
sinelaboreRT User Manual

(C) Peter Mueller

Revision: 1.02

Copyright (C) 2008 Peter Mueller. All rights reserved.

Microsoft, Windows Vista, Windows XP, Windows 2000, Windows,
Microsoft Word, Word 97 and Word 2003 are trademarks or registered
trademarks of Microsoft Corporation.

Adobe, Adobe Acrobat and Acrobat are trademarks or registered trade-
marks of Adobe Systems Inc.

UML and Unified Modeling Language are trademarks or registered
trademarks of Object Management Group Inc.

Cadifra is a trademark of Adrian and Frank Buehlmann.

Java is a trademark of SUN Micro Systems

1

Contents

1 Overview 3
1.1 What is new in this version? . 4

2 Installation 5

3 Introduction 5
3.1 A Microwave Oven . 5
3.2 Drawing the Initial Diagram . 6
3.3 Generating Code . 8

4 Commandline and Generator Flags 11

5 Important Types and Helper Functions 11
5.1 User Defined Typedefs . 11
5.2 Important (Type) Definitions . 11

A Short Introduction into Statecharts 14
A.1 Interactive Statemachine . 14
A.2 Transitions . 14
A.3 States . 16
A.4 Include and Action Notes . 17

B Design Questions 18
B.1 Running the statemachine in context of a RTOS 18
B.2 Multiple Instances of a Statemachine 19
B.3 Statemachine as Interrupt Handler 19

C Drawing statecharts with Cadifra UML editor 21
C.1 Events . 21
C.2 Hierarchical States . 21
C.3 State Details . 22

2

1 Overview

A statechart (or state machine) diagram shows the dynamic behavior of an appli-
cation. It is a graph of states and transitions that describe the response to events
depending on the current state that it is in. State machines are used for decades
in hardware design. And during the last years also more and more in the area
of software development. Especially in the embedded real-time domain the use of
statecharts is popular because the behavior of devices in this domain can be often
described very well with statecharts.

An important aspect of statecharts is that the design can be directly transformed
into executable code. This means that there is no break between the design and
the implementation. This is all the more important if the device under devel-
opment has to be certified (e.g. according to IEC61508). Please note that the
codegenerator is not certified in any way.

The generated code and the generation tool has to fulfill a number of requirements
to be really useful for embedded software development:

• Generated code shall be human readable to allow debugging, validation and
verification

• Generated code shall not enforce a specific system design (e.g. task based
with queues for event delivery)

• Code shall be generated in a way that static code analyzers (e.g. lint) makes
no trouble

• Generation process can be integrated into the build process

The sinelaboreRT code-generator was built especially for embedded real-time de-
velopers and fulfills all of the above listed points. It focuses on just one task: code
generation from statechart diagrams. A command line tool and a specification file
is all what is needed.

The generated code is based on nested switch/case and if/then/else statements. It
is easy to read and understand. The generated code will not create any headache
when using static code analyzers.

sinelaboreRT does not force you in any way how you design your system. Therefore
it is no problem to use the generated code in the context of a real-time operating
system or within an interrupt service routine or in a foreground / background
system. The generation process can be influenced to meet specific needs.

The way sinelaboreRT works is depicted in the next figure. From a statechart

3

design file produced with the Cadifra UML editor the generation tool generates
the complete statemachine implementation. For a specification file called oven.cdd

the command line would look like java -jar codegen.jar oven.cdd.

Figure 1: From design to code

1.1 What is new in this version?

Version (1.02) supports now the specification of entry and exit actions for outer
states. As the modeling tool does not support this directly at the moment a linked
note with a special keyword at the beginning is used instead. See section A.3 for
more info.

How to go on from here?

If you are not familiar with the statechart notation or need a refresh consult
appendix A. With the help of an application that allows you to interactively
send events to a rather complex statechart you can learn how statecharts work.
Furthermore the elements of a statechart are briefly explained. Section 2 describes
how to install sinelaboreRT on your computer. In the following section 3.1 a
simple step by step example is presented. It starts with the design of a statechart
and end with code generation. Then section 4 describes the different possibilities
to influence the code generator. In appendix B different options are discussed on
how to integrate the generated statechart into your code.

