
PicInfo sample project for Project Analyzer
©Copyright 2006 Aivosto Oy
www.aivosto.com

PicInfo is a VB6 sample project that you can analyze with the free Project

Analyzer demo. Analyzing PicInfo helps you learn to use Project Analyzer. This
document is a “hands on” tutorial into using Project Analyzer on VB6 code. It
helps you even if you’re analyzing VB.NET or VBA, as the same concepts apply.

Introduction to PicInfo
The PicInfo program is a simple picture information retriever. The user can

open picture files (.gif and .bmp) to view the following image information: picture
size (x × y pixels) and the maximum number of colors in the image.

PicInfo is a stand-alone program. In addition to the stand-alone executable, one
can use PicInfo as an ActiveX server (ActiveX exe). There is a COM interface to
query picture size and colors programmatically.

Getting started
Analyze PicInfo.vbp to view it along with this document. Run Project Analyzer and select PicInfo.vbp to analyze.

Choose the default settings (select all source files, no COM or DLL analysis) and press Analyze.

Lesson 1. Understanding PicInfo with Project Analyzer
When you need to understand how a program works, run it through Project Analyzer to examine the files, file

dependencies, the class hierarchy and how the various modules call each other.

Let’s start with a list of the source code files:

PicInfo files
PicInfo.vbp VB6 project file
PicForm.frm Main form
PicMain.bas Main module with auxiliary routines
PicInfo.cls IPicInfo interface to query picture information
PicBMP.cls Implements IPicInfo for .bmp files.
PicGIF.cls Implements IPicInfo for .gif files.
comdlg32.dll Windows library for common dialogs

This list above is not something Project Analyzer produces. It’s something a developer has to write. As it happens,

it’s all the existing documentation we have on this program. The developer didn’t feel like writing any more docs as he
believed the code is self-explanatory. Luckily enough, we can use Project Analyzer to create the missing
documentation.

Diagramming
Diagrams are a great way to learn how the VB files work together. You can produce these diagrams via the Enterprise

Diagrams feature. Press Ctrl+F7 to run it. The following file dependency diagram shows how the files require on each
other:

Aivosto PicInfo sample project for Project Analyzer 2

File dependency diagram

As an example, PicForm.frm requires PicBMP.cls, which in turn requires PicInfo.cls. There is also a mutual

dependency between PicForm.frm and PicMain.bas. They both require each other, thus, you could not use one without
the other. PicInfo.cls is a leaf file that does not depend on any other files.

IPicInfo (in PicInfo.cls) is the important interface in this program. This interface allows access to the picture

information (image size and colors). The following classes implement IPicInfo: PicBMP for .bmp files and PicGIF for
.gif files. One calls IPicInfo.ReadFile to open a file for reading. If this call succeeds, one can read the properties of
IPicInfo to determine information about the picture. You can see the class hierarchy in the following diagram:

Implements diagram

To see how the modules call each other, get the control flow diagram. It shows that PicForm, the main form, calls the

IPicInfo interface. The calls are delegated to the implementation classes PicBMP and PicGIF (which will retrieve the
actual picture information). PicForm also calls PicMain, which in turn calls comdlg32 (to display common dialog
boxes).

Control flow diagram (procedure calls)

Getting to know the procedures
There are just 29 procedures in this sample program, so it’s not very big. We can learn how the procedures work

together by getting some call trees. The easiest way is to press Ctrl+T to bring up the Call tree window. There is also
another alternative, which we will use here.

Look up and select to PicForm.DisplayPictureInfo in the main window. This is the Sub that displays picture
information for a given disk file. Bring up its call trees by right-clicking DisplayPictureInfo in the project tree on the
left and selecting Call trees in the popup menu.

