character Meaning Example

y Year 1996 ; 96

M Month in year July ; Jul ; 07

d Day in month 10

a Am/pm marker p

H Hour in day (0-23) 0

h Hour in am/pm (1-12) 12

m Minute in hour 30

s Second in minute 55

For details about the format string, please refer to
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
[http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html]

Path to ss.exe Path to your ss.exe. For example: C:\Program Files\Microsoft Visual

Studio\Common\VSS\win32\ss.exe. It should be specified here, if it does not exist in the
system path.

 23

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Quiet period Number of seconds current repository should be quiet (without checkins) before QuickBuild
decides to check out the code from this repository for a build. This is used to avoid checking
out code in the middle of some other checkins. This property is optional. When set as 0, quiet
period will not be used before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map repository login to
QuickBuild user. It can be configured at "login mappings" tab of the configuration.

Modules Here are list of properties you should configure in order to define a module:

Source path Specify the path in the VSS repository, for example: /testvss, or
$/testvss. To specify the whole repository, just use /, or $/.

Label Specify the label for the above source path. This property is
optional. If left empty, latest version is assumed.

Destination path Specify the directory relative to the checkouts directory of current
configuration, where the contents under the above source path
should be retrieved to. If left empty, retrieved code will be put into
directory defined by the source path relative to the checkouts
directory.

Source path represents a project path relative to the root of Sourcesafe, for example testvss,
/testvss, or /testvss/web, etc. Path / or \ can be used to retrieve the whole contents of the
repository. Label stands for a VSS label. VSS implements branches by creating a new shared
Sourcesafe projects. So you may need to configure different modules in order to get code
from different branches. If Label is left empty, QuickBuild will get latest code for that
module from VSS. If Destination path is defined, contents from Sourcesafe will be retrieved
to Destination path relative to the configuration's checkouts directory. Otherwise the
contents will be put to Source path relative to configuration's checkouts directory.
Warning

Because Visual Sourcesafe has the limitation that only one label can be attached to a
particular version (except for head version). So if you define a module with a particular label,
retrieve it for build, and set new label after the build, the original label will get removed,
which will cause failure of subsequent builds (because original label can not be found in VSS
repository). Take an example, for a particular configuration, we define a VSS repository with
the following modules:

� The first module retrieves latest code from componentA

Source path /src/componentA

� The second module retrieves code from componentB with label v1.0

Source path /src/componentB

Label v1_0

We define steps to retrieve and build against codes from this repository, and create new label
after build. After the first build in this configuration, latest version under /src/componentA
will get a new label (v2_0 for instance), and label v1_0 of /src/componentB will be replaced
by v2_0. Everything goes well now, but the second build in the same configuration will get
failed, because label v1_0 under /src/componentB does not exist. Instead you should
replace v1_0 with v2_0 in second module definition in order to get it build successfully
again. So you should change label value of second module to latest label everytime you a
new label has been generated. This is somewhat unacceptable. A better solution is to share

 Configure repositories

v1_0 of source path /src/componentB into another project (select branch after share
option), say /src/componentB-v1_0, and get it pinned. Then for second module, the
definition can be:

Source path /src/componentB-v1_0

Destination path /src/componentB

In this way, new labels are attached to head version (get pinned of course) of
/src/componentB-v1_0, which is allowed in Sourcesafe, and the effect is the same as
retrieving codes from label v1_0 under /src/componentB.

Configure StarTeam repository

For Windows platform, you will need to have a full installation of StarTeam SDK runtime (which will install some
runtime dlls and put them in the Windows system path). Normally this is the part of StarTeam client installation.
Please go to http://www.borland.com for licensing information. Here is the list of properties for this adaptor:

Project location Location of a StarTeam project is defined as:
<servername>:<portnum>/<projectname>, where <servername> is the host
where the StarTeam server runs, <portnum> is the port number the StarTeam
server uses, default value is 49201. <projectname> is a StarTeam project under
this StarTeam server.

User User name to login to the StarTeam server.

Password Password to login to the StarTeam server.

Convert EOL? The following values are possible:

yes: all ASCII files will have their end-of-line characters adjusted to the EOL
type of the local machine on checkout

no: the files will be checked out with whatever EOL characters are used on the
server

This property is optional. If not specified, it will default to yes.

Time difference threshold Specify time difference threshold (measured in seconds) between build server
and StarTeam server. Time difference between build server and StarTeam
server should not exceed this value. Otherwise, checkouts may fail due to
trying to pull codes of future time from StarTeam server. However, you should
not set a too large threshold in order to check out latest codes. For most cases,
10 seconds will be a good choice.

Quiet period Number of seconds current repository should be quiet (without checkins)
before QuickBuild decides to check out the code from this repository for a
build. This is used to avoid checking out code in the middle of some other
checkins. This property is optional. When set as 0, quiet period will not be used
before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings"
tab of the configuration.

Modules Here are list of properties should be configured in order to define a StarTeam
module:

 25

http://www.borland.com/

StarTeam view Specify a StarTeam view. If it is left empty, the root
view of the current StarTeam project will be used.

Source path Specify a path relative to the root of the above
StarTeam view. Enter / to specify the root.

Label Specify the label for the above StarTeam view.
When left empty, the latest version of specified view
is assumed.

Destination path Specify the directory relative to the checkouts
directory of current configuration. Contents under
the above source path will be retrieved to this
directory. When left empty, retrieved code will be
put into directory specified in source path, relative to
the checkouts directory.

StarTeam view stands for a StarTeam view, and Label stands for a label of this
StarTeam view. If StarTeam view is left empty, the root StarTeam view will be
used. Source path is a path relative to the root of the chosen StarTeam view. If
Destination path is defined, the contents from StarTeam repository will be
retrieved to the Destination path relative to configuration's checkouts directory,
otherwise the contents will be put to the Source path relative to the
configuration's checkouts directory.
Warning

When define modules, If you want QuickBuild to create new label after build,
you should define only one module per StarTeam view. The reason is: When
create label, QuickBuild goes through each defined module and tries to create
view label inside the StarTeam view associated with that module. If more than
one module is defined for a particular StarTeam view, QuickBuild will try to
create the same view label more than once in that view, and causes an Label
already exist exception. Take an example, let's assume we've defined two
modules:

� The first module

StarTeam view development

Source path componentA

� The second module

StarTeam view development

Source path componentB

When QuickBuild tries to create new label, say v2_0, it will go through these
two defined modules, and try to create view label v2_0 for their associated
StarTeam view respectively, which will cause the same view label being
created twice in development view, and causes error consequently. To avoid
this, at StarTeam side, you can create another view, say
componentB-development rooted at /componentB and set branch on change
option. At QuickBuild side, change definition of second module to be:

StarTeam view componentB-development

 Configure repositories

Source path /

Label componentB

In this way, view label v2_0 will be created in different branch view, which is
allowed in StarTeam.

Configure Accurev repository

You are able to build against particular Accurev stream. When perform build, QuickBuild creates reference tree to
check out contents of that stream. You can get location of this reference tree through method call
getWorkspaceDir(build). Normally this is a sub directory named by build stream under current configuration's
checkouts directory. As regard to label step in QuickBuild, it will result in creating corresponding snapshots in
Accurev.

Build stream Specify stream name to build against. You can also specify a snapshot name
here to build against a particular snapshot. Other settings such as Accurev
server, user name, password will be taken from Accurev client installed at this
build machine.

Additional streams to detect changes from

 Specify additional streams from which to detect changes. This is useful when
you want to detect promotions made into other streams whose file changes will
be propagated to the build stream. Multiple streams should be separated by
spaces, and single stream name containing spaces should be quoted.

