

THE HUGO BOOK

HUGO: AN INTERACTIVE FICTION DESIGN SYSTEM

BY KENT TESSMAN

First Edition

THE HUGO BOOK
HUGO: AN INTERACTIVE FICTION DESIGN SYSTEM

Copyright © 2004 by Kent Tessman
The General Coffee Company Film Productions
www.generalcoffee.com

All rights reserved. No part of this book may be used or reproduced in any form or by any
means, or stored in a database or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles and reviews.

Warning and Disclaimer
This book is sold as is, without warranty of any kind, either express or implied. While every
precaution has been taken in the preparation of this book, neither the author nor the publisher
assumes any responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information or instructions contained herein. It is further stated that
neither the author nor the publisher is responsible for any damage or loss to any data or
equipment that results directly or indirectly from the use of this book.

First Edition

ISBN 0-9735652-0-9

i

TABLE OF CONTENTS

BOOK 1 THE HUGO PROGRAMMING MANUAL

I. INTRODUCTION... 2

I.a. Why You’re Here (or, Just What Is Hugo?)..2

I.b. Legal Information...2

I.c. Names And Acknowledgments..3

I.d. Manual Conventions..4

I.e. Packing List...4

I.f. The Truth About Programming..7

I.g. Working With Hugo...8

I.h. Getting Started..9

I.i. Compiler Switches ...10

I.j. Limit Settings..12

I.k. Directories ...13

I.l. The Hugo Engine..14

I.m. What Should I Be Able To Do Now? ...16

II. A FIRST LOOK AT HUGO ... 17

II.a. Basic Concepts ..17

II.b. Hello, Sailor! ...18

II.c. Data Types...19

II.d. Multiple Lines ..22

II.e. Comments ...24

II.f. Compiler Errors And Warnings..25

II.g. Compiler Directives ...27

II.h. What Should I Be Able To Do Now? ...31

III. OBJECTS .. 33

III.a. Getting To Know Your Objects ..33

III.b. The Object Tree ..34

III.c. Attributes...39

III.d. Properties...42

ii

III.e. Classes ...48

III.f. What Should I Be Able To Do Now? ...51

IV. HUGO PROGRAMMING... 52

IV.a. Variables..52

IV.b. Constants ...54

IV.c. Printing Text ...56

IV.d. More Formatting Sequences ...61

IV.e. Operators and Assignments..64

IV.f. Efficient Operators...66

IV.g. Arrays And Strings...68

IV.h. Conditional Expressions and Program Flow...73

IV.i. What Should I Be Able To Do Now? ...79
Example: Mixing Text Styles..79
Example: Managing Strings...79

V. ROUTINES AND EVENTS ... 82

V.a. Routines...82

V.b. Property Routines...85

V.c. Before And After Routines..88

V.d. Init And Main ...93

V.e. Events...95

V.f. What Should I Be Able To Do Now? ...96
Example: “Borrowing” Property Routines ...96
Example: Building a (More) Complex Object...97
Example: Building a Clock Event ..98

VI. FUSES, DAEMONS, AND SCRIPTS ... 100

VI.a. Introduction ..100

VI.b. Fuses And Daemons...100

VI.c. Scripts ..102

VI.d. A Note About The event_flag Global ...104

VI.e. What Should I Be Able To Do Now? ...105
Example: A Simple Daemon and a Simpler Fuse...105

VII. GRAMMAR AND PARSING ... 107

VII.a. Grammar Definition ..107

VII.b. The Parser..112

iii

VII.c. What Should I Be Able To Do Now? ...116

VIII. JUNCTION ROUTINES... 117

VIII.a. Before We Get To The Routines...117

VIII.b. Parse ...118

VIII.c. ParseError ..119

VIII.d. EndGame...121

VIII.e. FindObject...121

VIII.f. SpeakTo...122

VIII.g. Perform ..124

IX. THE GAME LOOP.. 126

IX.a. Overview Of The Game Loop...126

IX.b. What Should I Be Able To Do Now? ...128

X. USING THE OBJECT LIBRARY... 130

X.a. Rooms and Directions..130

X.b. Characters..132

X.c. Character responses ...133

X.d. Scenery and Components..135

X.e. Doors..136

X.f. Vehicles ...137

X.g. Plural and Identical Objects ...139

X.h. Attachables..142

X.i. What Should I Be Able To Do Now? ...145

XI. ADVANCED FEATURES .. 146

XI.a. The Display Object ..146

XI.b. Windows..147

XI.c. Reading And Writing Files ...148

XI.d. Mouse Input..151

XII. RESOURCES ... 152

XII.a. Creating And Using Resources...152

XII.b. Pictures ..153

XII.c. Sound And Music...154

XII.d. Video..155

iv

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS.................... 157

APPENDIX B: THE HUGO LIBRARY... 179
ATTRIBUTES...179
GLOBALS ..180
ARRAYS...181
CONSTANTS...181
PROPERTIES ...183
VERB ROUTINES..188
UTILITY ROUTINES, ETC..189
AUXILIARY MATH ROUTINES:...202
STRING ARRAY ROUTINES: ..203
FUSE/DAEMON ROUTINES: ...204
CHARACTER SCRIPT ROUTINES:...205
CHARACTER ACTION ROUTINES: ..206
CONDITIONAL COMPILATION:...206