Aivosto PicInfo sample project for Project Analyzer 3

Backward call tree Forward call tree

Here you see the calls into DisplayPictureInfo (backwards) and out of it (forwards). Press the × key on the numeric

keypad to expand the entire trees into view. You can right-click the items in the call trees to move or produce reports.
The backward call tree shows that DisplayPictureInfo is called by events OpenFile_Click and Pict_OLEDragDrop.
In the forward call tree you see how DisplayPictureInfo calls IPicInfo.ReadFile, which in turn calls the respective

implementation functions in either PicBMP or PicGIF.

You can also get the same information in 2 graphical ways. Press F7 to run Project Graph or Ctrl+F7 to run Enterprise

Diagrams. You can find sample graphs on the next page.

A
iv

os
to

Pi

cI
nf

o
sa

m
pl

e
pr

oj
ec

t f
or

 P
ro

je
ct

 A
na

ly
ze

r
4

Fo
rm

_
K

ey
P

re
ss

(P
ic

Fo
rm

)

O
pe

nF
ile

_
C

lic
k

(P
ic

Fo
rm

)

P
ic

t_
O

LE
D

ra
gD

ro
p

(P
ic

Fo
rm

)

D
is

pl
a

yP
ic

tu
re

In
fo

(P
ic

Fo
rm

)

R
e

ad
F

ile
(IP

ic
In

fo
)

S
iz

e
 [G

et
]

(IP
ic

In
fo

)

M
a

xC
o

lo
rs

 [G
et

]
(IP

ic
In

fo
)

IP
ic

In
fo

_
R

e
ad

Fi
le

(P
ic

B
M

P
)

IP
ic

In
fo

_
R

e
ad

Fi
le

(P
ic

G
IF

)

IP
ic

In
fo

_S
iz

e
 [G

et
]

(P
ic

B
M

P
)

IP
ic

In
fo

_S
iz

e
 [G

et
]

(P
ic

G
IF

)

IP
ic

In
fo

_
M

a
xC

o
lo

rs
 [G

et
]

(P
ic

B
M

P
)

IP
ic

In
fo

_
M

a
xC

o
lo

rs
 [G

et
]

(P
ic

G
IF

)

R
e

a
dB

itm
ap

F
ile

(P
ic

B
M

P
)

R
e

ad
G

IF
(P

ic
G

IF
)

U
In

t
(P

ic
G

IF
)

P
ro

c
e

d
u

re
 c

a
ll

tr
e

e
P

ic
F

o
rm

.D
is

p
la

yP
ic

tu
re

In
fo

Pr

oc
ed

ur
e

ca
lls

: P
ro

je
ct

 G
ra

ph
 c

al
l t

re
e

ab
ov

e,
 E

nt
er

pr
is

e
D

ia
gr

am
s v

er
si

on
 b

el
ow

Aivosto PicInfo sample project for Project Analyzer 5

Interface and implementation
Notice how Project Analyzer detected the use of interface inheritance (Implements statement). It logs calls to the

abstract IPicInfo members and “puts the calls forward” to the concrete implementation classes PicBMP and PicGIF.
Sub DisplayPictureInfo calls PicBMP and PicGIF via the IPicInfo interface, but it makes no direct calls. If one were to
amend this program with PNG or TIFF file support, one could add new classes PicPNG and PicTIFF quite easily
without making many changes to DisplayPictureInfo.

Lesson 2. Code review
Now let’s see what the automated code review feature of Project Analyzer can dig up. First select the <Default>

problem filter. You do this via the Options menu, Problem Options command. The review findings will be displayed in
list at the bottom of the main window. If you don’t see the list, press Ctrl+D to bring it back to view.

To make it easier to follow the following text, sort the problems by their type. You do this by clicking on the Problem
column of the Problem list.

Dead code detection
As Project Analyzer reviewed the code, it logged what code was used on which lines. It also found several cases of

unused, dead code. Even though the sample program is small, there’s a lot of dead code in it. This is typical for
programming projects; they often have a considerable amount of redundant code in them.

Dead procedures
Dead procedure PicGIF.Version [Get]. This property returns the GIF file version. The property is not accessed by the

sample program. Project Analyzer flags it as a dead procedure. One could well remove this property. Alternatively, one
could add a feature that utilizes the data (by showing the GIF version to the user, for example).