Accurev executable path Path to your Accurev executable. For example: C:\Program
Files\AccuRev\bin\accurev.exe. It should be specified here, if it does not exist
in the system path.

Quiet period Number of seconds current repository should be quiet (without checkins)
before QuickBuild decides to check out the code from this repository for a
build. This is used to avoid checking out code in the middle of some other
checkins. This property is optional. When set as 0, quiet period will not be used
before checking out code to build.

Login mapping Choose login mapping for this repository. Login mapping is used to map
repository login to QuickBuild user. It can be configured at "login mappings"
tab of the configuration.

Configure QuickBuild repository

QuickBuild repository is used to check out artifacts from other QuickBuild configurations (may resides in a different
build machine). Here is the list of properties for this repository:

Remote QuickBuild URL Specify servlet URL for the QuickBuild system you want to retrieve artifacts from.
For example, "http://another-server:8080/app.do". If not specified, it will default to
current QuickBuild system.

Configuration Specify configuration of the above QuickBuild system, for example:
"root.project1.release". This configuration and the following build property will
uniquely identify the build where you want to retrieve artifacts from.

Build Specify version of the build from which you want to retrieve artifacts from, for
example: "myproduct-1.0.0". If not specified, latest build will be assumed. Meaning

 27

of some special build version is listed as below:

<latest build> Triggers destination configuration and then
check out artifacts from latest build from
specified configuration.

<last build> Check out artifacts from last build of specified
configuration. Last build is the latest build that
has been finished.

<last successful build> Check out artifacts from last successful build
of specified configuration.

User to login Specify user name to login to the specified QuickBuild system. It should have the
permission to view the above configuration. If you are trying to retrieve artifacts of
the latest build, you should have build permission for that configuration, because it
will be triggered to generate a new build if necessary. If this property is not
specified, anonymous user will be assumed.

Password Specify password of the above user.

Quiet period Number of seconds current repository should be quiet (without checkins) before
QuickBuild decides to check out the code from this repository for a build. This is
used to avoid checking out code in the middle of some other checkins. This property
is optional. When set as 0, quiet period will not be used before checking out code to
build.

Login mapping Choose login mapping for this repository. Login mapping is used to map repository
login to QuickBuild user. It can be configured at "login mappings" tab of the
configuration.

Modules Here are list of properties should be configured in order to define a QuickBuild
module:

Source path Specify source path to retrieve artifacts from. This
path is relative to artifacts directory of specified
build above. So "." will refer to the artifacts
directory itself.

File name patterns Specify file name patterns of artifacts to retrieve,
for example: *.zip, ${build.version}*.zip,
${build.version}.*. Multiple patterns can be
specified as long as they are seperated by
spaces(Of course, a single pattern includes spaces
should be quoted). If left empty, all files will be
retrieved.

Retrieve recursively Whether or not to retrieve matched artifacts
recursively under specified source path.

Destination path Specify the directory relative to the checkouts
directory of current configuration, where the
matching artifacts under the specified source path
should be retrieved to. If left empty, retrieved code
will be put into directory defined by the source
path relative to the checkouts directory.

Chapter 4. OGNL expressions

Although OGNL expression is widely used in QuickBuild, generally, you need not know anything about it due to
QuickBuild's deliberate designed user interface. For most properties that need OGNL expression, you can choose from
drop down menu besides that property simply. However, knowledge of OGNL expression will give you ability to set
up very complicated configurations. http://www.ognl.org is the official site for OGNL where you can learn everything
about it. This chapter assumes that you have some knowledge of it, and will concentrate on properties and methods
that can be used in QuickBuild.

Generally, there are two types of application of OGNL in QuickBuild. The first one is for boolean type properties,
including Build necessary condition, Step necessary condition, Build success condition, Step success condition, etc.
These properties expect an OGNL expression that will be evaluated to a boolean value. The second one is for string
type properties. Inside this string, any number of OGNL expressions can be embedded as long as they are embedded in
${...}, and QuickBuild expects they evaluate to a value of string type. Strings outside of ${...} will simply keep the
same during the evaluation. Every string-typed property in QuickBuild accepts OGNL expressions embedded within
${...} as long as there is not explicitly statement of nonsupport. Please be noted that double back slashes should be
used for windows path in an OGNL expression, for example, ${"c:\\program files\\apache-ant-1.6.5\\bin\\ant.bat"}.
Further more, if you assign windows path as value of a variable, and refer to that variable in OGNL expression, then
that windows path should also use double back slashes. For example, in order to assign windows path of ant executable
to variable pathToAnt, you may need to define it as:

pathToAnt = "c:\\program files\\apache-ant-1.6.5\\bin\\ant.bat"

The path is quoted because there are spaces inside it.

Maybe you know, every OGNL expression should have a root object in order to perform the evaluation. In
QuickBuild, the root object is always current configuration object. From this configuration object, you can access its
exposed methods or properties, such as name, status, variables, repositories, builders, steps, current build, current
object, etc. Once you get a stuff out of the configuration object, you can recursively get other properties or methods
exposed by that particular property. The definitive guide of these exposed methods or properties is the JavaDoc
[../javadoc/com/pmease/quickbuild/model/Configuration.html]. There are a lot of methods or properties in the
JavaDoc, you should only pay attention to methods or properties with OGNL: at the very beginning of the comment.
Here are some typical OGNL expressions:

Get the build object that is running

 build

Get version of the build object that is running

 build.version

Get last build object

 lastBuild

Get last successful build object

 lastSuccessBuild

Determine if last build is successful

 lastBuild.successful

Determine if last build is failed

 29

http://www.ognl.org/

 lastBuild.failed

Determine if last build is running

 lastBuild.running

Determine if contents of repository "cvs1" have been modified since last build

 repository["cvs1"].modified

Get source path of first module of repository "svn1"

 repository["svn1"].modules.get(0).srcPath

Get head revision number of repository "svn1"

 repository["svn1"].headRevision

Get workspace directory of repository "accurev1" for current build

 repository["accurev1"].getWorkspaceDir(build)

Get version of the remote build used by a QuickBuild repository

 repository["quickbuild1"].remoteBuild.version

Determine if contents of all used repositories have been modified since last build

 effectingRepositoriesModified

Determine if contents of repository "cvs1" have been modified since last successful build

 lastSuccessBuild==null or
repository["cvs1"].isModifiedSince(lastSuccessBuild.startDate, configuration)

Get string value of variable "var1"

 var["var1"]

Get value of variable "var1" as integer

 var["var1"].intValue

Increase value of variable "var1" as integer

 var["var1"].increaseAsInt()

Set value of variable "var1" as "value1"

 var["var1"].setValue("value1")

Increase value of variable "var1" as integer, and get the increased result

 var["var1"].(increaseAsInt(), value)

Determine if value of variable "var1" equals "true"

 var["var1"].value=="true"

Get working directory of current configuration

 OGNL expressions

 workingDir

Determine if execution of specified command is successful

 system.execute("/path/to/my/command") == 0

Get current hour

 system.calendar.hour

Get day of week

 system.calendar.dayOfWeek

Determine if execution of step "step1" is successful

 step["step1"].successful

 31

Chapter 5. Velocity templates

Velocity templates are used to customize content of build notifications. Detailed information about velocity template
can be accessed from Apache's web site [http://jakarta.apache.org/velocity/index.html]. Two variables are defined to
help inserting information related to QuickBuild. The first variable is build
[../javadoc/com/pmease/quickbuild/model/Build.html], which refers to current build object. From this variable,
information such as build version, build status, configuration, build log, revision log can be accessed. JavaDoc
[../javadoc/com/pmease/quickbuild/model/Build.html] of the build class will be the definitive guide on what methods
or properties can be accessed from this variable. There are a lot of methods defined in this class, you should pay
attention to those started with OGNL: prefix (In QuickBuild, all properties or methods for OGNL expressions can
also be used to construct velocity templates). The second variable is system
[../javadoc/com/pmease/quickbuild/util/system.html], which refers to current QuickBuild system. From this variable,
information such as calendar, system url can be accessed. Again from the JavaDoc
[../javadoc/com/pmease/quickbuild/util/system.html], you can get the full guide on what methods can be called on this
variable.