4

2 Installation

It is necessary to install both sinelaboreRT and Cadifra UML Editor on your
computer. The order doesn’t matter. To start the installation of Cadifra UML
double click the setup executable and follow the dialogs.

For sinelaboreRT no installation script is provided. Simply copy the codegen.jar
file and the license key file into a folder of your choice. It is recommended to
place the files in a folder e.g. bin located in your project directory. This makes
it simpler to access the generator from a Makefile and it can also be added to the
project’s version management if needed.

The code-generator of sinelaboreRT is entirely written in Java. Therefore a Java
runtime environment of version 1.5 or later is needed. If not already installed it
can be downloaded from java.sun.com. Follow the installation steps as described
there.

Finally the jdom.jar file must be copied into the <JAVA PATH>/lib/ext/ direc-
tory in the Java installation directory. On my system the file must be copied to:
C:\Program Files\Java\jre1.6.0_03\lib\ext.

Due to the fact that the code-generator is written in Java it is possible to run it
also on operating systems such as Linux.

3 Introduction

This section guides you through the whole development process from designing
a statechart to integrating it into an application. This should help you to get
familiar with the concepts. You will understand what the tools can do for you and
where limitations exist.

3.1 A Microwave Oven

In this section we create the model of a simple microwave oven using a statechart
diagram. A microwave oven was chosen because it is self-explanatory and not
too complex to model. To keep this example as simple and clear as possible
the hardware interaction routines are excluded. Consider the following image as
example for a fictitious microwave oven.

The oven controller should be able do the following things:

5

Figure 2: Fictitious microwave oven. With a wheel the cooking time can be
adjusted between 0 – 60 seconds. The power can be set to high (II) or low (I).

1. Cooking time can be adjusted using a wheel between 0s and 60s.

2. Cooking starts if the cooking time is larger than zero. And the door is closed.

3. If the door is opened during cooking the microwave generator is switched off.
Cooking time stops.

4. Cooking continuous if the cooking time is not over and the door is closed
again

5. Cooking stops if the cooking time is over or the time is adjusted to zero.

6. Cooking time and power can be changed at any time.

3.2 Drawing the Initial Diagram

To start designing a statechart diagram, you first have to start the Cadifra UML
editor and select the statechart mode either from the tool bar or from the menu
entry Diagram→State. Now you can draw states and transitions. Right click to
the drawing area to select the state chart element you want to use. Create step by
step the complete start chart. The next figure shows an initial diagram fulfilling
the above requirements. You can either draw it yourself or load it from the folder
example1 located in the installation directory.

Such an initial design is already useful. It can be used to discuss (e.g. with
customers) if the requirements are fulfilled and it reacts to all events as expected.
At this stage often unclear points in the the specification can be identified. E.g.
in our design a user has to open the door once after the cooking time is over

6

Figure 3: First statechart design of the microwave oven. Only states and events
are modelled yet.

before cooking can be started again. This behavior is not explicitly specified in
the requirements. It might be acceptable but it is also possible to go directly to
state idle instead.

Our initial design is not optimal as you can easily see. Requirement six (power and
cooking time can be adjusted at any time) leads to a lot of similar state transitions.
To avoid this the design can be changed into a hierarchical one. The states already
existing must be moved into the outer state and are now children of it. The power
and time related events are now handled by the outer state. Please consider that
the outer state needs to be a history state. This is necessary because we want
to go back to the last inner state after event processing of events handled by the
outer state.

So far the machine can receive events and change state as reaction. But some
important details are still missing. For example a close door event in state idle

causes a state change to cooking even if the cooking time was not set to a value
6= zero. This is in opposite to requirement two. To avoid a state change a guard
must be added. Furthermore action and entry/exit code is still missing allover the
diagram. The next figure shows the complete statechart design. Functions with
prefix timer are helper functions providing timer functionality. Functions with
prefix oven are functions related to power control. See next section for further
details.

