
BTActiveMQClient for Delphi™ Version 1.0

Getting started with BTActiveMQClient
Michael Justin

A short guide for the first steps with the JMS client library

Trademarks

Java, JavaBean, JDK, Sun, Sun Microsystems, and the Sun Logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brands and
product names are trademarks or registered trademarks of Borland. All CodeGear brands and
product names are trademarks or registered trademarks of CodeGear. Microsoft, Windows,
Windows NT, and/or other Microsoft products referenced herein are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other brands and their products are trademarks of their respective holders.

Getting started 1

BTActiveMQClient for Delphi™ Version 1.0

Contents
Introduction...5

About BTActiveMQClient...5

How Can I Use It?... 5

Limitations... 5

About Apache ActiveMQ... 6

License...7

Communication Adapters...8

Feature Matrix... 8

Roadmap..9

1.0 Release.. 9

1.1 Release.. 9

1.2 Release.. 9

1.x Release.. 10

Installation..11

Requirements...11

Supported Communication Libraries.. 11

Indy 10.2... 11

Synapse... 11

Overbyte ICS V6 for Delphi 7 and up..12

TClientSocket..12

Download Apache ActiveMQ... 12

Upgrades..12

Component Installation in Delphi... 12

Habari Express..12

ActiveMQ Configuration..13

Enabling the ActiveMQ Broker for Stomp..13

Send and Receive Messages...14

Send Text Messages... 14

Used Units..14

Getting started 2

BTActiveMQClient for Delphi™ Version 1.0

Connect to the Server.. 15

Send the Message..15

Send Binary Messages..15

Receive Text Messages...17

Send and Receive Objects..18

Send Objects using SOAP Serialization...18

Requirements..18

SOAP Adapter Component...18

Object Serialization ...18

Send a Serialized Object...18

Receive Objects using SOAP Deserialization.......................................19

Demo Applications...20

Simple GUI Demo... 20

PublisherDemo...20

SubscriberDemo...20

Stomp Protocol Specification, Version 1.0................................21

Client Commands... 22

SEND...22

SUBSCRIBE...22

UNSUBSCRIBE...23

BEGIN..23

COMMIT... 24

ACK... 24

ABORT... 25

DISCONNECT..25

Standard Headers.. 25

Receipt...25

Server Frames.. 26

MESSAGE... 26

RECEIPT...26

ERROR... 27

Getting started 3

BTActiveMQClient for Delphi™ Version 1.0

Demo Application Source Code...28

PublisherDemo...28

SubscriberDemo...30

Index...33

Getting started 4

BTActiveMQClient for Delphi™ Version 1.0

Introduction

About BTActiveMQClient
BTActiveMQClient for Delphi™ is a library which provides easy access to the
Apache ActiveMQ messaging system.

With BTActiveMQClient, applications can connect to Apache ActiveMQ servers,
subscribe to queues and topics, send and receive messages and objects, and
work with transactions.

How Can I Use It?
Here are some examples for software solutions built on top of a Message Broker
like Apache ActiveMQ:

● Intranet News Ticker Application: using the publish and subscribe
communication model, news can be delivered to all registered client
applications. The message sender works like a broadcast station, and does
not care if clients don't listen.

● Load Balancing: using the point-to-point or queuing model, many
'worker' applications can be installed on different computers. Every new
message sent to the queue will be delivered only to one client. The server
will keep messages until they are expired or delivered to a client.

● Persistent Storage: messages and objects can be stored in the Object
Broker and retrieved even after a restart.

● Interprocess Communication: applications can use point-to-point
messages to exchange information between each other even if the
receiver currently is not running.

Limitations
● The ActiveMQ Stomp connector does not support password authentication

in ActiveMQ versions before 5.1, development snapshots of Apache
ActiveMQ 5.1 are already available. For more information please visit
http:// activemq .apache.org/stomp.html

● Internet Direct (Indy) for Free Pascal is still in development (see “Indy 10
Lazarus/FreePascal Port”, http://www.indyproject.org/Sockets/fpc/)

Getting started Introduction 5

http://activemq.apache.org/stomp.html
http://www.indyproject.org/Sockets/fpc/
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html

BTActiveMQClient for Delphi™ Version 1.0

● OverByte ICS and TClientSocket communication adapters do not support
console applications, they do not compile under Free Pascal and currently
do not allow message receiving

About Apache ActiveMQ
Apache ActiveMQ is the most popular and powerful open source Message Broker
and Enterprise Integration Patterns provider.