Other files can be included in the template, as long as they are put under <QuickBuild installation
directory>/templates. For example, the default body template for Email notifier contains just one line: #parse
("html_notification.vm"). This line includes and parses content of file html_notification.vm in templates sub
directory of QuickBuild installation directory.

To facilitate writing of your own notification templates, some typical variable references are listed below:

Get current build version

 $build.version

Determine if current build is successful

 $build.successful

Determine if current build is failed

 $build.failed

Get current build url

 $build.url

Get build log url of current build

 $build.buildLogUrl

Get revision log url of current build

 $build.revisionLogUrl

Get build log path of current build

 $build.buildLogPath

Get revision log path of current build

 $build.revisionLogPath

Get name of current configuration

 32

http://jakarta.apache.org/velocity/index.html

 Velocity templates

 $build.configuration

Get url of current configuration

 $build.configuration.url

Get log url of current configuration

 $build.configuration.logUrl

Get log path of current configuration

 $build.configuration.logPath

Get 50 lines arround the error line of build log

 $system.readFileAsHtml("$build.buildLogPath", ".*ERROR.*", 25)

Get content of revision log

 $system.readFileAsHtml("$build.revisionLogPath")

 33

Chapter 6. Security

With QuickBuild, you will be able to control that who can access your build system, and what they can do on it.
Further more, you can authorize anonymous users accessing certain part of your system.

User authentication

Currently QuickBuild supports authenticating users from two sources: configuration file and database. Users from
other authentication source such as CAS, LDAP will be supported in later versions. Configuration file authentication
source is only used for administrator with initial user/password as admin/admin. Path to the configuration file is
<QuickBuild installation directory>/config.properties. Administrator password can be changed by
editing this file. User admin is the only super user in QuickBuild system, and has the permission to perform tasks such
as managing users/groups, configuring system settings, managing licenses, managing build queues, backing
up/restoring system, or exporting/importing data, etc.

Another supported authentication source is database. Users created by administrator in QuickBuild are saved into
database, and will be authenticated through that database later on. Please be noted that the Users menu lists not only all
users in the database, but also users from other authentication source (here you will see admin been listed). The reason
is that although QuickBuild authenticate them through other authentication sources, it still maintains contact
information such as Email, MSN messenger account, which may be used to send out build notification to these users.
Changing password for these users here has no effect. Instead, password should be changed from their own
authentication source (such as editing config file in order to change password for the admin user).

User authorization

User authorization functionality is achieved by assigning users to proper groups. You can create several groups; with
each group has its own set of permissions. Multiple groups can be assigned to a single user, which means this user has
all permissions set in those groups. You can create new group or editing existing group through Groups menu of
Administration tab. While creating new groups, the special name anonymous is reserved for anonymous users, that is,
all anonymous users will be assigned to this group automatically, thus get permissions set in this group. Basically there
are two type of permission you need to set for a group: queues and configurations.

Set queue permissions

By specifying authorized queues for a group, you allow users of that group be able to bind those queues to
configurations they have permission to edit. This is useful, for example, if you want that only one build can be
performed at the same time (in order to save CPU cycle) for some projects. In order to do achieve this, you create a
queue with only one working thread, and create a group with only this queue authorized, and assign users from those
projects to this group. In this way, users of that group can only use that particular queue, which will streamline all
triggered builds, instead of run them simultaneously.

Set configuration permissions

By specifying configuration permissions for a group, you authorize users of that group be able to access certain
configurations in the system, and what operations they can do on those configurations. This is done by choosing
desired configuration subtree, and set appropriate permission on that tree; then all configurations under choosed
subtree will get specified permission. There are three types of permission you can set:

View Be able to view and access artifacts of all configurations under the choosed subtree.

Build Be able to build all configurations under all configurations under the choosed subtree.

Admin Be able to administrate all configurations under the choosed subtree.

 34

 Security

For a particular configuration, if it is affected by multiple permission lines, the actual permission will be the maxium
possible permission. In order to demonstrate this, let's assume that configuration permissions are set as below:

Table 6.1. Configuration permissions

Configuration subtree Permission

root.department1 Admin

root.department1.project1 View

Although second permission line states that all configurations under root.department1.project1 have View permission,
but because the first line states that all configurations under root.department1 have Admin permission, configuration
root.department1.project1 will take Admin permission which is the maximum possible permission. This rule also
applies when determine permission for a configuration that is affected by multiple groups assigned to the same user.

 35

Chapter 7. Remote and parallel build
support

Mechanism

Let us suppose the following scenarios:

1. Your product consists of components that should be built on different platforms. For example, in order to package
your product, you need to build component1 on windows, build component2 on linux, and collect build result of
them to form a single package.

2. It may take a long time to build your product. Ideally, you may want to build different part of the product on
different machine simultaneously, and then collect back build results of these parts to form a single product.

3. Build a product on one machine, and send build result to another machine for smoking/automation tests. If tests
pass, mark current build as successful;otherwise, mark it as failed.

QuickBuild can be used to handle these complicated scenarios quite easily. The key is a special repository type:
QuickBuild. The QuickBuild system itself can be treated as a type of repository just like other repositories such as
CVS. This is reasonable, cause repository is just a place holding artifacts which can be used during a build process.
These artifacts can be source code saved in CVS repository, and can also be Jars or DLLs generated by and saved in a
QuickBuild system. Several use cases are created to demonstrate how QuickBuild supports multi-platform remote
builds.

Deadlock prevention

Certain mis-configuration of remote builds may cause deadlock. They are listed here so that you can avoid of doing so
(It is highly recommended that you read these use cases first to get thorough understanding of QuickBuild's remote
build support before try to understand deadlock scenarios listed here):

1. If configuration1 and configuration2 shares the same working directory, and you set up configuration1 to be
dependent on configuration2. When configuration1 is triggered, it triggers execution of configuration2 and tries
to wait for completion of that execution, but configuration2 will wait on configuration1 to release shared working
directory lock. Thus deadlock occurs.

2. If configuration1 depends on configuration2, and configuration2 depends on configuration1 (see this use case).
If you actively trigger configuration1 and configuration2 at the same time, deadlock may occur. The reason is
that, if you actively trigger configuration1, it will hold working directory lock of configuration1 and dependently
triggers configuration2, and wait until that triggering has been finished. Dependent triggering of configuration2
tries to get working directory lock of configuration2, which may now be hold by an active triggering of
configuration2. Just like active triggering of configuration1 does, this active triggering of configuration2 will
also cause dependent triggering of configuration1, which will wait on working directory lock of configuration1.
Thus, working directory lock of both configurations can never be released, and deadlock occurs.