In this example we touched the most important design elements of state charts.

7

Figure 4: Complete statechart design of the microwave oven. All necessary actions,
guards, entry and exit code was added.

In the next example we focus on code generation and execution of our design on
a PC.

Please note that the design presented here is not the only possible solution for the
given requirements. Also some functions of a real microwave oven – e.g. control
of a lamp in the oven – are still missing.

3.3 Generating Code

In this section we will learn how to generate code from the statechart designed in
the previous section 3.1. To test the generated code we develop a console based
application. This application scans permanently the computer keyboard. Depend-
ing on the pressed key it then sends the corresponding event to the statemachine.
Pressing for example ’+’ increases the cooking time by one second whereas ’-’

decreases the cooking time.

To be able to build the program on your computer a C compiler is needed. You
are free to use whatever compiler you have installed. In this tutorial we assume
that the Cygwin environment and GCC is installed on your computer. You can
also follow this tutorial without a C compiler but then you can’t build the code
yourself. The final executables are provided for your convenience in the sample

8

folder.

In principle it is possible to generate code from the statemachine specification that
was designed so far. But in practice it is usually necessary to include some header
files or to declare some variables or to execute some code before the statemachine
code really begins.

Therefore you can add a note to your design that starts with the ’header:’ key-
word. All the code that follows is then just copied to the begin of the C file
implementing the statemachine. In the example it is used to include some header
files and declare two external variables. The variable msg is the event that should
be processed and the other variable (pwr) reflects the actual power selection.

For adding code that should be executed just before the statemachine add another
note to your design that starts with the ’action:’ keyword. In our design it is
only used for example purposes. But as mentioned it is very useful to add event
handling code. See section B.1 for an example.

The figure below shows the mentioned notes from the design file.

Figure 5: Header and action code as used in the microwave oven example. With
the action keyword code snippets can be introduced that are just inserted before
the statemachine code. With the header keyword code at the beginning of the
statemachine C file can be added.

Calling the codegenerator with the design from above java -jar codegen.jar oven.cdd

produces the following three files:

• oven.c implements the statemachine as graphically specified in the cdd file.

• oven ext.c defines the events that can be sent to the statemachine.

• oven.h defines the function prototypes, states etc. used in the statemachine.
Also a macro is defined that can be used to initialize the state machine (see

9

5.2).

These three files realize the complete state machine. They are in human readable
C code and can be understood and verified by every C/C++ programmer.

For a complete console application some further code is needed. The following files
are already provided for you:

• main.c is the main entry. It initializes the statemachine and the keyboard,
scans the keyboard and sends events to the statemachine.

• oven hlp.c and oven hlp.h defines some helper functions that are used in
the state machine diagram such as the timer functions and the oven power
control functions. Furthermore for the overall state machine and each hier-
achical state the state change functions are implemented here. In the sim-
pliest case this is just a function seeting the new state. But for debugging
purposes the user can add specific code here e.g. for logging purposes.

• mydefs.h defines types that are needed by the statemachine and can be
adjusted to your platform needs (see 5.1).

Also a Makefile is available in the sample folder. Open a Cygwin shell window and
change to the sample directory. Type in make there. You should see someline like
this:

$ make
java -jar -ea "../../Cadifra CodeGen/testcases/codegen.jar"

first_example_step3.cdd oven
Creating state-machine defined in first_example_step3.cdd.

Output stored in oven.c / oven.h
Running in demo mode!
gcc -Wall -g oven.c -c -o oven.o
gcc -Wall -g main.c -c -o main.o
gcc -Wall -g oven_hlp.c -c -o oven_hlp.o
gcc -o oven oven.o main.o oven_hlp.o

Now you can start playing with your design. Type in ./oven.exe and send events
with the keyboard.