APPENDIX C: LIMIT SETTINGS .. 207

APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER................................ 209
The HugoFix Debugging Library...209
The Hugo Debugger..212

APPENDIX E: PRECOMPILED HEADERS.. 215

APPENDIX F: HUGO VERSIONS.. 218

APPENDIX G: ADDITIONAL RESOURCES... 219

BOOK 2 TECHNICAL SYSTEM SPECIFICATION

I. INTRODUCTION... 223

I.a. How Hugo Works...223

II. ORGANIZATION OF THE .HEX FILE.. 225

II.a. Memory Map...225

II.b. The Header..226

III. TOKENS AND DATA TYPES... 228

III.a. Tokens ...228

III.b. Data Types...229

IV. ENGINE PARSING .. 233

V. GRAMMAR... 235

VI. EXECUTABLE CODE ... 237

VI.a. A Simple Program ..237

v

VI.b. Expressions..238

VII. ENCODING TEXT.. 241

VIII. THE OBJECT TABLE.. 242

VIII.a. Objects ...242

VIII.b. Attributes...242

IX. THE PROPERTY TABLE.. 244

IX.a. Before, After, and Other Complex Properties...244

X. THE EVENT TABLE... 247

XI. THE DICTIONARY AND SPECIAL WORDS.. 248

XI.a. Dictionary..248

XI.b. Special Words ...248

XII. RESOURCEFILES ... 249

XIII. THE HUGO COMPILER AND HOW IT WORKS................................... 250

XIII.a. Compile-Time Symbol Data ...252

XIII.b. The Linker...255

XIV. THE HUGO ENGINE AND HOW IT WORKS .. 257

XIV.a. Runtime Symbol Data ...259

XIV.b. Non-Portable Functionality...260

XIV.c. Savefile Format...261

XV. DARK SECRETS OF THE HUGO DEBUGGER 263

XV.a. Debugger Expression Evaluation...264

XV.b. The .HDX File Format..264

APPENDIX A: CODE PATTERNS ... 266

INDEX ... 293

vii

AUTHOR’S FOREWORD

Somewhere along the way this became a real book, and a real book
deserves a foreword, and maybe even a dedication. Looking back, the reason
any of this exists at all probably has something to do with being ten years old,
and me and my little brother Dean sitting in front of the family Apple II Plus
computer, one chair and one stool, playing those old text adventures.

So Dean, this is for you. I’m sorry I always took the chair.

Kent Tessman
Toronto, Canada
2004

BOOK 1

THE HUGO PROGRAMMING MANUAL

OR

HOW TO WRITE GAMES AND INFLUENCE PEOPLE

THE HUGO PROGRAMMING MANUAL

2

I. INTRODUCTION

I.a. Why You’re Here (or, Just What Is Hugo?)

hances are if you’re reading this book you’re already at least a little
familiar with adventure games, and maybe even more specifically
interactive fiction or text adventures. 1 Hugo is a system for designing,

programming, and running these. It is not the first such system—and it’s
difficult to find substantial fault in any general way with the best of those
systems that predate Hugo2—but Hugo does hope to extend the concepts
developed in earlier, similar systems in order to make interactive fiction
programming less cryptic, and more flexible and accessible to designers, as well
as to add functionality in certain areas where other systems are lacking.

What does it mean to be a “system” for interactive fiction? In Hugo’s case,
it means that not only does it provide an environment for running Hugo
games—the rather exciting-sounding Hugo Engine—but also the means of
creating them (the Hugo Compiler) and a tool for troubleshooting (the Hugo
Debugger). Additionally, it includes the Hugo Library, in essence a suite of
Hugo programming code providing the basic infrastructure for a Hugo game.

This book will serve as a means of becoming familiar with what Hugo is
and what it does, and what is required to develop an interactive fiction game
using Hugo, whether or not you have any prior programming experience.