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols,
comes with easy to use Enterprise Integration Patterns and many advanced
features while fully supporting JMS 1.1 and J2EE 1.4.

● Read more about Apache ActiveMQ here: http:// activemq .apache.org/

Getting started Introduction 6

http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/

BTActiveMQClient for Delphi™ Version 1.0

License

The library includes royalty-free distribution rights and upgrades for one year.

Full license text

Getting started License 7

BTActiveMQClient for Delphi™ Version 1.0

Communication Adapters

Feature Matrix

Features
Indy 10 Synapse ICS V6 TClient-

Socket

D Send/receive text messages in
Delphi GUI applications

Yes/Yes Yes/Yes Yes/(-) Yes/(-)

Send/receive binary messages
in Delphi GUI applications

Yes/Yes Yes/Yes Yes/(-) Yes/(-)

Send/receive text messages in
Delphi CONSOLE mode
applications

Yes/Yes Yes/Yes  

Send/receive binary messages
in Delphi CONSOLE mode
applications

Yes/Yes Yes/Yes  

FP Send/receive text messages in
Free Pascal GUI applications

Yes/Yes Yes/Yes 2 2

Send/receive binary messages
in Free Pascal GUI applications

Yes/Yes Yes/Yes 2 2

Send/receive text messages in
Free Pascal CONSOLE mode
applications

Yes/Yes Yes/Yes 2 2

Send/receive binary messages
in Free Pascal CONSOLE mode
applications

Yes/Yes Yes/Yes 2 2

 Console mode is not supported by design - these components require Windows Handles
2 Free Pascal is not supported by these components

Getting started Communication Adapters 8

BTActiveMQClient for Delphi™ Version 1.0

Roadmap

1.0 Release
● Include documentation for basic message sending and receiving

● Receive messages with ICS and TClientSocket

● done: Rewrite Header data type

● done: Add binary message support (use content-length header) (Indy
and Synapse)

● done: Include Free Pascal compiler projects in build script

● done: Add runtime selection of communication library

● done: Support object exchange over SOAP

● done: Include object exchange demo

● done: Include Free Pascal example applications with source

● done: Extend IPrimitiveMap implementation with strong typed Get/Set
methods

● Do not use STOMP-specific destination name prefixes like /queue and
/topic

● done: Add connection- and session based interface

● Check all in-source 'to do' entries

● Add Habari Express component and documentation

1.1 Release
● Remove need for Connect - loop

1.2 Release
● Provide a method to consume exactly one message

● Support ActiveMQ Administration messages

Getting started Roadmap 9

BTActiveMQClient for Delphi™ Version 1.0

● Support ActiveMQ extensions to JMS

1.x Release
● Support REST protocol

● Add MIME encoding

● Extend logging framework, support for format strings and Exceptions

● Queue/Topic Subscription property (designtime editing, TCollection based)

● SOAP message exchange examples (asynchronous SOAP)

Getting started Roadmap 10

BTActiveMQClient for Delphi™ Version 1.0

Installation

Requirements
● Borland/CodeGear Delphi 6 or higher

● Apache ActiveMQ version 4 or 5

● A TCP/IP communication library (see below)

Important Notes

● Sending and receiving of objects requires Delphi 7 or higher. The library is
designed to use methods that were added to TRemotable: ObjectToSOAP
and SOAPToObject. These methods are available since Delphi 7.

● Sending and receiving of objects in FreePascal requires the Web Service
Toolkit (http://wiki.lazarus.freepascal.org/Web_Service_Toolkit) or binary
serialization.

More information on object exchange will be available in the release version.

Supported Communication Libraries
BTActiveMQClient now supports the following communication libraries out of the
box.