Within this example you have seen how to generate code from a statemachine
design file. The generated code was used in a simple interactive test program.
Whenever you change the design simply type in make to rebuild the statemachine
and the test application. Take a look in the main file. There is also code for
automatic stimulation of the statemachine.

10

4 Commandline and Generator Flags

The code generator can be called to following way:

codegen input_file [machine_name]

The input file is the state chart file produced from the Cadifra UML Editor. The
machine name - when specified - defines the name of the statemachen function and
is used as prefix at many places in the code. If the machine name is not specified
the input file name (without the cdd ending) is used instead.

The code generator requires a configuration file located in the same directory than
the input file. The key / value pairs in this file can be used to adjust the code
generator to specific needs.

The following table lists all the generator flags and explains their role during code
generation.

5 Important Types and Helper Functions

This section describes some important type definitions that you as a user should
understand and the type definitions and helper functions you as a user has to
provide to be able to compile the state machine code.

5.1 User Defined Typedefs

Within the generated state machine code different flags and variables are used.
You can define what types these variables should have. For example you want to
define the state variable to be of type unsigned int when running on a 16Bit uC
but of type unsigned char when running on a 8Bit uC. The following table lists
all typedefs you have to specify. There are no default values defined.

5.2 Important (Type) Definitions

This subsection lists the typedefs the code generator creates in the state machine’s
header file.

11

Key Value
Copyright Defines the text each generated file starts

with. Use ’\n’ for multi line comments. De-
fault is /*\n * (c) Peter Mueller ...

StateMachineFunctionPrefixHeader Prefix of the state machine function in the C
file. Default is void.

StateMachineFunctionPrefixCFile Prefix of the state machine function in the
header file. Default is void.

ChangeStateFunctionPrefixHeader Prefix of the state change function in the C
file. Default is void.

ChangeStateFunctionPrefixCFile Prefix of the state change function in the
header file. Default is void.

HsmFunctionWithInstanceParameters Defines if the state machine function has a
point to the instance data as parameter or
void. Options are yes or no. Default is yes.

EventFirstValue Defines if event definitions start from zero or
another value. Default is zero.

EventDeclarationType Defines the C mechanism used for event def-
inition. Options are ’define’ or ’enum’. De-
fault is ENUM

EventTypeInCaseOfDefine In case the obove key is set to ’define’ the
event type can be specified here.

Realtab Option ’yes’ and ’no’ select if real tabs or
spaces are used for indentation.

Tabsize In case of spaces are used for indentation the
tabsize can be given here.

Table 1: Generator Flags

12

Typedef Meaning
xxx_ENTRY_FLAG_T Used as a flag that the state machine code

runs the very first time. If true the onEntry
code of the default states is executed. After-
ward the flag is reset.

xxx_STATEVAR_T Type of the variable the state machine uses
to store the present state into.

xxx_INST_ID_T Type of the variable that can be used to dif-
ferentiate between several instances of the
same machine (see multiple instances). You
can set this variable to a different value per
state machine instance and use this figure
within the machine to distinguish between
the different instances.

xxx_EV_CONSUMED_FLAG_T Internal flag used to find out if an event was
already handled within an inner state or if it
must be handled in the outer state.

xxx_EVENT_T Type used for the events that can be sent to
the state machine.

Table 2: Typedefs a user has to specify. The ’xxx’ is replaced from the code
generator with the name of the state machine.

(Type) Definition Meaning
xxx_INSTANCEDATA_T Structure that contains all instance specific

variables of the state machine.
xxx_STATES_T Enumeration that contains all possible

states.
xxx_INSTANCEDATA_INIT Macro that can be used to initialize the in-

stance variable. Especially all state variables
are set to their default states.

Table 3: Important (type) definitions the codegenerator creates. The ’xxx’ is
replaced from the code generator with the name of the state machine.

13

A Short Introduction into Statecharts

A.1 Interactive Statemachine

This section shows the possibilities that are presently supported from the code
generator. This is done on basis of a rather complex statechart as shown on the
next figure. A demo program with this statechart can be found in the folder
complex. You can start the application complex.exe and type in events used in
the statechart diagram (e.g. ’e1’, ’e12’) followed by a return. Then the program
prints out the messages coded in the state diagram.