You can notice dead code in several ways:
• When you browse to Version in Project Analyzer, you can see a yellow problem icon to the left of the

procedure header line. Try left- and right-clicking the icon to learn more about the problem.
• You can also see that the icon next to Version in the project tree on the left has a red line over it. The red line

indicates dead code (example:). When you select the Property Get Version tab at the bottom of the window,
then click the Proc Info tab, you can verify the dead code status in the Deadness field. In this case it simply says
“Dead”. Here you can often find more detailed information on the deadness of an item.

• You could also get the Dead procedures report in the Report menu.

Now let’s move on to the other dead procedures.
Dead procedure PicForm.Form_KeyPress. This is an event that never occurs. That’s because the Form’s KeyPreview

property is False.
Dead declaration PicMain.GetSaveFileNameA. This API declaration is not used. One should remove it since the

declaration consumes a little space in the executable.

Dead code in exposed interface
The public interface IPicInfo may be accessed by external programs if the project is compiled as an ActiveX exe.

External programs may call the Public members of the interface to retrieve picture information.
Property Filename in this interface is not required by the project itself. However, external programs might access it.

For this reason, Project Analyzer marks the property as Dead but exposed. You can also see a violet “×” in the
property’s icon (example:).

Dead but exposed is not listed as a problem with the <Default> problem filter. To keep on the safe side, Project
Analyzer assumes that an external program actually utilizes this code. If you remove the code, external programs may
fail to run. If you wish to treat exposed dead code as truly dead, you need to select another problem filter (or configure
your own).

Either way, you need to open Problem Options in the Options menu. The quickest way is to use the problem filter
<Dead code + exposed>. This filter shows dead code related problems, including those problematic dead but exposed
cases. To configure your own problem filter, press New to create a new filter and remember to deselect the Ignore
deadness of exposed code checkbox on the Dead code tab in the problem configuration dialog.

Dead and semi-dead variables
Now that you know how to find dead procedures, we can move on to something more advanced: dead variables. A

dead variable is one that is not written nor read. As it happens, there are no such variables in our sample project. Great!
This is good code.

Aivosto PicInfo sample project for Project Analyzer 6

But wait: How about variables that are read but never written, or that are written but never read? These are cases of
semi-dead code. While they may simply be remnants of earlier stages of the project, they can also indicate logical flaws
with the code.

Variable written, not read: IsRLE. This variable in PicBMP is written twice but never read. Right-click IsRLE in the

hypertext code window to bring up References. This way you can review the write locations. IsRLE appears to be a
leftover from copy & paste coding. The variable was indeed required earlier when it was used as a flag to tell RLE
compressed bitmaps from uncompressed ones. Our sample project doesn’t care about the actual value of IsRLE,
because we’re only interested in the size and colors of the picture. We might as well remove IsRLE.

So should we remove IsRLE? Having IsRLE in the code doesn’t seem to cause any harm. We could have use for it
later if we decided to retrieve the compression status of pictures. This kind of thinking is typical to programmers: I
don’t use this but I’ll keep it because I might use it later. The problem with this thinking is that you’re leaving code that
might become obsolete or stop functioning correctly. Are you sure that the value of IsRLE is correct at all times? Has
someone tested it? You could as well comment it out. You can always uncomment it back in later.

Variable read, not written: StoredFilename. This variable in PicBMP is read but not written. Now we have found a

real bug: we forgot to store any filename in StoredFilename! Right-click StoredFilename and select References to view
where it’s being read. IPicInfo_Filename is the procedure that reads StoredFilename. Now that we never store anything
in the variable, IPicInfo_Filename always retrieves an empty string instead of the real filename. This might cause big
trouble if we released this code. To fix the problem, we should add the missing write. We can do this by adding the
following line at the beginning of Function ReadBitmapFile:

StoredFilename = Filename

As the filename is never actually required by the sample program (IPicInfo.Filename never executes in the sample),

this bug didn’t show up in the test phase. The bug had successfully hidden itself in the dead parts of the program.
Because of this possibility, it often pays off to remove dead code to eliminate the lurking bugs from emerging later.