Indy 10.2
The Indy communication library is available at www.nevrona.com/indy

The Free Pascal version of Indy is available as a separate download: “Indy 10
Lazarus/FreePascal Port” http://www.indyproject.org/Sockets/fpc/

Indy supports both GUI-based and console mode applications.

Synapse
The Synapse communication library is available at synapse.ararat.cz

Synapse supports both GUI-based and console mode applications.

Getting started Installation 11

http://www.nevrona.com/indy

BTActiveMQClient for Delphi™ Version 1.0

Overbyte ICS V6 for Delphi 7 and up
The ICS communication library is available at www.overbyte.be

TClientSocket and ICS will only work in GUI-based applications.

TClientSocket
This socket communication component is included in Delphi. TClientSocket has
been declared deprecated by Borland / CodeGear.

TClientSocket and ICS will only work in GUI-based applications.

Download Apache ActiveMQ
Apache ActiveMQ http:// activemq .apache.org/download.html

Upgrades
If you upgrade from older versions, make a backup of your existing version and
make sure that you also have a backup of your own source codes.

If you upgrade from old versions, component properties may have changed and
this could cause error messages when you open existing projects with the new
version installed.

Component Installation in Delphi

Habari Express
Habari Express provides simplified methods to exchange messages using an
Apache ActiveMQ Message Broker.

To install the Habari Express component in the Delphi component palette, follow
these steps:

1. Create a new Delphi Package Project

2. Add the file btHabariExpress_reg.pas

3. Install the package

The component will appear in a new palette page with the title 'habari'.

Component installation is optional. Runtime creation and usage of the component
is possible without disadvantage.

Getting started Installation 12

http://activemq.apache.org/download.html
http://activemq.apache.org/download.html
http://activemq.apache.org/download.html
http://www.overbyte.be/

BTActiveMQClient for Delphi™ Version 1.0

ActiveMQ Configuration

Enabling the ActiveMQ Broker for Stomp
In the Apache ActiveMQ default configuration, Stomp is already enabled.

ActiveMQ supports the Stomp protocol and the Stomp - JMS mapping . This
makes it easy to write a client in pure Ruby , Perl , Python or PHP for working
with ActiveMQ. Please see the Stomp site for more details.

For configuration details see http:// activemq .apache.org/stomp.html

Getting started ActiveMQ Configuration 13

http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://stomp.codehaus.org/
http://stomp.codehaus.org/PHP Client
http://stomp.codehaus.org/Python Clients
http://stomp.codehaus.org/Perl
http://stomp.codehaus.org/Ruby Client
http://stomp.codehaus.org/StompJMS
http://stomp.codehaus.org/StompJMS
http://stomp.codehaus.org/StompJMS
http://stomp.codehaus.org/
http://stomp.codehaus.org/
http://stomp.codehaus.org/StompJMS
http://stomp.codehaus.org/Ruby%20Client
http://stomp.codehaus.org/Perl
http://stomp.codehaus.org/Python%20Clients
http://stomp.codehaus.org/PHP%20Client
http://stomp.codehaus.org/

BTActiveMQClient for Delphi™ Version 1.0

Send and Receive Messages

Send Text Messages
Source code for a simple application which sends a test message:

TODO use THabariExpress for this example.

program SendOneMessage;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTJMSClient in '..\..\source\BTJMSClient.pas',
 BTCommAdapterIndy in '..\..\source\BTCommAdapterIndy.pas';

var
 Conn: TBTJMSClient;

begin
 Conn := TBTJMSClient.Create(nil);

 try
 Conn.Connect;
 Conn.Logger.Info('Send a message');
 Conn.SendText('/queue/onemessage', 'This is a test message');
 Conn.Disconnect;
 WriteLn('Hit any key');
 ReadLn;
 finally
 Conn.Free;
 end;

end.

Used Units
BTJMSClient contains the TBTJMSClient class which provides the SendText
method.

BTCommAdapterIndy contains the Indy communication adapter class. By
including this unit, it will register the adapter class with an internal list of all

Getting started Send and Receive Messages 14

BTActiveMQClient for Delphi™ Version 1.0

available communication adapters. If the program reaches the line where the
TBTJMSClient instance is created and assigned to the variable Conn, the Indy
adapter is already registered and an instance of this class will be created and
used as the communication adapter for this connection.