 36

Chapter 8. Data management

Backup and restore database

You are able to backup and restore contents of the database used by QuickBuild through data management section of
the Administration tab. It is a good idea to backup your database regularly to ensure you can restore your data in case
of a hardware failure. Please be noted that the backup and restore process only affect data saved in the database (such
as configurations, groups, users etc.), all other contents in the disk (such as generated build artifacts) will not be
touched.
Warning

The backup process may take a long time if the system contains large amount of builds. You can speed up this by
deleting unwanted builds. Also it is a good idea to set a reserve by days (or reserve by count) build cleanup strategy for
configurations which will generate many many builds over time (for example configurations created for continuous
integration purpose).

Data migration between different databases

By backing up the database, QuickBuild actually saves contents of the database into a portable XML file, which can be
restored to a different database. In this way you are able to migrate data between different databases. For instance, if
you want to migrate data from HSQLDB (the default database used by QuickBuild) to MySQL, the following steps
can be performed:

1. Bring up QuickBuild and backup database to an XML file, say data.xml.

2. Shutdown QuickBuild, and edit <QuickBuild installation directory>/config.properties to connect to
MySQL.

3. Bring up QuickBuild again, and restore database from data.xml.

Migrate data from QuickBuild PREVIEW2 and PREVIEW3

To migrate from QuickBuild PREVIEW2 and PREVIEW3, please go through the following steps:

1. If you are using MySQL as database, edit file "config.properties" to connect to your existing MySQL database.
Note

Please do not simply overwrite "config.properties" with the same file from existing installation, cause this file has
been changed since PREVIEW3.

2. If you are using HSQLDB as database:

� Remove the "data" sub directory of QuickBuild 1.0.1.

� Copy "data" sub directory from existing installation to QuickBuild 1.0.1.

3. Copy "publish" sub directory from existing installation to QuickBuild 1.0.1.

Migrate data from Luntbuild 1.2.x

To migrate data from Luntbuild 1.2.x, please go through the following steps:

 37

1. Start up Luntbuild, and export data into "data.xml" under Luntbuild installation directory.

2. Login to QuickBuild as "admin", change to "administration" tab, and select "Migrate from Luntbuild".

3. During the migration, all build artifacts will be picked up from your existing Luntbuild instance and modified to
be compatible with QuickBuild's artifacts structure, and put under the "publish" sub directory of QuickBuild.
This may take a long time if you have many many builds, so be patient...

4. If you just want to migrate configuration data (such as projects, schedules), but not build artifacts, you can simply
select "Restore database" menu item, and specify path to "data.xml" created in step 1.

5. After the migration, please be aware of the following things:

� OGNL expressions used in "next build version", "build properties", and "build environments" are not
migrated. You should make sure they conform to new OGNL expressions described in Chapter 4 in this
document.

� Project dependencies are not migrated, cause dependency mechanism in QuickBuild is very different from
Luntbuild. You need to understand the new dependency mechanism and get them re-configured.

� Properties such as "build necessary condition" and "build success condition" have been reset to conform to
new format of QuickBuild. You can customize them further to fit your needs.

For Luntbuild 1.x users, please migrate to Luntbuild 1.2.x first, then following the above instructions to migrate to
QuickBuild.

Chapter 9. REST API

QuickBuild has a REST (REpresentation State Transfer) API implemented in Hessian
[http://www.caucho.com/hessian/] protocol (a lightweight SOAP protocol). This API is created to help you integrate
QuickBuild with other systems (such as issue tracking application), or extend the ability of QuickBuild. The following
are some scenarios on using this API:

1. Trigger a build right away when somebody checks code into the version control system. In order to do this, you
should write a program calls the TriggerBuild method and associate this program with the checkin triggers of
your version control system.

2. In the project dependency use case, build of componentA will be triggered (depends on the build necessary
condition, a build may or may not be generated in componentA) before triggering projectA (because projectA
uses artifacts of componentA, and thus depends on it), However if componentA is triggered first, projectA will not
be triggered automatically. But you can achieve this by writing a program calls the TriggerBuild method in the
API and run this program just before end of componentA's build script.

3. Backup QuickBuild database to XML regularly.

4. Create configuration programmatically.

5. Sometimes it is necessary to delete unwanted builds (particularly generated by continuous integration
configurations) to save space. QuickBuild have two built-in build clean up strategies: reserve builds by days, and
reserve builds by count. However if they do not suffice your particular needs, you can write your own program to
periodically delete selected builds from the system.

6. Create users programmatically. This is useful to import large number of users from other systems.

7. Get information on last successful build of a particular configuration, and feed some of them (such as build
version number) into other systems such as an issue tracking application.

8. Get information on build of particular version. This is useful if you want to access information for a particular
build from other systems such as an issue tracking application.

All information about the API is available in the api directory under your QuickBuild installation. Within this
directory:

� docs sub directory contains the API reference.

� lib sub directory contains necessary jars to compile and run your program.

� samples sub directory contains some samples demonstrating how to use the API.

 39

http://www.caucho.com/hessian/

Chapter 10. Use cases

This chapter shows how to use QuickBuild by going through a couple of typical use cases. All use cases are using CVS
as sample repository. You can also use other type of repository here. Configurations used in these use cases resides
under configuration root.live-samples which will be available after you've installed QuickBuild. You need to edit
basic settings of the root configuration, and set value for variable such as ant, cvs, maven according to your
environment. These variables will be referenced in child configurations.
Note

Most of the samples are configured to check out codes from our sample repository
:pserver:anonymous@cvsdemo.pmease.com:/home/cvsroot. It will be very helpful to check out these codes and look
into them.

General use cases

Working with your first build

Check out code from CVS, build them with Ant, and tag the source when build is successful. Also upon a
failure build, notification should be sent to users who have checked in codes recently.

1. From the dashboard, trigger the configuration root.live-samples.sample1 , the Editing manual trigger settings
page will be displayed. For property Build necessary condition, choose menu item Force build from the drop
down menu. This will force a build even there are no changes in CVS repository since last build. Click on OK,
and the build should be kicked out and run. After some time, refresh the dashboard page; you'll see the build has
finished. If all things go well, this should be a successful build. Click on status icon of the newly generated build,
the build log will be displayed. In case the build cannot be generated, you can click on status icon of the
configuration, and examine what has happened in the configuration log.

2. You now have successfully run the first build. Let's examine some important aspects for this configuration.

� Basic settings

This page shows some basic settings of the configuration. You can set working directory and publish
directory for this configuration. Working directory is used to store stuffs specific to current configuration, for
example, configuration logs. In this working directory, a directory named checkouts will be created to hold
stuffs checked out from configured repositories. In the configuration's publish directory, a directory named
builds will be created to hold generated builds, including build logs, published artifacts, etc. If these two
directories are set as empty value, they will inherit settings from parent configuration. If you specify a relative
path, it is assumed that they are relative to the parent's working or publish directory.

� Repositories

Create the CVS repository in this page. Pay particular attention to the CVS executable path property which we
assign it with the value ${var["pathToAnt"]} here. The expression embedded in ${...} is OGNL expression.
Almost all text properties in QuickBuild can embed OGNL expressions as long as they are surrounded by
${...}. Root of the OGNL expression is always current configuration object. Here we are referring to var
property of the configuration object. For properties that can be used in your OGNL expression, please refer to
OGNL reference section.

Multiple repositories can be defined. Particularly, for the newly created repository, if you choose a name that
is the same as another repository defined in ancestor configurations, newly created repository will override
previously defined one. This is also true for builders and steps. So you can define common objects in ancestor
configurations, and define particular objects specific to particular child configurations in descendent
configurations. In this way, your life of configuring new builds is made simple.

