
Habari ActiveMQ Client Version 1.5

Getting started with
Habari ActiveMQ Client

Michael Justin

A short guide for the first steps with the JMS client library

Trademarks

Java, JavaBean, JDK, Sun, Sun Microsystems, and the Sun Logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brands and
product names are trademarks or registered trademarks of Borland. All CodeGear brands and
product names are trademarks or registered trademarks of CodeGear. Microsoft, Windows,
Windows NT, and/or other Microsoft products referenced herein are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other brands and their products are trademarks of their respective holders.

Getting started 1

Habari ActiveMQ Client Version 1.5

Contents
Introduction...5

About Habari ActiveMQ Client..5

About Apache ActiveMQ...5

Habari ActiveMQ Client License..7

Third Party Library Licenses...9

Indy BSD License...9

lkJSON...10

SuperObject...10

Installation..11

Requirements...11

TCP/IP Communication Libraries...12

Upgrades..13

Demo Source Code...13

Supported Message Brokers...14

Starting ActiveMQ..15

Pre-Installation Requirements...15

Running the Broker..15

Monitoring ActiveMQ..16

Stopping ActiveMQ...16

ActiveMQ Authentication Configuration..16

Communication Adapter Configuration....................................18

Introduction...18

Connections and Sessions..19

Step by Step Example..19

Transacted Sessions...22

Destinations...23

Introduction...23

Create a new Destination...24

Destination Options...25

Getting started 2

Habari ActiveMQ Client Version 1.5

Producer and Consumer...27

Message Producer..27

Message Consumer..27

JMS Selectors...28

Using XPath to filter messages...28

Text Messages..30

Sending a TextMessage..30

Receive Text Messages...32

Binary Messages..34

Send Binary Messages..34

Example Components...36

Example Applications ..37

ConsumerTool..37

ProducerTool..44

Object Messages..49

Message Options..50

JMS Standard Properties..50

User Defined Properties...51

ESB Integration Examples..52

Overview..52

Apache ServiceMix: Basic example...52

MULE: Echo Example..54

Known Limitations...57

Communication Libraries...57

Sessions...57

Destinations...58

Messages...58

Multi Threading..58

SOAP Object Exchange...58

References...59

Release Notes..61

Getting started 3

Habari ActiveMQ Client Version 1.5

Version 1.5...61

Version 1.4...62

Version 1.3...63

Version 1.2...63

Version 1.1...64

Version 1.0.1..64

Version 1.0...65

FAQ – Frequently Asked Questions..66

Compiler Errors..66

Index...67

Getting started 4

Habari ActiveMQ Client Version 1.5

Introduction

About Habari ActiveMQ Client
Habari ActiveMQ Client is a Delphi library for Apache ActiveMQ, the most popular
and powerful open source Message Broker. With Habari ActiveMQ Client, Delphi
developers can build integrated solutions, connecting cross language clients and
protocols from Java, C, C++, C#, Ruby, Perl, Python, and PHP, using the peer-to-
peer or the publish and subscribe communication model. The library uses the
Stomp message protocol and a plug-in architecture for communication libraries
(including SSL) and message transformers for XML and JSON object serialization.
It supports Apache ActiveMQ versions 4.0 to 5.2, Delphi 6 to 2009 and Free
Pascal, and follows the specification of the JMS API for Message Oriented
Middleware.

How Can I Use It?
Here are some examples for software solutions built on top of a Message Broker
like Apache ActiveMQ:

● Intranet News Ticker Application: using the publish and subscribe
communication model, news can be delivered to all registered client
applications. The message sender works like a broadcast station, and does
not care if clients don't listen.

● Load Balancing: using the point-to-point or queuing model, many
'worker' applications can be installed on different computers. Every new
message sent to the queue will be delivered only to one client. The server
will keep messages until they are expired or delivered to a client.

● Persistent Storage: messages and objects can be stored in the Object
Broker and retrieved even after a restart.

● Interprocess Communication: applications can use point-to-point
messages to exchange information between each other even if the
receiver currently is not running.

About Apache ActiveMQ
Apache ActiveMQ is the most popular and powerful open source Message Broker
and Enterprise Integration Patterns provider. Apache ActiveMQ is fast, supports
many Cross Language Clients and Protocols, comes with easy to use Enterprise

Getting started Introduction 5

Habari ActiveMQ Client Version 1.5

Integration Patterns and many advanced features while fully supporting JMS 1.1
and J2EE 1.4.

Apache ActiveMQ Features1

• Supports a variety of Cross Language Clients and Protocols from Java, C,
C++, C#, Ruby, Perl, Python, PHP

• OpenWire for high performance clients in Java, C, C++, C#
• Stomp support so that clients can be written easily in C, Ruby, Perl,

Python, PHP, ActionScript/Flash, Smalltalk to talk to ActiveMQ as
well as any other popular Message Broker

• full support for the Enterprise Integration Patterns both in the JMS client
and the Message Broker

• Supports many advanced features such as Message Groups, Virtual
Destinations, Wildcards and Composite Destinations

• Fully supports JMS 1.1 and J2EE 1.4 with support for transient, persistent,
transactional and XA messaging

• Spring Support so that ActiveMQ can be easily embedded into Spring
applications and configured using Spring's XML configuration mechanism

• Tested inside popular J2EE servers such as Geronimo, JBoss 4, GlassFish
and WebLogic

• Includes JCA 1.5 resource adaptors for inbound & outbound
messaging so that ActiveMQ should auto-deploy in any J2EE 1.4
compliant server

• Supports pluggable transport protocols such as in-VM, TCP, SSL, NIO,
UDP, multicast, JGroups and JXTA transports

• Supports very fast persistence using JDBC along with a high performance
journal

• Designed for high performance clustering, client-server, peer based
communication

• REST API to provide technology agnostic and language neutral web based
API to messaging

• Ajax to support web streaming support to web browsers using pure
DHTML, allowing web browsers to be part of the messaging fabric

• CXF and Axis Support so that ActiveMQ can be easily dropped into either of
these web service stacks to provide reliable messaging

• Can be used as an in memory JMS provider, ideal for unit testing JMS

1 http://activemq.apache.org/index.html

Getting started Introduction 6

http://activemq.apache.org/cross-language-clients.html
http://activemq.apache.org/how-to-unit-test-jms-code.html
http://activemq.apache.org/axis-and-cxf-support.html
http://activemq.apache.org/ajax.html
http://activemq.apache.org/rest.html
http://activemq.apache.org/persistence.html
http://activemq.apache.org/how-do-i-use-activemq-using-in-jvm-messaging.html
http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/resource-adapter.html
http://activemq.apache.org/spring-support.html
http://activemq.apache.org/composite-destinations.html
http://activemq.apache.org/wildcards.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/features.html
http://activemq.apache.org/enterprise-integration-patterns.html
http://stomp.codehaus.org/StompConnect
http://activemq.apache.org/stomp.html
http://activemq.apache.org/openwire.html
http://stomp.codehaus.org/StompConnect

Habari ActiveMQ Client Version 1.5

Habari ActiveMQ Client License

 Habari ActiveMQ Client (c) 2008-2009 Michael Justin - betasoft

 This copyright applies to all source code, compiled code,
 documentation, graphics and auxiliary files, except those parts
 written by other people (which are normally copyright their authors).

 GENERAL TERMS THAT APPLY TO COMPILED PROGRAMS AND
 REDISTRIBUTABLES
 You may write and compile your own application programs
 using the library. You may reproduce and distribute,
 in executable form only, programs which you create using
 the library without additional license or fees, subject
 to all of the conditions in this statement.

 The license granted in this statement for you to create
 your own compiled programs and distribute your programs and
 the Redistributables (if any) is subject to all of the
 following conditions: (i) all copies of the programs you
 create must bear a valid copyright notice, either your own
 or the betasoft copyright notice that appears on the
 Software; (ii) you may not remove or alter any betasoft
 copyright, trademark or other proprietary rights notice
 contained in any portion of betasoft libraries, source code,
 Redistributables or other files that bear such a notice;
 (iii) betasoft provides no warranty at all to any person,
 other than the Limited Warranty provided to the original
 purchaser of the Software, and you will remain solely
 responsible to anyone receiving your programs for support,
 service, upgrades, or technical or other assistance, and
 such recipients will have no right to contact betasoft for
 such services or assistance; (iv) you will indemnify and
 hold betasoft, its related companies and its suppliers,

Getting started Habari ActiveMQ Client License 7

Habari ActiveMQ Client Version 1.5

 harmless from and against any claims or liabilities arising
 out of the use, reproduction or distribution of your
 programs; (v) your programs must be written using a
 licensed, registered copy of the Software; (vi) your
 programs must add primary and substantial functionality,
 and may not be merely a set or subset of any of the
 libraries (including runtime libraries), code,
 Redistributables or other files of the Software; (vii)
 regardless of any modifications which you make and
 regardless of how you might compile, link, or package your
 programs, the libraries (including runtime libraries),
 code, Redistributables, and/or other files of the Software
 (including any portions thereof) may not be used in
 programs created by your end users (i.e., users of your
 programs) and may not be further redistributed by your end
 users; and (viii) you may not use betasoft's or any of its
 suppliers' names, logos, or trademarks to market your
 programs, except to state that your program was written
 using the Software.