Note The sequence of units which register a communication
adapter class is important! The source code for the
GUI demo shows how one of the registered
communication adapters can be selected at runtime.

Connect to the Server
With the line

Conn.Connect;

the client connects to the server.

Send the Message
The line

Conn.SendText('/queue/onemessage', 'This is a test message');

sends the text message to the queue 'onemessage' on the ActiveMQ server.

Send Binary Messages
The GUI demo includes an option to send binary files as JMS messages. The
following code uses TFileStream and TStringStream to load the selected file into
the memory and the Send method of the TBTJMSClient instance Conn to transmit
the file content.

Note that the BytesMessage object is declared with the type IBytesMessage, so
the allocated memory for this object will be released automatically (without
Free).

procedure TDemoMainForm.SendFile(Sender: TObject);
var
 FileStream: TFileStream;
 S: TStringStream;
 BytesMessage: IBytesMessage;
begin
 if not OpenDialog1.Execute then
 begin

Getting started Send and Receive Messages 15

BTActiveMQClient for Delphi™ Version 1.0

 Exit;
 end;

 S := TStringStream.Create('');
 try
 FileStream := TFileStream.Create(OpenDialog1.FileName,
fmOpenRead or fmShareDenyWrite);

 try
 S.CopyFrom(FileStream, FileStream.Size);

 BytesMessage := TBTJMSBytesMessage.Create;
 BytesMessage.Content := S.DataString;

 Conn.Send(BytesMessage, Destination);

 finally
 FileStream.Free;
 end;
 finally
 S.Free;
 end;

end;

Getting started Send and Receive Messages 16

BTActiveMQClient for Delphi™ Version 1.0

Receive Text Messages
To receive text messages, the client has to subscribe to a queue or topic on the
server. The messages will be delivered asynchronous to an event handler which
has to be provided by the client.

var
 Destination: IDestination;
 Consumer: IMessageConsumer;

begin
 ...
 // create a destination
 Destination := Conn.CreateQueue(Dest);

 // create a consumer
 Consumer := Conn.CreateConsumer(Destination, Listener);

 ...
end;

The second CreateConsumer parameter is a reference to an object which
implements the IMessageListener interface. This interface only contains one
procedure, OnMessage:

 IMessageListener = interface(IInterface)
 procedure OnMessage(Message: IMessage);
 end;

In the SubscriberDemo example, the listener is implemented in the connection
class (TBTJMSSimpleSubscriber).

Getting started Send and Receive Messages 17

BTActiveMQClient for Delphi™ Version 1.0

Send and Receive Objects

Send Objects using SOAP Serialization

Requirements
Delphi 7 or higher is required for TBTSoapAdapter. The TBTSoapAdapter
component needs a TXMLDocument instance which is included in Delphi.

TBTSoapAdapter can serialize and deserialize instances of classes which inherit
from TRemotable. All restrictions for Soap serializations for this class apply.

SOAP Adapter Component
The TBTSoapAdapter class can be used for object serialization. To use it, create
an instance of this class – for example in the FormCreate method:

procedure TSendObjectsForm.FormCreate(Sender: TObject);
begin
 SoapAdapter := TBTSoapAdapter.Create(Self);
 SoapAdapter.XMLDocument := XMLDocument1;
end;

Object Serialization
In the Delphi GUI demo, an ExampleObject will be used for the SOAP
serialization. Its properties can be entered in a form and will be serialized
immediately to its XML string representation. All that is necessary is a call of
SoapAdapter.ObjectToSOAP:

MemoXML.Text := SoapAdapter.ObjectToSOAP(ExampleObject, 'Name');

Send a Serialized Object
The resulting XML string can be sent using the standard JMS send methods.

Getting started Send and Receive Objects 18

BTActiveMQClient for Delphi™ Version 1.0

Receive Objects using SOAP Deserialization

Getting started Send and Receive Objects 19

BTActiveMQClient for Delphi™ Version 1.0

Demo Applications

Simple GUI Demo
The GUI demo provides a simple user interface to some of the core
communication functions of the library.