This program can be used to learn how a statemachine reacts to the input stimuli.
Consider first what should happen if you type in a certain event and then check
the messages on the console.

• Check in which order the entry and exit actions are executed

• Consider when e1 triggers a state change to S2 and when it triggers a self-
transition to S11

• Make sure you understand the effect of the history marker in S2

A.2 Transitions

There are two types of transitions a) event based ones and b) conditional ones. An
event based transition has the following syntax: eventName[guardExpression]/action.

From a transition like

evDoorClosed[timer_preset()>0]/timer_start();

the codegenerator generates the following code (taken from figure 4):

if((msg==(OVEN_EVENT_T)evDoorClosed) && (timer_preset()>0)){

/*Transition from Idle to Cooking*/

evConsumed = 1U;

/*Action code for transition */

timer_start();

...

A conditional (or when) transition is not triggered from an event but a C ex-
pression that is evaluated to true. It has the syntax: #condition/action. From

14

Figure 6: This is a rather complex statechart example with most of the features
supported from the present version of the code generator or the Cadifra UML
editor.

a transition like this #i==1/printf("i==1\n"); the codegenerator generates the
following code:

if((i==1)){

...

/*Action code for transition*/

printf("i==1\n");

...

Action code defined in transitions must be non-blocking! Figure 7 shows examples
for all supported transitions.

15

Figure 7: All possible transitions.

From top to bottom:

1. Simple event with no guard and no action

2. Event with guard. The guard expression enclosed in brackets([]) is denoting
that this expression must be true for the transition to take place.

3. Event with guard and action. If the transition takes place the action code is
executed. The action code must be one or more lines of valid C code.

4. Conditional transition. The transition takes place if the variable i is zero.

5. Conditional transition with action. The transition takes place if the variable
i is zero. Additionally the action code is executed.

A.3 States

State machines can be hierachical or flat. A state with substates is called a hierar-
chical statemachine. States can have entry code that is always executed if a state
is entered. Exit code is executed whenever the state is left. Please note that the
entry and exit code is also executed if a self transition takes place. If events shall
be processed from a state without entry and exit actions being executed so called
inner events can be used. If for a state no entry and exit actions were declared an
inner event behaves exactly like a self transition.

A state can also have action code. The action code is executed whenever the state
is active just before event transitions are evaluated. This means that calculation

16

results from the action code can be used as triggers for state transitions.

See figure 8 for an example. Code lines may span more than one line.

Actions within states shall be non-blocking and short regarding their execution
time. On every hierarchy level a default state must be specified. A final state is
a state that can’t be left anymore. I.e. the statemachine must be re-initialized to
be reactive again.

The Cadifra UML editor does not allow to specify details for a complex state
presently. Therefore entry and exit code for a state with substates must be defined
in a linked note as shown in figure 8 on the right side. The note must start with
the text compartment:.

Please note that not more than two levels of state hierarchy are supported yet.

Figure 8: Left: A state with entry-, exit-, action code and inner events. Right:
Complex state with entry- and exit code specified in a linked note.

A.4 Include and Action Notes

To adapt the generated code to your needs you can add two notes to your design
that have to start with either include: or action:.

All code following the include keyword is added at the begin of the generated
statemachine code. This allows to include required header files or the definition of
local variables needed within the statemachine.

17

Code following the action keyword is inserted at the begin of the statemachine
function. This allows to execute own code whenever the statemachine is called
just before event processing starts. In section B.1 this was used to receive events
via a message queue.

B Design Questions

B.1 Running the statemachine in context of a RTOS

A frequently used design pattern with real-time operating systems is shown in the
following figure 9.

Figure 9: Communicating tasks exchanging messages between each other. At least
one of the tasks executes a statemachine that reacts on the received events. As
reaction new events to other tasks might be sent out.