 All betasoft libraries, source code, Redistributables and
 other files remain betasoft's exclusive property. Regardless
 of any modifications that you make, you may not distribute
 any files (particularly betasoft source code and other non-
 executable files).

 LIMITED WARRANTY
 No warranty of any sort, expressed or implied, is provided in
 connection with the library, including, but not limited to, implied
 warranties of merchantibility or fitness for a particular purpose.
 Any cost, loss or damage of any sort incurred owing to the
 malfunction or misuse of the library or the inaccuracy of the
 documentation or connected with the library in any other way
 whatsoever is solely the responsibility of the person who incurred
 the cost, loss or damage. Furthermore, any illegal use of the library
 is solely the responsibility of the person committing the illegal act.
 By using this program you accept these responsibilities, and give up
 any right to seek any damages against the authors in connection
 with this program.

Getting started Habari ActiveMQ Client License 8

Habari ActiveMQ Client Version 1.5

Third Party Library Licenses

Indy BSD License
Copyright

Portions of this software are Copyright (c) 1993 - 2003, Chad Z. Hower (Kudzu)
and the Indy Pit Crew - http://www.IndyProject.org/

License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation,
about box and/or other materials provided with the distribution.

• No personal names or organizations names associated with the Indy
project may be used to endorse or promote products derived from this
software without specific prior written permission of the specific individual
or organization.

THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew
"AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Getting started Third Party Library Licenses 9

http://www.IndyProject.org/

Habari ActiveMQ Client Version 1.5

lkJSON
 LkJSON v1.05

 25 jan 2009

* Copyright (c) 2006,2007,2008,2009 Leonid Koninin
* leon_kon@users.sourceforge.net
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Leonid Koninin ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Leonid Koninin BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SuperObject

 * Super Object Toolkit
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at http://www.mozilla.org/MPL
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
 * the specific language governing rights and limitations under the License.
 *
 * Unit owner : Henri Gourvest <hgourvest@progdigy.com>
 *
 * This unit is inspired from the json c lib:
 * Michael Clark <michael@metaparadigm.com>
 * http://oss.metaparadigm.com/json-c/

Getting started Third Party Library Licenses 10

Habari ActiveMQ Client Version 1.5

Installation

Requirements

Development Environment
● CodeGear Delphi 6 or higher,

or

● Free Pascal

Message Broker
● Apache ActiveMQ 4 or higher

● IONA FUSE Message Broker

TCP/IP Communication Library
Recommended libraries:

● Internet Direct (Indy)

● Synapse

See the next chapter for a discussion of all communication libraries and a feature
matrix.

JSON Serialization Library
A JSON library is required for JSON transformation used in object exchange.

● lkJSON - BSD licensed and (c) 2006,2007,2008 Leonid Koninin

● SuperObject - licensed under MPL 1.1 and (c) Henri Gourvest

This JSON library is still included but deprecated and unsupported

● JSON Toolkit - licensed under MPL 1.1 and (c) Henri Gourvest

Getting started Installation 11

Habari ActiveMQ Client Version 1.5

SOAP Serialization Library
Sending and receiving of objects with SOAP requires Delphi 7 or higher.2

Sending and receiving of objects in Free Pascal requires the Web Service Toolkit
or binary serialization.

TCP/IP Communication Libraries

Supported libraries

Internet Direct (Indy) 10
The communication adapter for Indy supports both GUI-based and console mode
applications, and works with Delphi 6 to 2009 and Free Pascal.

The library has been tested with these versions of Internet Direct:

• Indy 10.2.3

• Indy 10.5.5 (Tiburon branch)

Synapse
The communication adapter for Synapse supports both GUI-based and console
mode applications, and works with Delphi 6 to 2009 and Free Pascal.

The library has been tested with these versions of Synapse:

• V 38

• V 95 (with Delphi 2009 support)

2 The library is designed to use new methods that were added to TRemotable
(ObjectToSOAP and SOAPToObject.).

Getting started Installation 12

Habari ActiveMQ Client Version 1.5

Communication Adapter Feature Matrix

Features Indy 10 Synapse

D

E

L

P

H

I

Send/receive text messages in GUI applications Yes/Yes Yes/Yes

Send/receive binary messages in GUI applications Yes/Yes Yes/Yes

Send/receive text messages in CONSOLE applications Yes/Yes Yes/Yes

Send/receive binary messages in CONSOLE applications Yes/Yes Yes/Yes

F
R
E
E

P
A
S
C
A
L

Send/receive text messages in GUI applications Yes/Yes Yes/Yes

Send/receive binary messages in GUI applications Yes/Yes Yes/Yes

Send/receive text messages in CONSOLE applications Yes/Yes Yes/Yes

Send/receive binary messages in CONSOLE applications Yes/Yes Yes/Yes

Upgrades
If you upgrade from older versions, make a backup of your existing version and
make sure that you also have a backup of your own source.

HabariExpress Example Components
Note to users of the HabariExpress example component: if you upgrade from old
versions, component properties may have changed and this could cause error
messages when you open existing projects with the new version installed.

Demo Source Code
The Delphi demo applications have been built using Delphi 6 and Delphi 2009, in
some cases using third party libraries like JCL and TMS Unicode.

Delphi form files (DFM) are not backwards compatible, so opening them in
previous versions of Delphi might fail.

Getting started Installation 13

Habari ActiveMQ Client Version 1.5

Supported Message Brokers

Apache ActiveMQ
ActiveMQ supports the Stomp protocol and the Stomp – JMS mapping. This
makes it easy to write a client in pure Ruby, Perl, Python or PHP for working with
ActiveMQ.

The Habari ActiveMQ Client library uses the Stomp protocol, so the ActiveMQ
Stomp connector has to be enabled.

In the Apache ActiveMQ default configuration, support for Stomp is already
enabled.

Standard JMS message brokers
Connections to other JMS message brokers are possible (but not yet tested)
using the StompConnect library available from Codehaus.

Getting started Installation 14

Habari ActiveMQ Client Version 1.5

Starting ActiveMQ

Pre-Installation Requirements3

Hardware:

• 40 MB of free disk space for the ActiveMQ binary distribution.
• 200 MB of free disk space for the ActiveMQ source or developer's

distributions.

Operating Systems:

• Windows: Windows XP SP2, Windows 2000.
• Unix: Ubuntu Linux, Powerdog Linux, MacOS, AIX, HP-UX, Solaris, or any

Unix platform that supports Java.

Environment:

• Java Developer Kit (JDK) 1.5.x or greater for deployment and 1.5.x (Java
5) for compiling/building.

• The JAVA_HOME environment variable must be set to the directory where
the JDK is installed, e.g., c:\Program Files\jdk.1.5.0_07-87.

Download the binary distribution
After downloading from http://activemq.apache.org/download.html and
unpacking ActiveMQ, you are ready to start the messages broker.

Running the Broker
From the binary distribution you can run the Apache ActiveMQ server pretty
easily via the bin/activemq command. e.g. from a shell type

 cd bin
 activemq

The Apache ActiveMQ broker should now have started.

3 http://activemq.apache.org/version-5-getting-started.html

Getting started Starting ActiveMQ 15

http://activemq.apache.org/stomp.html
http://activemq.apache.org/download.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html

Habari ActiveMQ Client Version 1.5

Monitoring ActiveMQ
There are various ways to monitor ActiveMQ. If you are on version 4.2 or later of
ActiveMQ you can then monitor ActiveMQ using the Web Console by pointing your
browser at

http://localhost:8161/admin

Or you can use the JMX support to view the running state of ActiveMQ.

Stopping ActiveMQ
For both Windows and Unix installations, terminate ActiveMQ by typing "CTRL-C"
in the console or command shell in which it is running.

ActiveMQ Authentication Configuration
If you have modest authentication requirements (or just want to quickly set up
your testing environment) you can use SimpleAuthenticationPlugin.

With this plugin you can define users and groups directly in the broker's XML
configuration.4

Take a look at the following snippet for example:

4 For more information see http://activemq.apache.org/security.html

Getting started Starting ActiveMQ 16

http://activemq.apache.org/jmx.html
http://localhost:8161/admin
http://activemq.apache.org/web-console.html
http://activemq.apache.org/how-can-i-monitor-activemq.html

Habari ActiveMQ Client Version 1.5

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="localhost" dataDirectory="${activemq.base}/data">
 ...