PublisherDemo
The PublisherDemo application will send 2000 messages to the destination
/queue/a on the local ActiveMQ server.

SubscriberDemo
The SubscriberDemo application will subscribe to the destination /queue/a on the
local ActiveMQ server and wait for 2000 incoming messages.

Getting started Demo Applications 20

BTActiveMQClient for Delphi™ Version 1.0

Stomp Protocol Specification, Version 1.0

Original text © Codehaus - http://stomp.codehaus.org/Protocol

Initially the client must open a socket (I'm going to presume TCP, but really it is
kind of irrelevant). The client then sends:

CONNECT
login: <username>
passcode:<passcode>

^@

The ^@ is a null (control-@ in ASCII) byte. The entire thing will be called a Frame
in this doc. The frame starts with a command (in this case CONNECT), followed
by a newline, followed by headers in a <key>:<value> with each header followed
by a newline. A blank line indicates the end of the headers and beginning of the
body (the body is empty in this case), and the null indicates the end of the
frame.

After the client sends the CONNECT frame, the server will always acknowledge
the connection, by sending a frame which looks like:

CONNECTED
session: <session-id>

^@

The session-id header is a unique identifier for this session (though it isn't
actually used yet).

At this point there are a number of commands the client may send

• SEND
• SUBSCRIBE
• UNSUBSCRIBE
• BEGIN

Getting started Stomp Protocol Specification, Version 1.0 21

BTActiveMQClient for Delphi™ Version 1.0

• COMMIT
• ABORT
• ACK
• DISCONNECT

Client Commands

SEND
The SEND command sends a message to a destination in the messaging system.
It has one required header, destination, which indicates where to send the
message. The body of the SEND command is the message to be sent. For
example:

SEND
destination:/queue/a

hello queue a
^@

This sends a message to the /queue/a destination. This name, by the way, is
arbitrary, and despite seeming to indicate that the destination is a "queue" it
does not, in fact, specify any such thing. Destination names are simply strings
which are mapped to some form of destination on the server - how the server
translates these is left to the server implementation. See this note on mapping
destination strings to JMS Destinations for more detail.

SEND supports a transaction header which allows for transaction sends.

It is recommended that SEND frames include a content-length header which is a
byte count for the length of the message body. If a content-length header is
included, this number of bytes should be read, regardless of whether or not there
are null characters in the body. The frame still needs to be terminated with a null
byte and if a content-length is not specified, the first null byte encountered
signals the end of the frame.

SUBSCRIBE
The SUBSCRIBE command is used to register to listen to a given destination. Like
the SEND command, the SUBSCRIBE command requires a destination header
indicating which destination to subscribe to. Any messages received on the
subscription will henceforth be delivered as MESSAGE frames from the server to
the client. The ack header is optional, and defaults to auto.

SUBSCRIBE

Getting started Stomp Protocol Specification, Version 1.0 22

http://docs.codehaus.org/display/ACTIVEMQ/Stomp
http://docs.codehaus.org/display/ACTIVEMQ/Stomp
http://docs.codehaus.org/display/ACTIVEMQ/Stomp
http://docs.codehaus.org/display/ACTIVEMQ/Stomp

BTActiveMQClient for Delphi™ Version 1.0

destination: /queue/foo
ack: client

^@

In this case the ack header is set to client which means that messages will only
be considered delivered after the client specifically acknowledges them with an
ACK frame. The valid values for ack are auto (the default if the header is not
included) and client.

The body of the SUBSCRIBE command is ignored.

Stomp brokers may support the selector header which allows you to specify an
SQL 92 selector on the message headers which acts as a filter for content based
routing.

You can also specify an id header which can then later on be used to
UNSUBSCRIBE from the specific subscription as you may end up with overlapping
subscriptions using selectors with the same destination. If an id header is
supplied then Stomp brokers should append a subscription header to any
MESSAGE commands which are sent to the client so that the client knows which
subscription the message relates to. If using Wildcards and selectors this can
help clients figure out what subscription caused the message to be created.