 40

 Use cases

� Builders

Create the Ant builder in this page. Here again we use OGNL expressions in Path to Ant executable and Build
properties. Take a look at Build properties, we passed several properties to Ant. Among them, buildVersion
is used to pass in current build's version; artifactsDir is used to pass in the directory path to which your build
results should be copied. This directory is a sub directory of current build's publish directory, and is named as
artifacts. Current build's publish directory is a sub directory named by its version under current
configuration's publish directory. junitHtmlReportDir is used to pass in directory where you should store your
JUNIT html reports. cloverHtmlReportDir is used to pass in directory where you should store your Clover
html reports. Of course you can choose property names other than artifactsDir or buildVersion, as long as you
refer to these property names in your Ant build script file.

Multiple builders can be defined. Particularly, for the newly created builder, if you choose a name that is the
same as another builder defined in ancestor configurations, newly created builder will override previously
defined one.

Let's take a look at what should be done in your Ant build script file. After you have successfully run the
build, change to directory <QuickBuild installation

directory>\working\root\live-samples\sample1\checkouts, and you'll find checked out stuffs from
the configured CVS repository. Change to directory sample1\build, and open file build.xml; pay attention
to the target distribute. This target creates distribution file under the directory denoted by property
artifactsDir. Also in target test, we generate JUNIT html report into the directory denoted by property
junitHtmlReportDir; in target cloverreport, we generate Clover coverage report into the directory denoted by
property cloverHtmlReportDir. In this way, we can access build results, JUNIT html report, and Clover html
report from QuickBuild's web interface.
Note

There are two methods to make build results accessible from QuickBuild's user interface:

a. Save build results under directory denoted by artifactsDir property. This is what we do in this use case.

b. Put build results in any directory you want, and use the publish step to create soft links under directory
denoted by artifactsDir property. These soft links will point to your build results. This is what we do in
next use case.

Note

Clover html report will only be generated if you have installed Clover.

� Notifiers

Create desired notifiers in this page. Here we defined an Email notifier. This notifier will be referred to when
define the notification step, which is used to send failure build notification to users who has checked in since
last successful build. Message title and body for this notifier can be customized through using Velocity
template. Notification sent out using this notifier will contain links to affecting configuration, build, build log,
revision log, and also several lines arrounding the error line inside the build log.
Note

You can define your notifiers in a high level configuration, so that they can be used by every descendent
configuration without need of re-definition.

� Steps

Create desired steps in this page. Here we've defined four steps, check out from cvs, build with ant, create
label for successful builds, send notification for failed builds and default, respectively. Pay particular
attention to the default one. Actually, When the configuration got running, QuickBuild will only locate and
execute the default step (will look for this step in ancestor configurations if not found in current

 41

configuration. The same is true of other steps). As you may have noticed, the default step is a serial composite
step that will trigger other three steps one by one.

� Login mappings

This page is used to map repository logins to QuickBuild users. As you see in steps definition, upon a failed
build, the send notification for failed builds step will collect CVS logins who has checked codes into CVS
repository since last successful build, and send notifications to them. Before send this notification, these
logins should be mapped to corresponding QuickBuild users in order to get contact information such as
Emails, MSN messenger accounts, etc. When define repositories, you can refer to these login mappings, so
that logins in those repositories can be resolved to correct users in QuickBuild system.
Note

You can define your login mapping objects in a high level configuration, so that they can be used by every
descendent configuration without need of re-definition.

� Child configurations

Create child configurations under current configuration. Currently it is the only place to create, delete or
move configurations.

Working with Maven

Check out code from CVS, and build them with Maven. Instruct Maven to use version managed by
QuickBuild, and make artifacts published to Maven repository also accessible from QuickBuild's web
interface.

1. Trigger configuration root.live-samples.maven-sample with force build option. QuickBuild should check out
code from CVS repository, trigger the maven builder. During the build, Maven publishes generated artifacts to
/maven-repository (configured in file <current configuration's checkouts

dir>/maven-sample/project.properties). Of course, you can change local repository to any other directory
if you like, but please do not check them into QuickBuild's demo CVS, in order not to disturb other persons using
this live sample.
Note

Do not forget to set property path to maven executable in basic settings of the root.live-samples configuration.

2. You now have successfully gotten the build running with Maven integration. On build detail page, you should see
several files are listed there as published artifacts. Please note that these files are actually located in Maven's
repository. They appear here because soft links to them are created under artifacts directory of current build. This
was done by the step of type publish (see steps tab of this configuration). In this step, we specify
/maven-repository/maven-sample/jars as source directory for publishing, and specify
maven-sample-${build.version}.* as the file name pattern. Before this publish step runs, OGNL expression in this
pattern will be replaced with current build's version, for example, 1.0.3, and the publishing file name pattern will
actually be maven-sample-1.0.3.*, which means all files under the source directory with file name starting with
maven-sample-1.0.3 will be published into artifacts directory of current build, that is, soft links to these files have
been created under artifacts directory.
Note

If your build version contains spaces, you should surround the pattern maven-sample-${build.version}.* with
quotations; otherwise, it will be treated as multiple patterns separated by spaces.

3. Also Maven is using version number managed by QuickBuild as current version. This is done in two steps:

� When define Maven builder, pass in a property named by buildVersion (You can choose other name of
course), and set its value to be "${build.version}". Here quotes are used in case that evaluated OGNL
expression contains white spaces.

 Use cases

� In the project definition file (<checkouts dir>/maven-sample/project.xml here), instruct Maven to use
value of passed in buildVersion property as current version:

<currentVersion>${buildVersion}</currentVersion>

4. In case of Maven2, please refer to configuration root.live-samples.maven2-sample.

Working with project dependencies

Some of my products depend on common components. For flexibility, separate build for these components
have been set up. Before build those products, common components should be checked first to see if they
need to be built.

1. Let's assume that we have two Java projects: productA and componentA. productA uses build result
(componentA-xxx.jar) of componentA, and thus depends on componentA.

2. Create configuration for componentA, say root.componentA. This configuration checks out code for componentA
from CVS repository, build with Ant and generate componentA-xxx.jar into current build's artifacts directory.
This Jar file is needed by productA.

3. Create configuration for projectA, say root.productA. Set up the following things for this configuration:

� Create below repositories:

repository1 This repository is a CVS repository which is used to check out source codes of productA
from CVS.

repository2 This repository is a QuickBuild repository which is used to check out
componentA-xxx.jar from latest build of configuration root.componentA. Modules
information are set up so that componentA-xxx.jar will be put into directory
<configuration root.productA's checkouts
directory>/productA/componentA.

� Create a Ant builder to build productA. In the build script file, it uses Jar file generated by componentA

� Create below steps:

check out productA from CVS This step uses repository1 to check out source codes of productA from
CVS.

check out build results of componentA This step uses repository2 to check out componentA-xxx.jar
from CVS.

create label This step does the following things:

? Creates a label on source code of productA in CVS.

? Creates a label on root.componentA to mark the build number of
componentA whose artifacts are used by this version of productA.

default This step is a serial composition step that runs the above five steps
serially.

4. In this way, productA is set up to be dependent on componentA. When root.productA is triggered,
root.componentA will also be triggered to see if it is necessary to be built, and build results of componentA will be
checked out to work space of productA to accomplish productA's build.
Warning

When you set up a configuration to be dependent on another configuration, you should never let them share the

 43

same working directory. Otherwise, deadlock will happen. See here for the reason.

5. A live demo is available at http://livedemo.pmease.com:8081. Within this live demo:

� root.live-samples.sample4.productA represents root.productA we talked about.

� root.live-samples.sample4.componentA represents root.componentA we talked about.