Dead user-defined type fields
Type field written, not read. There are several semi-dead type fields in the program. These fields are write-only: they

are written but the data is never read. You can see many of them in the declarations section of PicBMP. Let’s take
BITMAPFILEHEADER as an example.

Private Type BITMAPFILEHEADER
 bfType As Integer ' Specifies the file type, must be BM.
 bfSize As Long ' Specifies the size, in bytes, of the bitmap file.
 bfReserved1 As Integer ' Reserved; must be zero.
 bfReserved2 As Integer ' Reserved; must be zero.
 bfOffBits As Long ' Specifies the offset, in bytes, from the beginning of the
 ' BITMAPFILEHEADER structure to the bitmap bits.
End Type

This is the header block that exists at the start of every .bmp file. The first 2 bytes are “BM” in ASCII. Then there are

the file size, 2 reserved fields and an offset field. Fields bfSize and bfOffBits appear to be written but not read, while
the other fields are in proper use.

Our code reads the .bmp file header in Function ReadBitmapFile (which you can easily find out by right-clicking
BITMAPFILEHEADER and selecting References). We read the bfType field to verify it indeed is “BM”. It also
verifies that the reserved fields are zero. If any of these checks fails, the file is not a bitmap. However, we never read or
verify the fields bfSize or bfOffBits, as Project Analyzer already showed us. We simply make the optimistic assumption
that these fields contain correct data. Now, if the .bmp file was truncated (in file transfer, for example), our program
fails to notice that. We could easily detect that by testing the file size and bfSize for equality. Since this is a picture info
application, it would make sense to detect damaged files and report them to the user. We have thus found out a missing
feature in the sample project!

The alternative to Type field written, not read is Type field read, not written. This problem is not found in the sample
project. Great coding!

Now we can take a quick look into one of the many subtle ways how Project Analyzer protects you from deleting
unused-looking but still good code. See Type OpenFilename in file PicMain.bas. This is a user-defined type that seems
to be in full use at the first glance. Project Analyzer doesn’t report any of these fields as dead code. If you right-click
some of the fields (say lpTemplateName) and select References, you can see that many of the fields aren’t actually used
by the program. Why doesn’t Project Analyzer suggest removing these useless fields? That’s because the Type is used
in an API call (see the Declare statement above). If you were to remove a field, the API call would probably fail or
crash. This is an API data type; you shouldn’t touch it unless you’re absolutely sure about what you’re doing. Project
Analyzer noticed this and didn’t report the unused fields as dead code.

Aivosto PicInfo sample project for Project Analyzer 7

Dead constants and Enum values
Dead Enum constant. In PicMain.bas there is a large Enum called EFileDlgFlags, which is used for displaying file

dialogs. Some of these enum constants are in use while some are dead. When you take a closer look at the constants you
can see that some of them are related to “File Save” dialogs and some are for “File Open” dialogs. Since this program
has no “File Save” feature, one should remove the saving related constants. This is recommended because the
superfluous values increase the likelihood of errors as the code is developed further.

Dead constant. There are 2 dead constants in PicBMP.cls: BI_RGB and BI_bitfields. These are related to BI_RLE4
and BI_RLE8. In this case they don’t indicate any type of a problem. They could be removed, though, in case someone
should later wonder what they are used for.

Invisible controls
There’s an invisible control on the main form. Can you see that? No, because it’s invisible! It’s hidden beyond the

form’s right border. It’s a button called SaveFile. Someone has forgotten it there. Maybe the program was designed to
save files too, but the feature is not implemented. Project Analyzer reports this as the Control outside visible area
problem.