UNSUBSCRIBE
The UNSUBSCRIBE command is used to remove an existing subscription - to no
longer receive messages from that destination. It requires either a destination
header or an id header (if the previous SUBSCRIBE operation passed an id
value). Example:

UNSUBSCRIBE
destination: /queue/a

^@

BEGIN
BEGIN is used to start a transaction. Transactions in this case apply to sending
and acknowledging - any messages sent or acknowledged during a transaction
will be handled atomically based on the transaction.

BEGIN
transaction: <transaction-identifier>

Getting started Stomp Protocol Specification, Version 1.0 23

http://activemq.apache.org/selectors.html
http://activemq.apache.org/wildcards.html
http://activemq.apache.org/selectors.html

BTActiveMQClient for Delphi™ Version 1.0

^@

The transaction header is required, and the transaction identifier will be used
for SEND, COMMIT, ABORT, and ACK frames to bind them to the named
transaction.

COMMIT
COMMIT is used to commit a transaction in progress.

COMMIT
transaction: <transaction-identifier>

^@

The transaction header is required, you must specify which transaction to
commit!

ACK
ACK is used to acknowledge consumption of a message from a subscription using
client acknowledgment. When a client has issued a SUBSCRIBE frame with the
ack header set to client any messages received from that destination will not be
considered to have been consumed (by the server) until the message has been
acknowledged via an ACK.

ACK has one required header, message-id, which must contain a value
matching the message-id for the MESSAGE being acknowledged. Additionally, a
transaction header may be specified, indicating that the message
acknowledgment should be part of the named transaction.

ACK
message-id: <message-identifier>
transaction: <transaction-identifier>

^@

The transaction header is optional.

Getting started Stomp Protocol Specification, Version 1.0 24

BTActiveMQClient for Delphi™ Version 1.0

ABORT
ABORT is used to roll back a transaction in progress.

ABORT
transaction: <transaction-identifier>

^@

The transaction header is required, you must specify which transaction to abort!

DISCONNECT
DISCONNECT does a graceful disconnect from the server. It is quite polite to use
this before closing the socket.

DISCONNECT

^@

Standard Headers
Some headers may be used, and have special meaning, with most packets

Receipt
Any client frame other than CONNECT may specify a receipt header with an
arbitrary value. This will cause the server to acknowledge receipt of the frame
with a RECEIPT frame which contains the value of this header as the value of the
receipt-id header in the RECEIPT packet.

SEND
destination:/queue/a
receipt:message-12345

Hello a!^@

Getting started Stomp Protocol Specification, Version 1.0 25

BTActiveMQClient for Delphi™ Version 1.0

Server Frames
The server will, on occasion, send frames to the client (in additional to the initial
CONNECTED frame). These frames may be one of:

• MESSAGE
• RECEIPT
• ERROR

MESSAGE
MESSAGE frames are used to convey messages from subscriptions to the client.
The MESSAGE frame will include a header, destination, indicating the
destination the message was delivered to. It will also contain a message-id
header with a unique identifier for that message. The frame body contains the
contents of the message:

MESSAGE
destination:/queue/a
message-id: <message-identifier>

hello queue a^@

Would be a sample message.

It is recommended that MESSAGE frames include a content-length header
which is a byte count for the length of the message body. If a content-length
header is included, this number of bytes should be read, regardless of whether or
not there are null characters in the body. The frame still needs to be terminated
with a null byte, and if a content-length is not specified the first null byte
encountered signals the end of the frame.

RECEIPT
Receipts are issued from the server when the client has requested a receipt for a
given command. A RECEIPT frame will include the header receipt-id, where the
value is the value of the receipt header in the frame which this is a receipt for.

RECEIPT
receipt-id:message-12345

^@

The receipt body will be empty.

Getting started Stomp Protocol Specification, Version 1.0 26

BTActiveMQClient for Delphi™ Version 1.0

ERROR
The server may send ERROR frames if something goes wrong. The error frame
should contain a message header with a short description of the error, and the
body may contain more detailed information (or may be empty).

ERROR
message: malformed packet received

The message:

MESSAGE
destined:/queue/a

Hello queue a!