 <plugins>

 <simpleAuthenticationPlugin>
 <users>
 <authenticationUser username="system" password="manager"
 groups="users,admins"/>
 <authenticationUser username="user" password="password"
 groups="users"/>
 <authenticationUser username="guest" password="password"
groups="guests"/>
 </users>
 </simpleAuthenticationPlugin>

 </plugins>

</broker>

Caveat: The default activemq.xml configuration file comes with
three optional and enabled elements:
<commandAgent>, <camelContext>, and <jetty>. If
you enable authentication & authorization services,
these enabled elements will cause the broker to throw
security-related exceptions. This is because these
elements represent functionality that is essentially
represented by clients that need to connect to the
broker and the connections are made without security
credentials. If you do not require the functionality
behind these elements, disable or comment-out the
elements.

ActiveMQ 5.1 The ActiveMQ Stomp connector supports password
authentication only in versions since version 5.1.

Getting started Starting ActiveMQ 17

Habari ActiveMQ Client Version 1.5

Communication Adapter Configuration

Introduction
Habari uses communication adapters as an abstraction layer between the internal
library and the TCP/IP library. These adapters are implemented using a common
API, which allows to exchange them easily, even at runtime.

Installation of Communication Adapter classes
A communication adapter implementation can be prepared for usage by simply
adding its Delphi unit to the project. Behind the scenes, the communication
adapter will add itself to the communication adapter list in the BTAdapterRegistry
unit. If more than one communication adapter is in the project, the first adapter
class in the list will be the default adapter. (The methods of the adapter registry
performs some checks, for example to prevent duplicate entries in the adapter
list, and raise exceptions in case of errors)

No additional setup of communication adapters is required. At run time, the JMS
connection class will pick the default adapter from this list.

The default adapter can be changed at runtime by setting the adapter class
(either by its name or by its type).

Available Communication Adapters
The Habari ActiveMQ Client libraries includes two adapters for TCP/IP libraries,
one for Indy (Internet Direct) and one for Synapse.

Indy (Internet Direct)
The Indy adapter requires Indy 10.5.5 for Delphi 2009 and Indy 10.2.3 for
previous versions of Delphi.

Synapse
The Synapse adapter requires Synapse V 95 for Delphi 2009 and V 38 for
previous version of Delphi.

Getting started Communication Adapter Configuration 18

Habari ActiveMQ Client Version 1.5

Connections and Sessions

Step by Step Example

Add required units
Three units are required for this example

● a communication adapter unit (e.g. BTCommAdapterIndy)

● a connection factory unit (BTJMSConnectionFactory or BTJMSConnection)

● the unit containing the interface declarations (BTJMSInterfaces)

The SysUtils unit is necessary for the exception handling.

program SendOneMessage;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTCommAdapterIndy in '..\..\source\BTCommAdapterIndy.pas',
 BTJMSConnection in '..\..\source\BTJMSConnection.pas',
 BTJMSInterfaces in '..\..\source\BTJMSInterfaces.pas';
...

Creating a new Connection
To create a new connection,

● declare a variable of type IConnection

● use the helper method MakeConnection of the TBTJMSConnection class to
create and configure a new connection with user name, password and the
broker URL

or

● use an instance of TBTJMSConnectionFactory to create connections

Since IConnection is an interface type, the connection instance will be destroyed
automatically if there are no more references to it in the program. Note that
there is no call to Connection.Free in the source.

Getting started Connections and Sessions 19

Habari ActiveMQ Client Version 1.5

var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;
begin
 Connection := TBTJMSConnection.MakeConnection('', '', 'stomp://localhost');
 Connection.Start;

Local connection
If you just need a connection to the broker on the local computer using default
port number and login credentials, you can call MakeConnection without
parameters:

 Connection := TBTJMSConnection.MakeConnection;

Creating a Session
To create the communication session,

● declare a variable of type ISession

● use the helper method CreateSession of the connection, and specify if it is
a transacted session, and the acknowledgement mode

Please check the API documentation for the different session types and
acknowledgement modes.

Since ISession is an interface type, the session instance will be destroyed
automatically if there are no more references to it in the program. Note that
there is no call to Session.Free in the source.

 try
 Session := Connection.CreateSession(False, amAutoAcknowledge);

Using the Session
The Session variable is ready to use now. Destinations, producers and consumers
will be covered in the next chapters.

 Destination := Session.CreateQueue('testqueue');
 Producer := Session.CreateProducer(Destination);
 Producer.Send(Session.CreateTextMessage('This is a test message'));

Getting started Connections and Sessions 20

Habari ActiveMQ Client Version 1.5

Closing a Connection
Finally, the application closes the connection. The client will disconnect from the
message broker. Closing a connection also implicitly closes all open sessions.

 finally
 Connection.Close;
 end;
end.

Getting started Connections and Sessions 21

Habari ActiveMQ Client Version 1.5

Transacted Sessions
A session may be specified as transacted. Each transacted session supports a
single series of transactions. Each transaction groups a set of message sends and
a set of message receives into an atomic unit of work. In effect, transactions
organize a session's input message stream and output message stream into
series of atomic units. When a transaction commits, its atomic unit of input is
acknowledged and its associated atomic unit of output is sent. If a transaction
rollback is done, the transaction's sent messages are destroyed and the session's
input is automatically recovered.

The content of a transaction's input and output units is simply those messages
that have been produced and consumed within the session's current transaction.

A transaction is completed using either its session's Commit method or its
session's Rollback method. The completion of a session's current transaction
automatically begins the next. The result is that a transacted session always has
a current transaction within which its work is done.

Getting started Connections and Sessions 22

Habari ActiveMQ Client Version 1.5

Destinations

Introduction
The JMS API supports two models:5

1. point-to-point or queuing model

2. publish and subscribe model

In the point-to-point or queuing model, a producer posts messages to a
particular queue and a consumer reads messages from the queue. Here, the
producer knows the destination of the message and posts the message directly to
the consumer's queue. It is characterized by following:

● Only one consumer will get the message

● The producer does not have to be running at the time the receiver
consumes the message, nor does the receiver need to be running at the
time the message is sent

● Every message successfully processed is acknowledged by the receiver

The publish/subscribe model supports publishing messages to a particular
message topic. Zero or more subscribers may register interest in receiving
messages on a particular message topic. In this model, neither the publisher nor
the subscriber know about each other. A good metaphor for it is anonymous
bulletin board. The following are characteristics of this model:

● Multiple consumers can get the message

● There is a timing dependency between publishers and subscribers. The
publisher has to create a subscription in order for clients to be able to
subscribe. The subscriber has to remain continuously active to receive
messages, unless it has established a durable subscription. In that case,
messages published while the subscriber is not connected will be
redistributed whenever it reconnects.

5 Java Message Service. (2007, November 21). In Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Java_Message_Service

Getting started Destinations 23

Habari ActiveMQ Client Version 1.5

Create a new Destination

Queues
A queue can be created using the CreateQueue method of the Session. Example:

 Destination := Session.CreateQueue('foo');
 Consumer := Session.CreateConsumer(Destination);

The queue can then be used to send or receive messages using implementations
of the IMessageProducer and IMessageConsumer interfaces. (See next chapter
for an example)

Topics
A topic can be created using the CreateTopic method of the Session. Example:

 Destination := Session.CreateTopic('bar');
 Consumer := Session.CreateConsumer(Destination);

The topic can then be used to send or receive messages using implementations
of the IMessageProducer and IMessageConsumer interfaces. (See next chapter
for an example).

Getting started Destinations 24

Habari ActiveMQ Client Version 1.5

Destination Options
Destination Options are a way to provide extended configuration options to a JMS
consumer without having to extend the JMS API. The options are encoded using
URL query syntax in the destination name that the consumer is created on.6

Example:

Destination := Session.CreateQueue('foo?activemq.retroactive=true');
Consumer := Session.CreateConsumer(Destination);

activemq.dispatchAsync (boolean)
Should messages be dispatched synchronously or asynchronously from the
producer thread for non-durable topics in the broker? For fast consumers set this
to false. For slow consumers set it to true so that dispatching will not block fast
consumers.

activemq.exclusive (boolean)
I would like to be an Exclusive Consumer on the queue.7

activemq.maximumPendingMessageLimit (int)
For Slow Consumer Handling on non-durable topics by dropping old messages -
we can set a maximum-pending limit, such that once a slow consumer backs up
to this high water mark we begin to discard old messages.8

activemq.prefetchSize (int)
Specifies the maximum number of pending messages that will be dispatched to
the client. Once this maximum is reached no more messages are dispatched until
the client acknowledges a message. Set to 1 for very fair distribution of
messages across consumers where processing messages can be slow.

activemq.priority (byte)
Sets the priority of the consumer so that dispatching can be weighted in priority
order.

6 http://activemq.apache.org/destination-options.html

7 http://activemq.apache.org/exclusive-consumer.html

8 http://activemq.apache.org/slow-consumer-handling.html

Getting started Destinations 25

Habari ActiveMQ Client Version 1.5

activemq.retroactive (boolean)
A retroactive consumer is just a regular JMS consumer who indicates that at the
start of a subscription every attempt should be used to go back in time and send
any old messages (or the last message sent on that topic) that the consumer
may have missed.9

9 http://activemq.apache.org/retroactive-consumer.html

Getting started Destinations 26

Habari ActiveMQ Client Version 1.5

Producer and Consumer

Message Producer
A client uses a MessageProducer object to send messages to a destination. A
MessageProducer object is created by passing a Destination object to a message-
producer creation method supplied by a session.