1. A task executes a statemachine.

2. It waits for events by calling a blocking operating sytem function that returns
whenever a new event is available for processing.

3. The used system mechanism for event signalling can be different but often a
message queue is used.

4. Events might be fired from within another task or inside an interrupt service
routine

18

5. If an event was received the statemachine reacts on the new event

6. Jump to step 2

This pattern can be realized with every real-time operating system. The generated
statemachine code can be easily integrated in such a design.

In folder example2 the microwave oven statemachine is embedded into a real-time
operating system. In this example RTEMS was used. RTEMS is the Real-Time
Operating System for Multiprocessor Systems1. To compile the example you have
to install a full RTEMS build environment. The example was created for the PC386
target. In init.c two tasks were created. One task (init) scans the keyboard
and creates events according to the input. Then the events are sent via message
queue to a second task named oven task. This task calls the statemachine code
which waits blocking until a new event is available. Figure 10 shows the sligly
modified microwave oven specification file from section 3.1. In the state machine
design some code was added to read events from a queue. This was done with
the help of an action text note. As the action code is executed just before the
statemachine itself the machine reacts to the latest keyboard event.

B.2 Multiple Instances of a Statemachine

There are different options. First you can create multiple instances by declaring
several instance variables. When calling the statemachine function handover the
appropriate instance varaiable. Usually it is not simply possible to run multiple
instances at the same time in different threads or tasks.

The other option is to generate the statemachine more than once using a different
command line parameter for the machine name.

B.3 Statemachine as Interrupt Handler

Usually it is necessary to decorate interrupt handlers with compiler specific key-
words etc. Furthermore interrupt service handlers have no parameters and no re-
turn value. To meat these requirements the keys StateMachineFunctionPrefixHeader,
StateMachineFunctionPrefixCFile and HsmFunctionWithInstanceParameters

can be adjusted according to your needs.

1For more info goto http://www.rtems.org

19

Figure 10: Event handling code added as text note to the oven state machine.

The example below shows an interrupt service routine with the compiler specific
extensions as required by mspgcc.2

interrupt (INTERRUPT_VECTOR) IntServiceRoutine(void)

{

/* Statemachine code goes here */

}

To generate such code set the key/value pairs in your configuration file the follow-
ing way:

2See http://mspgcc.sourceforge.net/manual/x918.html for further details.

20

StateMachineFunctionPrefixCFile=interrupt (INTERRUPT_VECTOR)

HsmFunctionWithInstanceParameters=no

If the prefix spans more than one line the line break ’\n’ indicator can be inserted
as shown below:

StateMachineFunctionPrefixCFile=#pragma vector=UART0TX_VECTOR\n__interrupt void

Please note that the prefixes for the header and the C file can be specified sepa-
rately.

C Drawing statecharts with Cadifra UML edi-

tor

The Cadifra UML editor was not directly designed to generate code from its di-
agrams. Because of this it does not provide special means such as dialogs to
enter events, guards, entry or exit actions and so forth. This section describes
how to draw diagrams with all needed information using the available editor fea-
tures.

C.1 Events

To add an event to a transition right click to the transition line and select ’New

Text’ as shown in figure 11. For the event definition you must follow the syntax
as described in section A.2. Only text associanted with the transition (indicated
with a dashed line) is detected by the code generator. A free text element will be
ignored and the generator will complain about the missing event. Even if it might
look ok for you as the free text is located close to the transition.

C.2 Hierarchical States

To draw hierarchical states it is best to set the ’Large’ flag in the outer state.
With the this flag set the state name is shown in the upper left corner.

21

Figure 11: To enter events right click to the transition and use a text field to enter
the event definition.

C.3 State Details

To add entry, exit, action or inner events a compartment must be added to the
state. To do so right click to the state and select ’Add compartment’ as shown in
figure 12. To edit the compartment double click on it and enter the definitions as
needed. The definitions must follow the syntax as described in section A.3.

Presently state details can only be added to states without further substates.

Figure 12: To enter state details right click to the state and add a compartment
to it.

22