Did not contain a destination header, which is required for message
propagation.
^@

It is recommended that ERROR frames include a content-length header which is
a byte count for the length of the message body. If a content-length header is
included, this number of bytes should be read, regardless of whether or not there
are null characters in the body. The frame still needs to be terminated with a null
byte, and if a content-length is not specified the first null byte encountered
signals the end of the frame.

This spec is licensed under the Creative Commons Attribution v2.5

Getting started Stomp Protocol Specification, Version 1.0 27

http://creativecommons.org/licenses/by/2.5/

BTActiveMQClient for Delphi™ Version 1.0

Demo Application Source Code

PublisherDemo

program PublisherDemo;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTJMSClient in '..\..\source\BTJMSClient.pas',
 BTStompInterfaces in '..\..\source\BTStompInterfaces.pas',
 BTJMSInterfaces in '..\..\source\BTJMSInterfaces.pas',
 BTStompTypes in '..\..\source\BTStompTypes.pas',
 BTStompConnection in '..\..\source\BTStompConnection.pas',
 BTSupportInterfaces in '..\..\source\BTSupportInterfaces.pas',
 BTCommAdapterIndy in '..\..\source\BTCommAdapterIndy.pas',
 BTCommAdapter in '..\..\source\BTCommAdapter.pas';

const
 Dest = '/queue/a';

 SEND_COUNT = 2000;

var
 Conn: TBTJMSClient;
 I: Integer;
 L: ILogging;
 Compiler: string;

begin
 {$IFDEF FPC}
 Compiler := 'Free Pascal';
 {$ELSE}
 Compiler := 'Borland Delphi';
 {$ENDIF}

 Conn := TBTJMSClient.Create(nil);

Getting started Demo Application Source Code 28

BTActiveMQClient for Delphi™ Version 1.0

 try
 if ParamCount = 1 then
 Conn.Host := ParamStr(1)
 else
 Conn.Host := 'localhost';

 L := Conn.Logger;
 L.Info(Conn.Version + ' Compiler: ' + Compiler);

 L.Info('Connect to server');
 Conn.Connect;
 Sleep(1500);

 for I := 0 to SEND_COUNT - 1 do
 begin
 L.Info(Format('Sending test message %d to %s on %s...',
[I+1, Dest, Conn.Host]));
 Conn.SendText(Dest, Format('This is test message %d',
[I+1]));
 end;

 Conn.Disconnect;

 L.Info('Hit any key');
 ReadLn;

 finally
 Conn.Free;
 end;

end.

Getting started Demo Application Source Code 29

BTActiveMQClient for Delphi™ Version 1.0

SubscriberDemo

program SubscriberDemo;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 Classes,
 SyncObjs,
 BTJMSClient in '..\..\source\BTJMSClient.pas',
 BTStompInterfaces in '..\..\source\BTStompInterfaces.pas',
 BTJMSInterfaces in '..\..\source\BTJMSInterfaces.pas',
 BTStompTypes in '..\..\source\BTStompTypes.pas',
 BTStompConnection in '..\..\source\BTStompConnection.pas',
 BTSupportInterfaces in '..\..\source\BTSupportInterfaces.pas',
 BTCommAdapterSynapse in
'..\..\source\BTCommAdapterSynapse.pas';
 // BTCommAdapterIndy in '..\..\source\BTCommAdapterIndy.pas';

const
 Dest = '/queue/a';

type

 TBTJMSSimpleSubscriber = class(TBTJMSClient, IMessageListener)
 private
 CS: TCriticalSection;
 public
 I: Integer;
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure OnMessage(Message: IMessage);
 end;

const
 EXPECTED = 2000;

var
 Conn: TBTJMSSimpleSubscriber;
 L: ILogging;
 Compiler: string;

 D: IDestination;
 C: IMessageConsumer;

Getting started Demo Application Source Code 30

BTActiveMQClient for Delphi™ Version 1.0

 { TBTJMSSimpleSubscriber }

constructor TBTJMSSimpleSubscriber.Create(AOwner: TComponent);
begin
 inherited;
 I := 0;
 CS := TCriticalSection.Create;
end;

destructor TBTJMSSimpleSubscriber.Destroy;
begin
 CS.Free;
 inherited;
end;

procedure TBTJMSSimpleSubscriber.OnMessage(Message: IMessage);
begin
 CS.Enter;