Example:

...
Destination := Session.CreateQueue('foo');
Producer := Session.CreateProducer(Destination);
Producer.Send(Session.CreateTextMessage('Test message'));
...

A client can specify a default delivery mode, priority, and time to live for
messages sent by a message producer. It can also specify the delivery mode,
priority, and time to live for an individual message.

Message Consumer
A client uses a MessageConsumer object to receive messages from a destination.
A MessageConsumer object is created by passing a Destination object to a
message-consumer creation method supplied by a session.

Example:

...
Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer(Destination);
Consumer.MessageListener := Self;
...

A message consumer can be created with a message selector. A message
selector allows the client to restrict the messages delivered to the message
consumer to those that match the selector.

Getting started Producer and Consumer 27

Habari ActiveMQ Client Version 1.5

A client may either synchronously receive a message consumer's messages or
have the consumer asynchronously deliver them as they arrive.

For synchronous receipt, a client can request the next message from a message
consumer using one of its receive methods. There are several variations of
receive that allow a client to poll or wait for the next message.

For asynchronous delivery, a client can register a MessageListener object with a
message consumer. As messages arrive at the message consumer, it delivers
them by calling the MessageListener's OnMessage method.

JMS Selectors
Selectors are a way of attaching a filter to a subscription to perform content
based routing. Selectors are defined using SQL 92 syntax and typically apply to
message headers; whether the standard properties available on a JMS message
or custom headers you can add via the JMS code.10

Here is an example

JMSType = 'car' AND color = 'blue' AND weight > 2500

For more documentation on the detail of selectors see the reference on
javax.jmx.Message11.

ActiveMQ supports some JMS defined properties, as well as some ActiveMQ ones
that the selector can use.

Note The Stomp protocol used by Habari ActiveMQ Client
only supports string type properties and operations in
selectors.

Delphi example:

...
MessageConsumer := Session.CreateConsumer(Destination, 'foo = ''bar''');
...

Using XPath to filter messages
Apache ActiveMQ also supports XPath based selectors when working with
messages containing XML bodies. To use an XPath selector use the following
syntax

10See http://activemq.apache.org/selectors.html

11See http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Getting started Producer and Consumer 28

Habari ActiveMQ Client Version 1.5

XPATH '//title[@lang=''eng'']'

Note The standard installation of ActiveMQ does not include
the Xalan JAR files which are necessary for XPATH
evaluation. The files xalan.jar, xercesImpl.jar and xml-
apis.jar need to be placed in the lib folder of ActiveMQ.

Delphi example:

...
MessageConsumer := Session.CreateConsumer(Destination,
 'XPATH ''//title[@lang="en"]''');
...

Getting started Producer and Consumer 29

Habari ActiveMQ Client Version 1.5

Text Messages

Sending a TextMessage
Source code for a simple application which sends a test message:

program SendOneMessage;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTCommAdapterIndy in '..\..\source\BTCommAdapterIndy.pas',
 BTJMSConnection in '..\..\source\BTJMSConnection.pas',
 BTJMSInterfaces in '..\..\source\BTJMSInterfaces.pas';

var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;

begin
 Connection := TBTJMSConnection.MakeConnection('', '', 'stomp://localhost');
 Connection.Start;
 try
 Session := Connection.CreateSession(False, amAutoAcknowledge);
 WriteLn('Send a message');
 Destination := Session.CreateQueue('onemessage');
 Producer := Session.CreateProducer(Destination);
 Producer.Send(Session.CreateTextMessage('This is a test message'));
 WriteLn('Hit any key');
 ReadLn;
 finally
 Connection.Close;
 end;
end.

The unit BTCommAdapterIndy contains the Internet Direct (Indy) communication
adapter class. By including this unit, it will register the adapter class with an
internal list of all available communication adapters. By default, the first
registered communication adapter will be used.

Getting started Text Messages 30

Habari ActiveMQ Client Version 1.5

HabariExpress Example Component
In the following example, an instance of the component will be created at
runtime and then used to send a text message to the queue 'test'.

Note that configuration of the HabariExpress component happens before setting
the component to 'Active', and changing properties while the HabariExpress
component is active will trigger an exception.

Msg: IMessage;
...
Habari := THabariExpress.Create(nil);

try
 // set the destination
 Habari.OptionsDestination.DestinationName := 'test';

 // Open the connection
 Habari.Active := True;

 // create text messsage
 Msg := Habari.Session.CreateTextMessage('Hello world');

 // send text
 Habari.MessageProducer.Send(Msg);

 // Close the connection
 Habari.Active := False;

finally
 Habari.Free;

end;

For text messages, there is also a simple Send method that takes a string
parameter:

...

Habari.Send('Text message body');

...

Important note The Habari Express component is included as example
code only and is unsupported. Some features of the
Habari ActiveMQ Client library might not be available
in Habari Express.

Getting started Text Messages 31

Habari ActiveMQ Client Version 1.5

Receive Text Messages

Asynchronous receive
To receive text messages asynchronously, the client subscribes to a destination
(which can be a queue or a topic) on the server.

The messages will be delivered to an event handler which has to be provided by
the client.

var
 Destination: IDestination;
 Consumer: IMessageConsumer;

begin
 ...
 // create a destination queue
 Destination := Session.CreateQueue('test');

 // create a consumer
 Consumer := Session.CreateConsumer(Destination);

 // set the message listener
 Consumer.MessageListener := Self;
 ...
end;

The asynchronous MessageListener is an object which implements the
IMessageListener interface.

This interface only contains one procedure, OnMessage:

 IMessageListener = interface(IInterface)
 procedure OnMessage(Message: IMessage);
 end;

Getting started Text Messages 32

Habari ActiveMQ Client Version 1.5

Synchronous Receive
A MessageConsumer offers a Receive method which can be used to consume
exactly one message at a time.

Example (from SubscriberDemo.dpr):

while I < EXPECTED do
begin
 TextMessage := ITextMessage(Consumer.Receive(1000));
 if Assigned(TextMessage) then
 begin
 Inc(I);
 TextMessage.Acknowledge;
 L.Info(Format('%d %s', [I, TextMessage.Text]));
 end;
end;

Compared with a MessageListener, the Receive method has the advantage that
the application can stop consuming messages at any point in time (for example,
after receiving 20 messages). With an asynchronous MessageListener, it is
possible that the MessageConsumer will still receive some messages after calling
the close method.

Getting started Text Messages 33

Habari ActiveMQ Client Version 1.5

Binary Messages

Send Binary Messages
The GUI demo includes an option to send binary files as JMS messages.

The following code uses TFileStream and TStringStream to load the selected file
into the memory and the Send method of the MessageProducer to transmit the
file content.

procedure TDemoMainForm.SendFile(Sender: TObject);
var
 Destination: IDestination;
 Producer: IMessageProducer;
 FileStream: TFileStream;
 S: TStringStream;
 BytesMessage: IBytesMessage;
begin
 ...

 Producer := Session.CreateProducer(Destination);
 S := TStringStream.Create('');
 try
 FileStream := TFileStream.Create(OpenDialog1.FileName, fmOpenRead or
fmShareDenyWrite);
 try
 S.CopyFrom(FileStream, FileStream.Size);
 BytesMessage := Session.CreateBytesMessage;
 BytesMessage.Content := S.DataString;
 Producer.Send(BytesMessage);
 finally
 FileStream.Free;
 end;
 finally
 S.Free;
 end;
end;

Note that this procedure works only if the file size does not exceed the maximum
size for a string.

Getting started Binary Messages 34

Habari ActiveMQ Client Version 1.5

Memory Streams
The following code converts a TMemoryStream instance to a string (given that
the stream size does not exceed the maximum size for a string):

function MemoryStreamToString(Stream: TMemoryStream): string;
begin
 SetString(Result, PChar(Stream.Memory), Stream.Size);
end;

Getting started Binary Messages 35

Habari ActiveMQ Client Version 1.5

Example Components

The source includes two example components based on Habari ActiveMQ Client,
with a limited features set. They can be used without installation in the Delphi
IDE. If you want to install them in the IDE, you may use one of the package
projects in the packages directory.

For example, packages\d120\dclHabariD120.dpk is the Delphi 2009 package,
dclHabariD105.dpk is the Delphi 2007 package.

Note that these components are only example sources, they do not include all
options which are available in the core Habari library. They are unsupported.

HabariExpress component properties (version 1.2)

Getting started Example Components 36

Habari ActiveMQ Client Version 1.5

Example Applications

ConsumerTool
The ConsumerTool demo is based on the Java example class ConsumerTool.java
in the ActiveMQ binary distribution.