Working with multiple branches

I want to set up build for multiple branches of my product. I do not want to input repositories or builders
information multiple times for each branch, how can we do that?

1. Let's assume that you want to set up build for two branches for your product: bugfix and main. First set up a
configuration for your product, say root.product1. In this configuration, set up informations such as repositories,
builders, and steps. Particularly, for branch property of your repository, set it to be: ${var["branch"]}. This
means that value of branch variable defined in your configuration will be used as actual branch to check out.

2. Create configuration bugfix under root.product1. For this configuration, you only need to set up next build
version and define the following variable:

branch=bugfix

In this way, configuration root.product1.bugfix is set up to build against bugfix branch of your repository.

3. Create configuration main under root.product1. For this configuration, you only need to set up next build version
and define the following variable:

branch=

In this way, configuration root.product1.main is set up to build against main branch of your repository.
Note

An empty value for branch means main branch.

4. A live demo is available at http://livedemo.pmease.com:8081. Within this live demo:

� root.live-samples.sample6.bugfix branch represents root.product1.bugfix we talked about.

� root.live-samples.sample6.main branch represents root.product1.main we talked about.

Working with build promotion

For a particular project, I want to set up nightly build, test build, and release build respectively. Nightly builds
should not tag the source in any case, while test and release builds should tag the source whenever there is
a successful build. Further more, for particular test build that has passed QA tests for example
"myproduct-QA-5", I want to promote it as a release build, and assign it with a formal version, for example
"myproduct-1.0.5"

1. Open configuration root.live-samples.sample3. This is the top level configuration for our sample project. We
define necessary repositories, builders, and steps in this configuration.

2. Under this configuration, we defined three child configurations nightly, test and release, respectively. For test
and release configuration, the only thing need to do is setting proper next build version in the basic settings tab.
Other objects are inherited from parent, including repositories, builders and steps. For nightly configuration, the
label step is not wanted, so we create a new step in the steps tab, and choose overriding 'Label CVS' from the drop
down menu of the name property, and choose never run this step as value for the step necessary condition
property. In this way the label CVS step created in parent configuration has been overriden, and will never get
chance to run. Another way to avoid labeling is to override the default step, and remove the label CVS step from
the serial composition.

 Use cases

Note

For release and test builds, it is highly recommended to set them as clean builds. For nightly builds, be set as
increment builds will speed up the build process. Generally speaking, clean build is more reliable, and increment
build is faster.

3. Now try to forcibly trigger these three child configurations, you can see all of them should run happily. By
examining builds in these three child configurations, you'll find that builds in release and test configuration can
be promoted and rebuilt, while builds in nightly configuration can not. The reason is that rebuild and promotion
need to repeat the build, which is only possible when labels were created in repository for these builds.

4. Now suppose that our QA team has thoroughly tested build myproduct-QA-5. We are satisfied with its quality,
and want to promote it as a release build. In order to do this, just go to detail page of myproduct-QA-5, click on
promote button, the Edit promote settings page will appear. In this page, choose
root.live-samples.sample3.release as the destination configuration, and click on OK. Now myproduct-QA-5 is
being promoted in release configuration. The new version will be next build version of release configuration,
which we assume as myproduct-1.0.5 here. After the promotion, original test build will be deleted, and the new
build will create a new label called myproduct-1_0_5 in CVS.
Note

Under the hood, promotion retrieves sources from repository with label of original build, and go through steps
defined in destination configuration to perform the new build. So in order to repeat the original build exactly,
source configuration and destination configuration should use the same set of repositories and builders during
build.
Note

Another way to perform promotion is just to move a build from one configuration into another, this will not
trigger a new build. The limitation is that the version attached original build can not be changed.

Sharing working directories

In above use case, every child configuration of "root.live-samples.sample3" has its own working directory
and holds its own copy of checked out codes from CVS. For a large project, this may consumes a lot of disk
spaces. Is there any way to check out only one copy of codes for these three child configurations?

1. By default, a newly created configuration will use ${name} as value of the working directory property. This
means new configuration will create a sub directory under working directory of its parent configuration, and
name of the sub directory will be the same to name of newly created configuration. So there will be three different
working directories for nightly, test and release configuration. In order to use the same working directory for
these three child configurations, the simplest way is to left their working directory property as empty. In this way,
they will all use parent configuration's working directory. Of course, you can point them to other arbitrary
directories, as long as they all refer to the same directory.

2. Now nightly, test and release configurations have the same working directory, and there will be only one copy of
codes checked out for build, which resides in <working directory>/checkouts.
Note

For configurations sharing the same working directory, only one can be executed at one time. If you trigger others
while one configuration is already running, the newly triggered configuration will be put into queue, until the
current one has finished its execution.
Note

If multiple configurations share the same working directory, and some of them are configured to incremental
build, it is highly recommended that all these configurations check out the same set of source code, build with the
same set of builders. Otherwise, increment builds may be incorrect for codes may be incremental updated based
on different code base.

 45

Sharing build versions

In use case working with build promotion, I want all child configurations share the same stream of build
version. That is, if the most recent build (among all child configurations) takes version "myproduct-1.0.1
build 4", then the next happened build should take version "myproject-1.0.1 build5" in regardless of its
belonging configuration.

1. In basic settings tab of configuration root.live-samples.sample3, set a value for property next build version, for
example: myproduct-1.0.1 build 1.

2. For all child configurations under root.live-samples.sample3, set an empty value for property next build version.
In this way, all child configurations will inherit next build version from the parent configuration, that is, share the
same stream of build version. If next build version of the parent configuration is also empty, it will inherit the
value from its own parent, until non-empty value has been found, or reaches the root configuration.

Using date and iteration as part of build version

In use case working with build promotion, I want current date and iterations of current date can be
embedded into build version of child configurations.

1. Let's take test child configuration as example. From the drop down menu of property next build version, choose
date and iteration, a complicated value contains quite a lot of OGNL expressions will be set for next build
version. It will generate versions like 2005-Sep-25.4 as default, where 2005-sep-25 indicates date of the build,
and 4 here means iterations in this date.

2. If you are not satisfied with the format of this default one, you can modify the value of next build version. Before
doing this, make sure you know the grammar of OGNL expressions [???] as well as exposed date and time
properties in QuickBuild. For example, you can add the string myproduct-QA- at the very start of next build
version, then, the version generated will like myproduct-QA-2005-Sep-25.4, myproduct-QA-2005-Sep-25.5, etc.
Note

When you choose date and iteration as next build version, and run the configuration, QuickBuild will
automatically put two variables in current configuration, viz. day and dayIterator. For variables that have not
been defined (either in current configuration or in ancestor configurations), QuickBuild will assume it has an
empty value when referenced as string, or 0 when referenced as number. And QuickBuild will automatically
create these variables in current configuration if they have been assigned values.

Managing major, minor, and iteration part of a version string

In use case working with build promotion, I want to define a version schema with major release part, minor
release part and iteration part. Major release part will be set manually. The "release" configuration
increases minor release part of the version, while "test" configuration increases iteration part of the version.
When minor release part of the version changes, iteration part should be reset to 1.

1. Define the following variables in configuration root.live-samples.sample3 :

majorRelease=myproduct-1.0
minorRelease=1
iteration=0

2. Define next build version of root.live-samples.sample3.test configuration as:

${var["majorRelease"]}.${var["minorRelease"]} iteration
${var["iteration"].increaseAsInt()}

3. Define next build version of root.live-samples.sample3.release configuration as:

${var["majorRelease"]}.${var["iteration"].setValue(1),
var["minorRelease"].(increaseAsInt(), value)}

4. In this way, builds in root.live-samples.sample3.release will get versions like: myproduct-1.0.1,

 Use cases

myproduct-1.0.2, myproduct-1.0.3, ..., and builds in root.live-samples.sample3.test will get versions like:
myproduct-1.0.1 iteration 1, myproduct-1.0.1 iteration 2, myproduct-1.0.1 iteration 3,, myproduct-1.0.2
iteration 1, myproduct-1.0.2 iteration 2, ...