I.b. Legal Information

Please see the Hugo License for detailed legal information. Hugo is
copyrighted by its Author. Programs created using the Hugo Compiler are the
property of the individual user who created them. The use of the Hugo library
files (the “Hugo Library”) and the distribution of the Hugo Engine are

1 If not, or if you’d like some additional interesting reading, there are a number of excellent resources to
investigate further, some of which are listed in APPENDIX G: ADDITIONAL RESOURCES.
2 The best and most popular of these earlier systems are TADS (Mike Roberts, 1987) and Inform (Graham
Nelson, 1993).

C

I. INTRODUCTION

3

authorized for the creation of non-commercial or shareware-based software. The
use of the Hugo Library is allowed in commercial software, although copyright
of the library files themselves remains with the Author. Commercial distribution
of the Hugo Compiler, the Hugo Engine, and/or the Hugo Debugger may be
allowed by arrangement with the Author. The source code for the Hugo
Compiler, the Hugo Engine, and the Hugo Debugger (the “Hugo Source Code”)
is available for porting to new platforms. Public distribution of modified
versions of the Hugo Source Code is not permitted.

Note: The Hugo Compiler, the Hugo Engine, the Hugo Debugger, the Hugo

Library, and related components are available free of charge; there is no
warranty whatsoever pertaining to their use.

I.c. Names And Acknowledgments

Those who have taken upon themselves the task of porting Hugo to
various platforms include Julian Arnold (Acorn/RiscOS port), Gerald Bostock
(OS/2 port), David Kinder (Amiga port), Bill Lash (original Unix/Linux port),
Andrew Plotkin (Macintosh port using his Glk library), and Colin Turnbull
(original Acorn Archimedes port). The author is considerably indebted to them,
for all their work as well as for their input on how to improve the compiler and
engine. Without their efforts, Hugo and the games created with it would not be
available for so nearly as wide an audience.3

More than a few words of appreciation must be given to Volker Blasius,
the original maintainer of the Interactive Fiction Archive at GMD, one of the key
resources for interactive fiction players and developers, and a primary hub of
material for contributors to (and readers of) the Usenet newsgroups rec.arts.int-
fiction and rec.games.int-fiction. For years, Volker (earlier with the help of David
M. Baggett and later with the help of David Kinder) undertook the substantial
task of organizing and cataloguing thousands of existing files and a steady
stream of new submissions. The IF Archive is now, as of this writing, housed on
the web at http://www.ifarchive.org, and is currently maintained by David Kinder
and Stephen Granade.

Thanks also to those whose comments and suggestions have contributed
to making Hugo as powerful and usable as it is: Torbjörn Andersson, Julian
Arnold, Dmitry Baranov, Mark Bijster, Jonathan Blask, Cam Bowes, Jason Brown,
Daniel Cardenas, Jose Luis Cebrian, Gilles Duchesne, Jason Dyer, Miguel Garza,
Jeff Jenness, Doug Jones, Alan MacDonald, Cena Mayo, Jesse McGrew, John
Menichelli, Iain Merrick, Jim Newland, Jerome Nichols, Jason C. Penney,
Giacomo Pini, Andrew Pontious, Vikram Ravindran, Gunther Schmidl, Robb

3 Other ports done by the author are for Windows, Linux, Macintosh, DOS, BeOS, Pocket PC, and PalmOS.

THE HUGO PROGRAMMING MANUAL

4

Sherwin, Christopher Tate, Mark J. Tilford, Paolo Vece, and Dean Tessman, as
well as to many other Hugo users. Graham Nelson’s Inform language helped
give early shape to some of the ideas in Hugo’s development with regard to
syntax and structure. Finally, sincere apologies on my part for any omission of
those who have contributed to Hugo over the years in any way.

And thank you, as always, to Jennifer.

I.d. Manual Conventions

Please refer to the following conventions as they are used in this manual:

 <parameter> for required parameters

 [parameter] for optional parameters

 file for specific filenames

 FunctionName functions, etc.

 Note important notes related to the matter at hand

 Output for output by the compiler or engine

 token tokens, keywords

 ... for omissions (particularly of non-relevant

sections of code)

I.e. Packing List

A number of files are part of the basic Hugo package. You’ll need to make
sure to have these before you get started; a good starting point is the Hugo web
page at http://www.generalcoffee.com/hugo.