It is configurable by command line parameters, all are optional:

AckMode Acknowledgement mode, possible values are:
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE or
SESSION_TRANSACTED

ClientId client id for durable subscriber

ConsumerName name of the message consumer - for durable
subscriber

Durable true: use a durable subscriber

MaximumMessages expected number of messages

Password password

PauseBeforeShutDown true: wait for key press

ReceiveTimeOut 0: asynchronous receive, > 0: consume messages
while they continue to be delivered within the given
time out

SleepTime time to sleep after asynchronous receive

Subject queue or topic name

Topic true: topic false: queue

Transacted true: transacted session

URL server url

User user name

Verbose verbose output

Getting started Example Applications 37

Habari ActiveMQ Client Version 1.5

Source code:

unit ConsumerToolUnit;

interface

uses
 BTJMSInterfaces;

type
{$M+}
 TConsumerTool = class(TInterfacedObject, IMessageListener)
 private
 Session: ISession;
 Running: Boolean;
 Consumer: IMessageConsumer;
 ReplyProducer: IMessageProducer;

 FAckMode: TAcknowledgementMode;
 FURL: string;
 FTopic: Boolean;
 FSubject: string;
 FDurable: Boolean;
 FSleepTime: Integer;
 FMaximumMessages: Integer;
 FTransacted: Boolean;
 FVerbose: Boolean;
 FUser: string;
 FPassword: string;
 FClientId: string;
 FConsumerName: string;
 FReceiveTimeOut: Integer;
 FPauseBeforeShutdown: Boolean;

 function TargetType: string;
 function DurableString: string;

 procedure SetAckMode(const Value: string);

 procedure OnMessage(const Message: IMessage);
 procedure ConsumeMessagesAndClose(Conn: IConnection; Session:
ISession;
 Consumer: IMessageConsumer); overload;
 procedure ConsumeMessagesAndClose(Conn: IConnection; Session:
ISession;
 Consumer: IMessageConsumer; TimeOut: Integer); overload;

 public
 constructor Create;

 procedure Run;

Getting started Example Applications 38

Habari ActiveMQ Client Version 1.5

 published
 property AckMode: string write SetAckMode;
 property ClientId: string read FClientId write FClientId;
 property ConsumerName: string read FConsumerName write
FConsumerName;
 property Durable: Boolean read FDurable write FDurable;
 property MaximumMessages: Integer read FMaximumMessages write
 FMaximumMessages;
 property Password: string read FPassword write FPassword;
 property PauseBeforeShutdown: Boolean read FPauseBeforeShutdown
write
 FPauseBeforeShutdown;
 property ReceiveTimeOut: Integer read FReceiveTimeOut write
FReceiveTimeOut;
 property SleepTime: Integer read FSleepTime write FSleepTime;
 property Subject: string read FSubject write FSubject;
 property Topic: Boolean read FTopic write FTopic;
 property Transacted: Boolean read FTransacted write FTransacted;
 property URL: string read FURL write FURL;
 property User: string read FUser write FUser;
 property Verbose: Boolean read FVerbose write FVerbose;

 end;

implementation

uses
 CommandLineSupport,
 BTCommAdapterIndy,
 BTJMSConnection,
 BTJMSConnectionFactory,
 StrUtils, SysUtils;

{ TConsumerTool }

constructor TConsumerTool.Create;
begin
 ConsumerName := 'James';
 MaximumMessages := 10;
 Subject := 'TOOL.DEFAULT';
 URL := BTJMSConnectionFactory.DEFAULT_BROKER_URL;
 Verbose := True;
end;

procedure TConsumerTool.SetAckMode(const Value: string);
begin
 if Value = 'CLIENT_ACKNOWLEDGE' then
 FAckMode := amClientAcknowledge
 else if Value = 'AUTO_ACKNOWLEDGE' then
 FAckMode := amAutoAcknowledge
 else if Value = 'SESSION_TRANSACTED' then

Getting started Example Applications 39

Habari ActiveMQ Client Version 1.5

 FAckMode := amTransactional
end;

function TConsumerTool.TargetType: string;
begin
 if Topic then
 Result := 'topic'
 else
 Result := 'queue';
end;

function TConsumerTool.DurableString: string;
begin
 if Durable then
 Result := 'durable'
 else
 Result := 'non-durable';
end;

procedure TConsumerTool.OnMessage(const Message: IMessage);
var
 TxtMsg: ITextMessage;
 Msg: string;
begin
 try
 try
 if Supports(Message, ITextMessage, TxtMsg) then
 begin
 if Verbose then
 begin
 Msg := TxtMsg.Text;
 if Length(Msg) > 50 then
 Msg := Copy(Msg, 1, 50) + '...';
 WriteLn('Received: ' + Msg);
 end;
 end
 else
 begin
 if Verbose then
 WriteLn('Received: Message');
 end;

 if Message.JMSReplyTo <> nil then
 begin
 ReplyProducer.Send(Message.JMSReplyTo,
 Session.CreateTextMessage('Reply: ' + Message.JMSMessageID));
 end;

 if Transacted then
 Session.Commit
 else if FAckMode = amClientAcknowledge then
 Message.Acknowledge;

Getting started Example Applications 40

Habari ActiveMQ Client Version 1.5

 except
 on E: Exception do
 begin
 WriteLn(E.Message);
 end;

 end;
 finally
 if SleepTime > 0 then
 begin
 Sleep(SleepTime);
 end;
 end;

end;

procedure TConsumerTool.ConsumeMessagesAndClose(Conn: IConnection;
Session:
 ISession; Consumer: IMessageConsumer);
var
 I: Integer;
 Message: IMessage;
begin
 WriteLn('We are about to wait until we consume: ' +
IntToStr(MaximumMessages)
 + ' message(s) then we will shutdown');

 I := 0;
 while (I < MaximumMessages) and Running do
 begin
 Message := Consumer.Receive(1000);
 if Message <> nil then
 begin
 Inc(I);
 OnMessage(Message);
 end;
 end;

 WriteLn('Closing connection');
 Consumer.Close;
 Session.Close;
 Conn.Close;
 if PauseBeforeShutdown then
 begin
 WriteLn('Press return to shut down');
 ReadLn;
 end;
end;

procedure TConsumerTool.ConsumeMessagesAndClose(Conn: IConnection;
Session:

Getting started Example Applications 41

Habari ActiveMQ Client Version 1.5

 ISession; Consumer: IMessageConsumer; TimeOut: Integer);
var
 Message: IMessage;
begin
 WriteLn('We will consume messages while they continue to be delivered
within: '
 + IntToStr(Timeout) + ' ms, and then we will shutdown');

 Message := Consumer.Receive(Timeout);
 while (Message <> nil) do
 begin
 OnMessage(Message);
 Message := Consumer.Receive(Timeout);
 end;

 WriteLn('Closing connection');
 Consumer.Close;
 Session.Close;
 Conn.Close;
 if PauseBeforeShutdown then
 begin
 WriteLn('Press return to shut down');
 ReadLn;
 end;

end;

procedure TConsumerTool.Run;
var
 ConnectionFactory: TBTJMSConnectionFactory;
 Connection: IConnection;

 Destination: IDestination;
begin
 TCommandLineSupport.Configure(Self);

 Running := True;

 WriteLn('Connecting to URL: ' + URL);
 WriteLn('Consuming ' + TargetType + ': ' + Subject);
 WriteLn('Using a ' + DurableString + ' subscription');

 ConnectionFactory := TBTJMSConnectionFactory.Create(User, Password,
URL);
 Connection := ConnectionFactory.CreateConnection;
 if (Durable and (ClientId <> '')) then
 begin
 Connection.ClientID := ClientId;
 end;
 Connection.Start;

 // Create the session.

Getting started Example Applications 42

Habari ActiveMQ Client Version 1.5

 Session := Connection.CreateSession(Transacted, FAckMode);

 // Create the Producer for the Destination.
 if Topic then
 Destination := Session.CreateTopic(Subject)
 else
 Destination := Session.CreateQueue(Subject);

 ReplyProducer := Session.createProducer(nil);
 ReplyProducer.setDeliveryMode(dmNonPersistent);

 if (Durable and Topic) then
 Consumer := Session.CreateDurableSubscriber(ITopic(Destination),
 ConsumerName)
 else
 Consumer := Session.CreateConsumer(Destination);

 if MaximumMessages > 0 then
 begin
 ConsumeMessagesAndClose(Connection, Session, Consumer);
 end
 else
 begin
 if ReceiveTimeOut = 0 then
 Consumer.SetMessageListener(Self)
 else
 ConsumeMessagesAndClose(Connection, Session, Consumer,
ReceiveTimeOut);
 end;

 Connection.Close;
 WriteLn('Done.');
end;

end.

Getting started Example Applications 43

Habari ActiveMQ Client Version 1.5

ProducerTool
The ProducerTool demo is based on the Java example class ProducerTool.java in
the ActiveMQ binary distribution.

It is configurable by command line parameters, all are optional:

MessageCount number of messages

MessageSize length of a message

Persistent delivery mode persistent

SleepTime pause between messages

Subject destination name

TimeToLive message expiration time

Topic destination is a topic

Transacted use a transaction

URL message broker URL

Verbose verbose output

The demo uses the CommandLineSupport helper unit to set these properties.