Specifying label to build against

I've set up a configuration to build against latest code of my project. But, when build this project manually, I
want to be able to specify the label to build against. Is there anyway to do this?

1. Open configuration root.live-samples.sample5, and check modules definition of its CVS repository setting, you'll
find that label value of source path sample1 has the value of ${var["label"]}. And in the basic settings tab of this
configuration, a variable label was defined with an empty value like this:

label=

It means that this configuration will still build against latest code unless you specify a non-empty value for the
variable label.

2. Now forcibly trigger this configuration, in the appeared Editing manual trigger settings page, provides a different
value for label variable like this:

label=myproduct-1_0_0

In this way, configuration root.live-samples.sample5 is triggered to build against label myproduct-1_0_0.
Tip

By using variables, you can make almost any part of repositories, builders, or steps definition be overridable
when manually triggers the build. Also it is possible to override these variables in child configurations, which
gives you the flexibility to modify part of objects defined in ancestor configurations.

Updating information of many projects

I have a CVS server with many projects, and set up dozens of configurations for these projects in
QuickBuild. After sometime, server name (or ip address) of our CVS server has been changed. So I need to
go through all defined repositories and change server name (or ip address) accordingly. Is there any simple
way to do this, or handle such kind of batch processing?

1. Define a variable for example cvsServerName in a high level configuration (a proper candidate for this high level
configuration can be your department or team's root configuration), and set its value as server name of ip address
of your CVS server.

2. Refer to the above variable when define CVS root of your repositories, for example:

:pserver:build@${var["cvsServerName"]}:/cvsroot

Now if you want to point all your CVS repositories to the new CVS server, simply modify value of the variable
cvsServerName.
Tip

It is a good idea to extract dynamic parts (maybe changed frequently) of repositories, builders and steps, and then
put them as variables in higher level configurations. In this way, you can easily change property of all affected
objects.

Working with build queues

I have set up a number of configurations for projects of deparment1, and all of them are under configuration
"root.department1". Now I want to make sure that at the same time, only two builds can be performed for
this department in order to save CPU resources for other departments.

1. Create a queue, say queue_department1, with two working threads.

 47

2. Edit root configuration, and set the build queue as queue_department1 (This step is necessary that,
queue_department1 will still be used even administrator of root.department1 set build queue as inherit from
parent).

3. For users of department1, assign them to groups with only queue_department1 authorized.

4. In this way, subtree under root.department1 are limited to only use queue_department1.

Working with public configurations

Make artifacts of some projects be publicly accessible, but do not want these projects be modified or built
publicly.

1. Set up public accessible projects under a particular configuration, for example, root.public.

2. Add a group named by anonymous, and configure this group to have View permission on configuration subtree
rooted at root.public.

3. In this way, anonymous users can only access configurations under root.public, without the permission to build
or edit these configurations.

Remote and parallel use cases

Building multi-platform products

product1 comprises of component1 and component2. component1 should be built on Windows, while
component2 should be built on Linux. After these components have been built, they should be collected
together on Windows platform and packaged into product1.
Warning

In order to make remote build work, you should keep time of different build machines in sync (Normally a slight
difference within 5 seconds is tolerable).

1. Install QuickBuild on Windows and Linux. Create configuration root.product1 in QuickBuild system running on
Windows (refer as root.product1@Windows later), and create configuration root.component2 in QuickBuild
system running on Linux (refer as root.component2@Linux later). root.product1@Windows will be used to build
component1 and package component1 and component2 into product1, while root.component2@Linux will be
used to build component2.

2. In root.component2@Linux, create appropriate repository, builder and steps so that it can check out source code
of component2 from CVS, build component2, and create label on component2 in CVS if build is successful.
Artifacts of component2 will be published into some directory of generated build. Do a test on this configuration
to make sure it works.
Note

root.component2@Linux will maintain separate build versions from root.product1@Windows. This is
reasonable, cause it's the common case that a product comprises of multiple components of different and
independent version numbers.

3. In configuration root.product1@Windows:

� Create below repositories:

repository1 This is a CVS repository which is used to check out source codes of component1 from
CVS.

repository2 This is a QuickBuild repository which is used to check out build artifacts of component2

 Use cases

from latest build of configuration root.component2@Linux.

� Create two builders: builder1 and builder2. builder1 is used to build component1, and builder2 is used to
package artifacts of component1 and component2 into product1.

� Create below steps:

check out component1 from CVS This step uses repository1 to check out code of component1 from CVS

build component1 This step uses builder1 to build component1

retrieve component2 artifacts This step uses repository2 to check out artifacts from latest build of
component2 at Linux box.
Note

By defining this step, root.product1@Windows is considered to be
dependent on root.component2@Linux, and root.component2@Linux
will be triggered automatically during the dependency resolving
phase, which is happened before retrieving component2 artifacts.

package artifacts of component1 and component2 This step uses builder2 to package artifacts of
component1 and component2 into product1

create label This step does the following things:

? Creates a label on source code of component1 in CVS.

? Creates a label on root.component2@Linux to mark the build
number of component2 whose artifacts are packaged into this
version of product1.

default This step is a serial composition step that runs the above five steps
serially.

4. In this way, product1 can be built easily. Further more, If product1 contains component3 which should be built on
Solaris, you can install another QuickBuild system on a Solaris machine, configure it to be able to build
component3, and add corresponding QuickBuild repository to check out artifacts from component3 at Windows
side.

5. A live demo is available through QuickBuild's demo site http://livedemo.pmease.com:8081/. Within this live
demo:

� root.remote-builds.product1 stands for root.product1@Windows we talked about.

� root.remote-builds.LinuxBox.component2 simulates the configuration root.component2@Linux.

Working with parallel builds

My product contains multiple components, which can be built independently. Is there any way to build them
simultaneously on multiple machines to speed up the build process?

1. In order to demonstrate this ability, we will take the example cited in use case Building multi-platform products,
but try to build component1 and component2 simultaneously. Nothing needs to be changed at
root.component2@Linux side. At root.product1@Windows side, make the following changes:

� Add a repository say repository3. This repository is defined so that it contains source path of both
component1 and component2.

 49

� Change build necessary condition to be repository["repository3"].modified at basic settings tab of current
configuration. The reason for not using effectingRepositoriesModified is that: By using
effectingRepositoriesModified, when decides whether or not a new build is necessary, QuickBuild will
examine contents of every repository referenced in step definitions to see if they have been modified.
During this phase, root.component2@Linux specified in repository2 may be triggered and built (and
contents of repository2 are considered to be modified if latest build of component2 happens after latest
build of product1), which is not we want. By using repository["repository3"].modified instead, we ignores
repository2 during build necessary condition evaluation phase of product1, but still be able to detect
changes in both component1 and component2.

� Create the following steps:

Check out component1 from CVS This step uses repository1 to check out code of component1 from
CVS.

Build component1 This step uses builder1 to build component1.

Check out and build component1 This step is created to execute the above two steps serially.

Retrieve component2 artifacts This step uses repository2 to check out artifacts from latest build of
component2 at Linux box. This step will cause component2 been built
if necessary (depends on build necessary condition of
root.component2@Linux).