The SaveFile button isn’t very useful in our sample application. If the user can manage to get it clicked (by pressing
Alt+S for “&Save picture...” or by Tabbing onto it), the event SaveFile_Click executes and the program stops running
due to the Stop statement in SaveFile_Click. One should remove both the button and the event to prevent nasty
surprises to the unexpecting user.

A few words on coding style
Coding style is something that programmers will never agree on. Project Analyzer reports a wide range of style issues

for you to consider. It is up to you to decide whether to follow the suggestions or rather ignore them. Ignoring is easiest
by configuring your own problem filters.

Too many parameters?
Function ShowFileOpenDialog in PicMain.bas has 7 parameters. With the <Default> filter, Project Analyzer shows

this as a problem called Too many parameters. Because of the many parameters, the function seems hard to understand.
Even though all the parameters are commented, it takes time to learn what each parameter does and how to use it.

There are several ways to fix this issue. One way is to simply remove some parameters and use defaults. You could
remove the DialogTitle parameter, for example, and always use “Open file” as the title. You could provide an
alternative simple function with fewer parameters, leaving this function as the advanced option for the power user.
Alternatively, you could encapsulate the functionality in a class. The parameters would be properties of the class. Each
property would be well described and all properties would have default values. When no value was given, the default
would be used. This is the approach of the CommonDialog class in ComDlg32.ocx.

Out parameters
What is not apparent at first sight is the extra complexity added by 2 in/out parameters. They are FilterIndex and

Flags. These parameters both take a value and return one. When you pass a variable to these parameters, the value is
subject to change. To see the out status, browse to ShowFileOpenDialog, click the Function ShowFileOpenDialog tab at
the bottom of the main window and select Local vars. Here you see the “in/out” variables.

Project Analyzer can warn about out or in/out parameters. The warning is not on by default, though. The warning is

named ByRef parameter returns a value. It is raised each time Project Analyzer detects a ByRef parameter whose value
may change. While this may be a desirable function, it can also cause subtle errors when a value changes unexpectedly.

Comments
Although the sample project is rather well documented, there are some areas where the documentation is below

average. There are long uncommented blocks in both PicMain.bas and PicBMP.cls. Project Analyzer reports these
blocks as Too many uncommented lines. Especially those blocks that are related to API calls would require more

Aivosto PicInfo sample project for Project Analyzer 8

explanation. Not all developers are familiar with the API data structures in question. A few words would be handy if the
code needs to be changed later. One might even benefit from a short description for each structure field.

There is also a shorter piece of code that is lacking comments. It is Property Get IPicInfo_MaxColors in PicBMP.
There is no explanation on what this function does. It is a short procedure and was not reported by the Too many
uncommented lines problem rule, which defaults to more lines before triggering a problem.

Project Analyzer can report uncommented procedures regardless of size, even though this rule is not on by default.
You can quickly enable it by selecting the <Style> problem filter (Options menu, Problem Options). A blue problem
icon will appear next to Property Get IPicInfo_MaxColors. If you right-click the icon, you will see Uncommented
code.

Miscellaneous problems
Project Analyzer also found the following additional problems in PicInfo using the <Default> problem filter. Here is a

short explanation.

Consider short-circuit with nested Ifs
 If BMPFileHeader.bfReserved1 = 0 And BMPFileHeader.bfReserved2 = 0 Then

You could split up this condition into 2 nested If statements. This is an optimization trick. You don’t need to execute

the second condition if the first condition is False. Splitting will not pay off in this case, though, because speed is not an
issue with this test.

Form missing Icon
There is no icon specified for PicForm. It shows the standard VB form icon.

Conclusion
All in all, Project Analyzer found almost 40 problems in the small sample program, which consists of just 5 source

files and some 700 lines. Many of the issues revealed problematic coding and things to improve on. We found a bug,
some redundant code, suggestions for making the code easier to understand, and even ideas for future features.

This was just the beginning. If you enable the problem filter <Strict – Show all problems>, you get to see about 100
other coding issues and more than 100 naming standards warnings. We leave these problems as an exercise to you.