Getting started Example Applications 44

Habari ActiveMQ Client Version 1.5

Source code:

unit ProducerToolUnit;

interface

uses
 BTJMSInterfaces;

type
{$M+}
 TProducerTool = class(TObject)
 private
 FURL: string;
 FMessageSize: Integer;
 FTopic: Boolean;
 FSubject: string;
 FPersistent: Boolean;
 FSleepTime: Integer;
 FTimeToLive: Integer;
 FMessageCount: Integer;
 FTransacted: Boolean;
 FVerbose: Boolean;

 function TargetType: string;
 function PersistentString: string;

 procedure SendLoop(const Session: ISession;
 const Producer: IMessageProducer);

 public
 constructor Create;

 procedure Run;

 published
 property MessageCount: Integer read FMessageCount write
FMessageCount;
 property MessageSize: Integer read FMessageSize write FMessageSize;
 property Persistent: Boolean read FPersistent write FPersistent;
 property SleepTime: Integer read FSleepTime write FSleepTime;
 property Subject: string read FSubject write FSubject;
 property TimeToLive: Integer read FTimeToLive write FTimeToLive;
 property Topic: Boolean read FTopic write FTopic;
 property Transacted: Boolean read FTransacted write FTransacted;
 property URL: string read FURL write FURL;
 property Verbose: Boolean read FVerbose write FVerbose;

 end;

implementation

Getting started Example Applications 45

Habari ActiveMQ Client Version 1.5

uses
 CommandLineSupport,
 BTCommAdapterIndy,
 BTJMSConnection,
 BTJMSConnectionFactory,
 StrUtils, SysUtils;

{ TProducerTool }

constructor TProducerTool.Create;
begin
 MessageCount := 10;
 MessageSize := 255;
 Subject := 'TOOL.DEFAULT';
 URL := BTJMSConnectionFactory.DEFAULT_BROKER_URL;
 Verbose := True;
end;

function TProducerTool.TargetType: string;
begin
 if Topic then
 Result := 'topic'
 else
 Result := 'queue';
end;

function TProducerTool.PersistentString: string;
begin
 if Persistent then
 Result := 'persistent'
 else
 Result := 'non-persistent';
end;

procedure TProducerTool.Run;
var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;
begin
 TCommandLineSupport.Configure(Self);

 WriteLn('Connecting to URL: ' + URL);
 WriteLn('Publishing a Message with size ' + IntToStr(MessageSize) + '
to ' +
 TargetType + ': ' + Subject);
 WriteLn('Using ' + PersistentString + ' messages');
 WriteLn('Sleeping between publish ' + IntToStr(SleepTime) + ' ms');
 if TimeToLive <> 0 then
 begin

Getting started Example Applications 46

Habari ActiveMQ Client Version 1.5

 WriteLn('Messages time to live ' + IntToStr(TimeToLive) + ' ms');
 end;

 Connection := TBTJMSConnection.MakeConnection;
 Connection.Start;

 // Create the session.
 Session := Connection.CreateSession(Transacted, amAutoAcknowledge);

 // Create the Producer for the Destination.
 if Topic then
 Destination := Session.CreateTopic(Subject)
 else
 Destination := Session.CreateQueue(Subject);

 // Create the producer.
 Producer := Session.CreateProducer(Destination);

 if Persistent then
 Producer.DeliveryMode := dmPersistent
 else
 Producer.DeliveryMode := dmNonPersistent;

 if TimeToLive <> 0 then
 Producer.TimeToLive := TimeToLive;

 SendLoop(Session, Producer);

 Connection.Close;
 WriteLn('Done.');
end;

procedure TProducerTool.SendLoop(const Session: ISession;
 const Producer: IMessageProducer);
var
 I: Integer;
 TextMessage: ITextMessage;
 Msg: string;

 function CreateMessageText(const Index: Integer): string;
 begin
 Result := 'Message: ' + IntToStr(Index) + ' sent at: ' +
DateTimeToStr(Now);

 if Length(Result) > MessageSize then
 Result := Copy(Result, 1, MessageSize)
 else
 Result := Copy(Result + DupeString(' ', MessageSize), 1,
MessageSize);
 end;

begin

Getting started Example Applications 47

Habari ActiveMQ Client Version 1.5

 for I := 0 to MessageCount - 1 do
 begin
 TextMessage := Session.CreateTextMessage(CreateMessageText(I));
 if Verbose then
 begin
 Msg := TextMessage.Text;
 if Length(Msg) > 50 then
 begin
 Msg := Copy(Msg, 1, 50) + '...';
 end;
 WriteLn('Sending message: ' + Msg);
 end;
 Producer.Send(TextMessage);
 if Transacted then
 begin
 Session.Commit;
 end;
 Sleep(SleepTime);
 end;
end;

end.

Getting started Example Applications 48

Habari ActiveMQ Client Version 1.5

Object Messages

Object messages and object exchange between Java and Delphi with Habari
ActiveMQ Client is explained in detail in the document HabariObjectExchange.pdf

Getting started Object Messages 49

Habari ActiveMQ Client Version 1.5

Message Options

JMS Standard Properties

API Documentation
JMS Standard properties are documented in more detail in the API documentation
for the TBTMessage class. The are based on the JMS specification of the Message
interface.12

JMS properties for outgoing messages
Messages sent by Habari ActiveMQ Client can set these JMS standard properties:

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

JMSDeliveryMode Whether or not the message is persistent.

JMSPriority The message priority level.

JMSReplyTo The Destination object to which a reply to this
message should be sent.

JMS properties for incoming messages
Messages received by Habari ActiveMQ Client may contain these JMS standard
properties:

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

JMSDeliveryMode Whether or not the message is persistent.

JMSPriority The message priority level.

JMSTimestamp The timestamp the broker added to the message.

JMSMessageId The message ID which is set by the provider.

JMSReplyTo The Destination object to which a reply to this
message should be sent.

12http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Getting started Message Options 50

Habari ActiveMQ Client Version 1.5

User Defined Properties

Supported Data Types
The Stomp protocol only supports string type properties.

Reserved Names
The following names are reserved Stomp header properties and can not be used
as names for user defined properties:

● activemq.* (everything starting with activemq is a reserved name)

● login

● passcode

● transaction

● session

● message

● destination

● id

● ack

● selector

● type

● content-length

● correlation-id

● expires

● persistent

● priority

● reply-to

● message-id

● timestamp

● transformation

● client-id

● redelivered

The client library detects overwriting of Stomp defined message properties. It will
raise an Exception if the application tries to send a message with a reserved
property name.

Getting started Message Options 51

Habari ActiveMQ Client Version 1.5

ESB Integration Examples

Overview
This section will give you some step by step introductions to the integration of
Habari ActiveMQ and Open Source ESB (Enterprise Service Bus) systems.

Apache ServiceMix: Basic example

Introduction
This section will show how Habari can be used in an environment using Apache
ServiceMix 3.

The Basic example has successfully been tested with Apache ServiceMix
3.2.2-SNAPSHOT release.

ServiceMix configuration
To prepare the example for Habari ActiveMQ Client, add the Stomp connector to
the servicemix.xml file in the folder examples/basic/src/main/resources:

<!-- message broker -->
<amq:broker id="broker" persistent="false">
 <amq:transportConnectors>
 <amq:transportConnector uri="tcp://localhost:61616" />
 <amq:transportConnector uri="stomp://localhost:61613" />
 </amq:transportConnectors>
</amq:broker>

Getting started ESB Integration Examples 52

Habari ActiveMQ Client Version 1.5

Launch the basic demo
To launch the demo, build and run the example using Maven:

mvn jbi:embeddedServicemix

ServiceMix will use a Quartz timer to send messages to the topic with the name
'servicemix.source'.

Note Apache ServiceMix uses an built-in ActiveMQ server.
To avoid port conflicts, you should not launch a second
instance of Apache ActiveMQ.

Receive the test messages using Habari
You can use the Habari ActiveMQ Client GUI demo to receive the JMS messages.
To do this, connect to ActiveMQ on port 61613, start a session and create a new
topic with the name servicemix.source.

If you click on subscribe, the log file will display the messages from ServiceMix.

About Apache ServiceMix
Apache ServiceMix is an open source ESB (Enterprise Service Bus) that combines
the functionality of a Service Oriented Architecture (SOA) and an Event Driven
Architecture (EDA) to create an agile, enterprise ESB.

Apache ServiceMix is an open source distributed ESB built from the ground up on
the Java Business Integration (JBI) specification JSR 208 and released under the
Apache license. The goal of JBI is to allow components and services to be
integrated in a vendor independent way, allowing users and vendors to plug and
play.

Getting started ESB Integration Examples 53

Habari ActiveMQ Client Version 1.5

MULE: Echo Example

Introduction
This section will show how Habari can be used in an environment using Apache
ActiveMQ 5.0 and MULE 1.4.3.