Prepare artifacts of component1 and component2 This step is a parallel composition of step "checkout
and build component1" and "retrieve component2 artifacts". By using
this step, component1 and component2 will be built simultaneously.

Package component1 and component2 into product1 This step packages prepared artifacts of component1
and component2 into product1.

Create label This step does the following things:

? Creates a label on source code of component1 in CVS.

? Creates a label on root.component2@Linux to mark the build
number of component2 whose artifacts are packaged into this
version of product1.

default This step is a serial composition of step "prepare artifacts of
component1 and component2", "Package component1 and
component2 into product1", and "create label".

2. A live demo is available through QuickBuild's demo site http://livedemo.pmease.com:8081/. Within this live
demo:

� root.remote-builds.product1-parallel stands for root.product1@Windows we talked about in this use case.

� root.remote-builds.LinuxBox.component2 simulates the configuration root.component2@Linux.

Performing automation/smoking tests on a machine other than build
machine

After my product has been built, it should be sent to another machine to run smoking/automation tests. If
tests pass, mark current build as successful; otherwise, mark it as failed.

1. Take "product2" as example, we create a configuration root.product2 at machine1 to build this product. In this
configuration, set up the following things:

 Use cases

� Create two repositories:

repository1 This repository is created to check out source code of product2 from CVS.

repository2 This repository is created to retrieve test log from latest build of configuration
root.test-product2@machine2. In this repository, we define a module with source path be
"..", and file name pattern be "build_log.txt". In this way, test log will be retrieved (Note
that source path is relative to artifacts directory, so we use ".." to change to parent
directory of artifacts, which includes the build log file).

� Create two builders:

builder1 This builder is used to build product2.

builder2 This builder is used to publish test log into some sub directory of artifacts directory, so that it
can be accessed from web interface.

� Create five steps:

check out from CVS This step uses repository1 to check out source code of product2.

build with Ant This step uses builder1 to build product2.

retrieve test results This step uses repository2 to check out test log of product2. At this point,
you may curious about how build result of product2 is sent to machine2.
The trick is at root.test-product2@machine2 side. In that configuration, we
will define steps to pull latest build result of product2.

publish test results This step uses builder2 to publish test log. Step necessary condition
property of this step should be set to true in order to publish the test results
for review even the step "retrieve test results" fails.

default This step executes the above four steps one by one.

2. Another configuration root.test-product2 needs to be created at machine2 to run test against product2. In this
configuration, set up the following:

� Set value of property build necessary condition as true, which means new build will always be generated
upon triggering. This is needed because this configuration will be dependently triggered by
root.product2@machine1, and for each dependent triggering, we want new build of root.test-product2 been
generated so that tests can be run.

� Create two repositories:

repository1 This repository is created to check out build result of product2 from latest build of
configuration root.product2@machine1.

repository2 This repository is created to retrieve test script from CVS.

� Create a builder builder1, which will be used to run test script.

� Create four steps as below:

check out test scripts This step uses repository2 to check out test scripts from CVS.

check out build results of product2 This step uses repository1 to check out build results of product2.

run test against product2 This step uses builder1 to run test.

 51

default This step executes the above steps one by one.

3. In this way, build result of product1 will be tested on machine2, and test results will be collected back to
machine1. If test fails (that is, build of root.test-product2@machine2 fails), step "retrieve test results" at
root.product2@machine1 side will also fail, which causes build of product2 failed.
Note

As you may noticed, root.product2@machine1 depends on root.test-product2@machine2 to retrieve test results,
and root.test-product2@machine2 depends on root.product2@machine1 to retrieve product2 build results.
Obviously there is a dependency loop here. QuickBuild is clever enough to handle this correctly:

� When a configuration is triggered actively (that is, triggered by user or schedule, instead of dependency
resolver), other configurations detected in a dependency loop is considered as subordinate configurations
which will not be taken into account when evaluating build necessary condition of the active configuration.
In our case, root.product2@machine1 is triggered actively, and root.test-product2@machine2 plays the
role as subordinate configuration.

� At root.product2@machine1 side, when step "retrieve test results" executes, it will wait until the newly
generated build at root.test-product2@machine2 side completes (either successful or failed), and then
downloads test results from that build.

� At root.test-product2@machine2 side, when step "check out build results of product2" executes, it knows that
it is a subordinate configuration, and will download build results of product2 right away from
root.product2@machine1 without waiting for build of root.product2@machine1 been finished. Otherwise,
deadlock will occur. Consequently, you should make sure build results of product2 are available for
retrieving before step "retrieve test results" gets running in configuration root.product2@machine1.

Warning

You should never actively trigger a subordinate configuration. Otherwise, deadlock may occur.

4. A live demo is available through QuickBuild's demo site http://livedemo.pmease.com:8081/. Within this live
demo:

� root.remote-builds.product2 stands for configuration root.product2@machine1 we talked about.

� root.remote-builds.LinuxBox.test-product2 simulates configuration root.test-product2@machine2.

REST API use cases

Set up real-time continuous integration build

Set up a continuous integration configuration, and want build of this configuration be triggered whenever
there is a checkin made into the version control system.

1. Take configuration root.realtime-CI for example. Let's assume this configuration checks out module realtime-CI
from CVS repository and builds with Ant.

2. Modify the TriggerBuild.java sample, so that it triggers build of configuration root.realtime-CI. Of course, you
also need to change the login information, and hessian service URL. Compile this program with jars under api/lib
directory, and write a script triggerbuild.sh to run this program with Java.

3. Checkout "loginfo" file under CVSROOT directory of your CVS repository, and append a line like this:

realtime-CI /path/to/triggerbuild.sh

 Use cases

Note

Before editing, the file "loginfo" should be checked out first using your cvs client, just like you edit other files in
your cvs repository.

4. Check in the "loginfo" file. From now on, the checkins under CVS module "realtime-CI" will trigger the
triggerbuild.sh command, which will result in triggering build in configuration root.realtime-CI.

5. A live demo is available through QuickBuild's demo site http://livedemo.pmease.com:8081/. Within this live
demo, root.api-samples.realtime-CI stands for configuration root.realtime-CI we talked about. Just connect to
CVS repository at :pserver:anonymous@cvsdemo.pmease.com/home/cvsroot, and make some checkins into
module realtime-CI, you'll see configuration root.api-samples.realtime-CI will be triggered and running to
ensure health of the code base.

Trigger other builds after build of particular project

productA depends on componentA. After componentA finishes build, productA should be built to take the
most up-to-date artifacts of componentA.
Note

This scenario can not be addressed through project dependency use case, because the dependency mechanism only
guarantees that build of projectA can trigger build of componentA, but not vice versa.

1. Let's assume configuration root.projectA depends on root.componentA, and root.componentA uses Ant to
perform build.

2. Modify the TriggerBuild.java sample, so that it triggers build of configuration root.projectA. Of course, you also
need to change the login information, and hessian service URL. Compile this program with jars under api/lib
directory.

3. Call the following task before end of componentA's Ant build script:

<java classname="TriggerBuild">
 <classpath>
 <pathelement path="<the directory which contains TriggerBuild.class>"/>
 <pathelement location="/path/to/hessian-3.0.8.jar"/>
 <pathelement location="/path/to/quickbuild-api.jar"/>
 </classpath>
</java>

4. A live demo is available through QuickBuild's demo site http://livedemo.pmease.com:8081/. Within this live
demo:

� root.api-samples.productA stands for configuration root.productA we talked about.

� root.api-samples.componentA stands for configuration root.componentA we talked about.

 53