 I := I + 1;

 Logger.Info(Format('Message %d received: %s', [I,
ITextMessage(Message).Text]));

 (* if I <= EXPECTED then
 Conn.Ack(JMSMessage.MessageId); *)

 if I = EXPECTED then
 begin
 Conn.Disconnect;
 end;

 CS.Leave;
end;

begin
{$IFDEF FPC}
 Compiler := 'Free Pascal';
{$ELSE}
 Compiler := 'Borland Delphi';
{$ENDIF}

 Conn := TBTJMSSimpleSubscriber.Create(nil);

 try
 if ParamCount = 1 then
 Conn.Host := ParamStr(1)
 else

Getting started Demo Application Source Code 31

BTActiveMQClient for Delphi™ Version 1.0

 Conn.Host := 'localhost';

 L := Conn.Logger;
 L.Info(Conn.Version + ' Compiler: ' + Compiler);

 Sleep(1500);

 L.Info('Connect to server');
 Conn.Connect;

 L.Info(Format('Wait for %d incoming messages', [EXPECTED]));
 D := Conn.CreateQueue(Dest);
 C := Conn.CreateConsumer(D, Conn);

 while Conn.StompConnected do
 begin
 Sleep(50);
 end;

 L.Info('Hit any key');
 ReadLn;

 finally
 Conn.Free;
 end;

end.

Getting started Demo Application Source Code 32

BTActiveMQClient for Delphi™ Version 1.0

Index

Reference
activemq............................. 5f., 12f.

ActiveMQ.............. 1, 5f., 9ff., 15, 20

BTActiveMQClient...................1, 5, 11

Free Pascal.............5f., 8f., 11, 28, 31

Habari Express......................2, 9, 12

IBytesMessage............................. 15

ICS.................................... 6, 8f., 12

Indy...5, 11

Intranet... 5

IPrimitiveMap................................. 9

JMS...........1, 6, 10, 13ff., 22, 28, 30f.

ObjectToSOAP........................ 11, 18

Overbyte......................................12

OverByte....................................... 6

PublisherDemo........................ 20, 28

SOAPToObject.............................. 11

SubscriberDemo.................17, 20, 30

Synapse.......................................11

TBTJMSClient....................... 14f., 28

TBTSoapAdapter...........................18

TClientSocket................................. 8

TClientSocket........................ 6, 9, 12

TFileStream............................... 15f.

TStringStream............................15f.

 ..12

Getting started Index 33

	Introduction
	About BTActiveMQClient
	How Can I Use It?
	Limitations

	About Apache ActiveMQ

	License
	Communication Adapters
	Feature Matrix

	Roadmap
	1.0 Release
	1.1 Release
	1.2 Release
	1.x Release

	Installation
	Requirements
	Supported Communication Libraries
	Indy 10.2
	Synapse
	Overbyte ICS V6 for Delphi 7 and up
	TClientSocket

	Download Apache ActiveMQ
	Upgrades
	Component Installation in Delphi
	Habari Express

	ActiveMQ Configuration
	Enabling the ActiveMQ Broker for Stomp

	Send and Receive Messages
	Send Text Messages
	Used Units
	Connect to the Server
	Send the Message

	Send Binary Messages
	Receive Text Messages

	Send and Receive Objects
	Send Objects using SOAP Serialization
	Requirements
	SOAP Adapter Component
	Object Serialization
	Send a Serialized Object

	Receive Objects using SOAP Deserialization

	Demo Applications
	Simple GUI Demo
	PublisherDemo
	SubscriberDemo

	Stomp Protocol Specification, Version 1.0
	Client Commands
	SEND
	SUBSCRIBE
	UNSUBSCRIBE
	BEGIN
	COMMIT
	ACK
	ABORT
	DISCONNECT

	Standard Headers
	Receipt

	Server Frames
	MESSAGE
	RECEIPT
	ERROR

	Demo Application Source Code
	PublisherDemo
	SubscriberDemo

	Index