Apache ActiveMQ Configuration
Apache ActiveMQ has to be configured for Stomp and TCP support. To do this,
open the configuration file activemq.xml and verify that it contains the following
settings for the transport connectors:

<transportConnectors>
 <transportConnector name="openwire" uri="tcp://localhost:61616"
 discoveryUri="multicast://default"/>
 <transportConnector name="stomp" uri="stomp://localhost:61613"/>
</transportConnectors>

If you launch ActiveMQ, check that the log file shows the successful startup of
these connectors:

INFO TransportServerThreadSupport - Listening for connections at:
tcp://localhost:61616
INFO TransportConnector - Connector openwire Started
INFO TransportServerThreadSupport - Listening for connections at:
stomp://localhost:61613
INFO TransportConnector - Connector stomp Started

MULE configuration
Edit the echo.bat file in the echo example folder so that it uses the echo-
config.xml configuration file:

call "%MULE_BASE%\bin\mule.bat" -config .\conf\echo-config.xml

Edit the echo-config.xml configuration file in the echo/conf folder. Add the JMS
connector just after the system stream connector:

Getting started ESB Integration Examples 54

Habari ActiveMQ Client Version 1.5

<!-- ActiveMQ configuration -->
<connector name="jmsConnector"
 className="org.mule.providers.jms.activemq.ActiveMqJmsConnector">
 <properties>
 <property name="connectionFactoryJndiName" value="ConnectionFactory"/>
 <property name="jndiInitialFactory"
 value="org.apache.activemq.jndi.ActiveMQInitialContextFactory"/>
 <property name="specification" value="1.1"/>
 <map name="connectionFactoryProperties">
 <property name = "brokerURL" value = "tcp://localhost:61616" />
 </map>
 </properties>
</connector>

Add the ActiveMQ queue “in.queue” to the list of inbound router endpoint
addresses, and replace the outbound endpoint (System.out) with the “out.queue”
endpint address:

<inbound-router>
 <endpoint address="stream://System.in"/>
 <endpoint address="vm://echo" />
 <endpoint address="jms://in.queue" />
</inbound-router>

...

<outbound-router>
 <router className="org.mule.routing.outbound.OutboundPassThroughRouter">
 <!-- endpoint address="stream://System.out"/ -->
 <endpoint address="jms://out.queue"/>
 </router>
</outbound-router>

Important Note that there can be only one endpoint in a
OutboundPassThroughRouter

Additional setup of MULE
Check list:

● the ActiveMQ jar file has to be copied to the lib/user folder. All libraries
(.jar files) in this folder will be added to the classpath before starting Mule.

● the environment variable MULE_HOME is required, it should point to the
MULE installation folder

Getting started ESB Integration Examples 55

Habari ActiveMQ Client Version 1.5

Launch the “echo” Demo
After successful completion of the MULE startup, the demo will ask you to enter
text.

The text will be passed from MULE to the outbound endpoint, the ActiveMQ queue
“out.queue”.

You can verify this using the ActiveMQ admin console
(http://localhost:8161/admin).

You can also use the ActiveMQ admin console to send messages to the ActiveMQ
queue “in.queue”, which is the inbound MULE endpoint. These messages will also
be passed from MULE to the to the ActiveMQ queue “out.queue”.

Getting started ESB Integration Examples 56

http://localhost:8161/admin

Habari ActiveMQ Client Version 1.5

Known Limitations

Communication Libraries
The communication adapters for OverByte ICS V6 and TClientSocket do not
reliable support receiving of messages.

The ICS communication adapter uses Overbyte ICS V6 (for Delphi up to 2007).
ICS V7 for Delphi 2009 is under development and might be supported in a future
version of Habari.

The communication adapters based on OverByte ICS and TClientSocket do not
support console applications, and can not be compiled under Free Pascal.

Location
The source code for unsupported TCP/IP communication libraries is located in the
folder source/unsupported/commlib

Overbyte ICS V6
The communication adapter for ICS only works in GUI-based applications. It
supports only message sending.

TClientSocket
The communication adapter for TClientSocket only works in GUI-based
applications. It supports message sending only.

TClientSocket has been declared deprecated by Borland / CodeGear.

Sessions

Acknowledgement Modes
Acknowledgment mode “amDupsOkAcknowledge” is unsupported.

Getting started Known Limitations 57

Habari ActiveMQ Client Version 1.5

Destinations

Durable Subscriptions
Removing durable subscriptions is not supported.

Messages

Message Property Data Types
The Stomp protocol uses string type key/value lists for the representation of
message properties. Regardless of the method used to set message properties
(e.g. SetInt or SetDate), all message properties will be interpreted as Java
Strings by the Message Broker.

As a side effect, the expressions in a Selector are limited to operations which are
valid for strings.

Timestamp properties are converted to an Unix time stamp value, which is the
internal representation in Java. But still, these values can not be used with date
type expressions.

Multi Threading
The unit test suite contains multi threading tests, but there is no guarantee for
error-free operation of the library in applications which make extensive use of
multi threading.

SOAP Object Exchange

Delphi
Sending and receiving of objects requires Delphi 7 or higher. The library is
designed to use methods that were added to TRemotable: ObjectToSOAP and
SOAPToObject. These methods are available since Delphi 7.

Free Pascal
Sending and receiving of objects in FreePascal requires the Web Service Toolkit
for binary serialization. The Habari ActiveMQ Client library distribution currently
does not include examples for object exchange using Free Pascal.

Getting started Known Limitations 58

Habari ActiveMQ Client Version 1.5

References

Message Broker
Apache ActiveMQ http:// activemq .apache.org

IONA http://open.iona.com/products/fuse-message-broker

IDE
CodeGear Delphi http://www.codegear.com/delphi

Free Pascal http://freepascal.org

Lazarus http://www.lazarus.freepascal.org

JMS
JMS Spec (PDF) http://java.sun.com/products/jms/docs.html

JSON
LkJSON http://sourceforge.net/projects/lkjson

SuperObject http://www.progdigy.com

SOAP
FPC Web Services http://wiki.lazarus.freepascal.org/Web_Service_Toolkit

Stomp
In ActiveMQ http:// activemq .apache.org/stomp.html

Project home http://stomp.codehaus.org/

Communication Libraries
Overbyte ICS http://www.overbyte.be

Synapse http://www.synapse.ararat.cz

Indy 10 http://www.indyproject.org

Indy 10 Snapshot http://indy.fulgan.com/ZIP

Getting started References 59

http://indy.fulgan.com/ZIP
http://www.indyproject.org/
http://www.synapse.ararat.cz/
http://www.overbyte.be/
http://stomp.codehaus.org/
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/stomp.html
http://wiki.lazarus.freepascal.org/Web_Service_Toolkit
http://java.sun.com/products/jms/docs.html
http://www.lazarus.freepascal.org/
http://freepascal.org/
http://www.codegear.com/delphi
http://open.iona.com/products/fuse-message-broker
http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/

Habari ActiveMQ Client Version 1.5

XML libraries
OmniXML http://www.omnixml.com/

XStream http://xstream.codehaus.org/

Getting started References 60

http://xstream.codehaus.org/
http://www.omnixml.com/

Habari ActiveMQ Client Version 1.5

Release Notes

Version 1.5
Released March 3, 2009

New
XML transformation Support for object exchange using XML serialization,

based on persistency helper methods in the OpenXML
library (see example in xmljava folder)

ProducerTool demo Command line tool which generates test messages,
many configuration parameters (inspired by the
ActiveMQ ProducerTool class)

ConsumerTool demo Command line tool which consumes test messages,
many configuration parameters (inspired by the
ActiveMQ ConsumerTool class)

Fixed
BinaryMessage Fixed a bug in the Indy communication adapter (Delphi

2009)

Message header The FillCreatedMessage method now only copies user-
defined Stomp headers to the properties of the
incoming JMS message

Changed
Synapse exceptions The Synapse adapter raises exceptions in case of

connection failures (this is now consistent with the
Indy implementation)

TBytes data type All communication adapters use the TBytes data type
in the StompTransmit method

Transformer Registration of default transformers has been replaced
by explicit creation, the transformer constructor
parameter is the class of the serialized objects

SOAP transformer The BTMessageTransformerSOAP unit is beta /
experimental now

Getting started Release Notes 61

Habari ActiveMQ Client Version 1.5

DelphiGUI demo The demo application includes a new administration
page which displays server, client, topic and queue
information (see readme.txt for details about message
broker configuration)

JSON Toolkit Deprecated JSON Toolkit adapter has been deleted

beta folder The folder <installdir>\source\beta contains beta
versions of new units (note that these units are not
guaranteed to be included in future versions)

Version 1.4
Released February 9, 2009

New
BrokerURL The factory methods to create a JMS connection now

use URI syntax. For example, the BrokerURL using the
stomp or the stomp+ssl protocol would be
'stomp://localhost' or 'stomp+ssl://localhost:61612'

Durable Subscriber Session.CreateDurableSubscriber method creates a
durable subscriber to the specified topic

SSL Support A new communication adapter with SSL support is
included, TBTCommAdapterIndySSL

Send Timeout The send timeout can be set using a new property of
the JMS connection

Synapse Support Delphi 2009 can be used with revision 95 of the
Synapse library

lkJSON Delphi 2009 can be used with version 1.05 of the
lkJSON library (and USE_D2009 compiler switch)

Changed
Demo SSL support has been added to the delphigui demo

application

Renamed file The BTConnectionFactory.pas unit has been renamed
to BTJMSConnectionFactory.pas to avoid name
conflicts with other Habari Client libraries

Performance The performance of the Synapse based communication
adapter has been improved

JMS Selectors The manual now includes information about the usage
of JMS Selectors in SQL and XPath syntax

Getting started Release Notes 62

Habari ActiveMQ Client Version 1.5

JMSReplyTo JMSReplyTo headers are now supported in for
incoming messages

XPath support The documentation has been updated to include the
information about required XPath support libraries
(JAR files)

Delphi 2009 Fixed all compiler warnings (except for third party
libraries like SuperObject, lkJSON, Synapse)

Version 1.3
Released January 8, 2009

New
Transformer Like communication adapters, all object message

transformers now use a transformer registry. A
message transformation unit is provided for every
JSON and SOAP implementation library

JSON Support JSON serialization is now supported in Delphi 2009
with the new SuperObject library

SOAP Support SOAP message transformation adapter with demo
application

Changed
Interface ParametersThe const keyword has been added to interface type

parameters to avoid unnecessary reference counting

ActiveMQ 5.2 This release has been tested with the new release 5.2
of Apache ActiveMQ

ICS V6 RC 1 This release has been tested with ICS V6 RC1, the
release candidate of the Internet Component Suite

ICS/TServerSocket The source code for unsupported TCP/IP
communication libraries is now located in the folder
source/unsupported/commlib

Multi Threading The DUnit test suite includes new tests for multi
threaded usage of the core library

Version 1.2
Released September 6, 2008

Getting started Release Notes 63

Habari ActiveMQ Client Version 1.5

New
Delphi 2009 The library compiles and runs in Delphi 2009. Unicode

is supported in the message body and message pro­
perty values. Note: JSON object transformation is not
supported for Delphi 2009.

lkJSON Support Support for the lkJSON library has been added. The
default library for JSON transformation is json_toolkit.
To activate lkJSON, add the compiler switch LKJSON.

Load Balancing The demo source code now include a simple file based
load balancing example.

Fixed
Expiration Time The library used the local time zone to calculate the

expiration time in the message expiration header. This
has been changed to UTC.

Closed Connections Closing a closed connection does not throw an
EBTStompClientAlreadyDisconnectedError anymore.

Packages The pre-built package files include the source path to
the JSON library now.

Version 1.1
Released March 31, 2008

New
ObjectMessage A new message type supports data exchange using the

Apache ActiveMQ standard JSON object message
transformation

The property OptionsMessageTransformer has been
added in HabariExpress to support JSON object
message transformation

Subscription config You can add custom headers to configure a
subscription. (see Chapter 'Destinations')

The property OptionsConsumer has been extended in
HabariExpress to support subscription configuration

Version 1.0.1
Released March 11, 2008

Getting started Release Notes 64

Habari ActiveMQ Client Version 1.5

New
Unicode properties String type message properties now support Unicode

Palette bitmap HabariExpress and HabariExpressAdmin now have
palette bitmaps (component icons)

Fixed
Unicode body Incoming text messages which used Unicode in the

message body have not been converted back to
WideString. This has been fixed.

Examples The SoapTransfer example application has been fixed

Version 1.0
Released March 5, 2008

Getting started Release Notes 65

Habari ActiveMQ Client Version 1.5

FAQ – Frequently Asked Questions

Compiler Errors

BTCommAdapterIndy.pas
The Delphi compiler stops at this line in BTCommAdapterIndy.pas

Result := IndyTCPClient.IOHandler.CheckForDataOnSource(50);

Reason The CheckForDataOnSource method in the Indy library
is a function in version 10.2.3. Check that you are
using the version 10.2.3 of Indy.

Getting started FAQ – Frequently Asked Questions 66

Habari ActiveMQ Client Version 1.5

Index

Reference
activemq......................................59

ActiveMQ.........................11, 14, 59

Authentication...............................16

Binary Message.............................34

Connection...................................19

connection factory.........................19

ConsumerTool...............................37

Destination...................................24

IConnection..................................19

ICS..57, 59

IDestination...........................32, 34

IMessage...............................32, 34

IMessageConsumer.......................32

IMessageListener..........................32

Indy..59

Internet Direct (Indy)....................12

JMS...............................1, 6, 34, 59

JMS Selector.................................28

JMSCorrelationID...........................50

JMSDeliveryMode..........................50

JMSExpiration...............................50

JMSMessageId..............................50

JMSPriority...................................50

JMSReplyTo..................................50

JMSTimestamp..............................50

JSON...59

LkJSON..59

Message Consumer........................27

Message Producer.........................27

ObjectToSOAP........................12, 58

OmniXML.....................................60

OnMessage...................................32

OverByte......................................57

point-to-point...............................23

ProducerTool.................................44

publish and subscribe.....................23

Queue..24

Session..20

SOAP...59

SOAPToObject........................12, 58

SSL...62

Stomp..59

SuperObject......................10, 59, 63

Synapse.................................12, 59

TClientSocket................................57

Text Message................................30

TFileStream..................................34

Topic...24

Getting started Index 67

Habari ActiveMQ Client Version 1.5

TStringStream..............................34

XML...60

XPath...28

XStream.......................................60

Getting started Index 68

	Introduction
	About Habari ActiveMQ Client
	How Can I Use It?

	About Apache ActiveMQ
	Apache ActiveMQ Features1

	Habari ActiveMQ Client License
	Third Party Library Licenses
	Indy BSD License
	lkJSON
	SuperObject

	Installation
	Requirements
	Development Environment
	Message Broker
	TCP/IP Communication Library
	JSON Serialization Library
	SOAP Serialization Library

	TCP/IP Communication Libraries
	Supported libraries
	Communication Adapter Feature Matrix

	Upgrades
	HabariExpress Example Components

	Demo Source Code
	Supported Message Brokers
	Apache ActiveMQ
	Standard JMS message brokers

	Starting ActiveMQ
	Pre-Installation Requirements3
	Download the binary distribution

	Running the Broker
	Monitoring ActiveMQ
	Stopping ActiveMQ
	ActiveMQ Authentication Configuration

	Communication Adapter Configuration
	Introduction
	Installation of Communication Adapter classes
	Available Communication Adapters

	Connections and Sessions
	Step by Step Example
	Add required units
	Creating a new Connection
	Local connection
	Creating a Session
	Using the Session
	Closing a Connection

	Transacted Sessions

	Destinations
	Introduction
	Create a new Destination
	Queues
	Topics

	Destination Options
	activemq.dispatchAsync (boolean)
	activemq.exclusive (boolean)
	activemq.maximumPendingMessageLimit (int)
	activemq.prefetchSize (int)
	activemq.priority (byte)
	activemq.retroactive (boolean)

	Producer and Consumer
	Message Producer
	Message Consumer
	JMS Selectors
	Using XPath to filter messages

	Text Messages
	Sending a TextMessage
	HabariExpress Example Component

	Receive Text Messages
	Asynchronous receive
	Synchronous Receive

	Binary Messages
	Send Binary Messages
	Memory Streams

	Example Components
	Example Applications
	ConsumerTool
	ProducerTool

	Object Messages
	Message Options
	JMS Standard Properties
	API Documentation
	JMS properties for outgoing messages
	JMS properties for incoming messages

	User Defined Properties
	Supported Data Types
	Reserved Names

	ESB Integration Examples
	Overview
	Apache ServiceMix: Basic example
	Introduction
	ServiceMix configuration
	Launch the basic demo
	Receive the test messages using Habari
	About Apache ServiceMix

	MULE: Echo Example
	Introduction
	Apache ActiveMQ Configuration
	MULE configuration
	Additional setup of MULE
	Launch the “echo” Demo

	Known Limitations
	Communication Libraries
	Sessions
	Acknowledgement Modes

	Destinations
	Durable Subscriptions

	Messages
	Message Property Data Types

	Multi Threading
	SOAP Object Exchange
	Delphi
	Free Pascal

	References
	Message Broker
	IDE
	JMS
	JSON
	SOAP
	Stomp
	Communication Libraries
	XML libraries

	Release Notes
	Version 1.5
	New
	Fixed
	Changed

	Version 1.4
	New
	Changed

	Version 1.3
	New
	Changed

	Version 1.2
	New
	Fixed

	Version 1.1
	New

	Version 1.0.1
	New
	Fixed

	Version 1.0

	FAQ – Frequently Asked Questions
	Compiler Errors
	BTCommAdapterIndy.pas

	Index