I. INTRODUCTION

5

Executable package. You’ll need, first and foremost, a version of Hugo
compiled for your particular computer system, which will allow you to
run existing Hugo programs, as well as compile and run your own.
Usually the package itself is named something like:

 hugov31_win32.zip (Windows)
 hugov31_macos.sit (Macintosh)
 hugov31_unix_source.tar.gz (Unix sources)
 etc.

although filenaming may vary between platforms. Generally, like in the
examples above, Hugo comes in an archive file containing the various
executables for a given platform. The package should contain the
following files (although, again, filenames may differ; they’ll generally
appear as filename, although on your system they may be lowercase or
some combination of upper and lowercase, and the filename extension
may vary or be absent):

Hugo Compiler (HC.EXE, hcwin, hc)
Hugo Engine (HE.EXE, hewin, he, hewx)
Hugo Debugger (HD.EXE, hdwin, hd)
Debugger help file (HDHELP.HLP)

Please note that the Hugo Compiler and the Hugo Debugger are not
available for all systems; some packages for some systems contain only the
Hugo Engine for playing Hugo games. To develop and compile your own
games, the Hugo Compiler is necessary. The Hugo Debugger is a useful
and powerful tool, but it is not essential for Hugo development.

Library package. You may be relieved to learn that you don’t have to
write every last part of a Hugo game yourself. In fact, much of the basic
infrastructure is provided by the Hugo Library, a set of existing Hugo
source code files that you include in your game to manage the game
world. Using the Hugo Library, you can easily create a small game that
incorporates the basic behavior of a standard Hugo game. Normally these
files can be found in a single archive called hugolib.zip:

hugolib.h Library definitions and routines
verblib.h Standard verb routines
verblib.g Standard verb grammar definitions
objlib.h A library of useful object definitions

(included by hugolib.h)

THE HUGO PROGRAMMING MANUAL

6

The library also includes these three less commonly used files:

resource.h Resource-handling routines
system.h System-level routines
window.h Text window management

Additionally, the library contains two sets of files that, depending on user-
specified settings, are optionally included by hugolib.h:

hugofix.h Debugging routines
hugofix.g Debugging grammar

verbstub.h Additional verb routines
verbstub.g Additional verb grammar

Sources. It’s probably a good idea as you delve into Hugo programming
to have some existing source code to look at. sample.hug is a valuable
resource to have handy since it contains examples of most aspects of Hugo
programming. Additionally, you’re probably want to download
shell.hug, which provides the very bare bones of a Hugo game for you
to start building on:

sample.hug Sample game source code
shell.hug Empty source code to build on

An additional Hugo source file demonstrates the ability to create
precompiled headers (and not something you probably need to worry
about just now; it’s covered in APPENDIX E: PRECOMPILED HEADERS):

hugolib.hug To create a linkable version of

hugolib.h

Extras. The last essential remaining piece you’ll need to begin Hugo
development in earnest is a text editor of some sort. This is what you’ll use
to edit the Hugo source files that you’ll write and ultimately compile into
working Hugo programs. On Windows or Macintosh you could use the
pre-packaged Notepad or SimpleText (or TextEdit on Mac OS X)
applications, respectively, but it’s really not recommended: there are far
better inexpensive or even freeware editors available (and once you get

I. INTRODUCTION

7

deeper into programming, you’ll realize that the one sure investment you
can make is an editor you’re comfortable with). On Unix-ish systems
(including Linux), you’ll generally have a choice of editors including
Emacs, vi, and a number of graphical user interface (GUI) programs. It’s a
little beyond the scope of this book to even attempt to recommend an
editor—since it’s as much a matter of personal preference as anything—
so the best advice that can be given is to ask around, experiment, and find
out what works best for you.

It would also be good preparation to become familiar with the
terminal or console on your system. On Windows, this is the “MS-DOS
Prompt” or “Command Prompt” under the Start menu, or type
“command” (Windows 95/98) or “cmd” (Windows NT/2000/XP) from
the “Run...” option; on Unix systems, this will be bash or tcsh or some
other kind of command shell. Other systems will have different names for
their command-line environments (although on something like a pre-OS X
Macintosh, there is no such thing as a terminal or console, so you needn’t
worry about it).

I.f. The Truth About Programming

The truth about writing interactive fiction games is that yes, it is
programming, and no, there’s really no way around it. It’s impossible for a game
design system to provide a cookie-cutter means of picking and choosing all the
various facets of any relatively complex game so that by clicking on a few
buttons a fully formed and entirely original game world and story will be
produced. It doesn’t work that way. The attempt to determine at the outset all
of the various game elements that will ever be needed by any game author in any
type of game necessarily limits what authors are able to include in their games,
as well as their ability to tailor gameplay, presentation, character interaction,
geography, and other important aspects of a game to the needs of the particular
work of interactive fiction they’re writing. So, in order to write the best
interactive fiction games you’re capable of, you’ll need to do a at least a little
programming. But that’s not reason to fret.

The word “programming” seems to hold a sort of mystique that, to the
non-programmer, conjures up some unfathomable combination of knowledge
and skills that shall remain forever inaccessible to outsiders. In fact, that’s pretty
far from the truth. Programming is indeed a creative pursuit, but it is pretty
much unique among creative pursuits in that it’s the only one that can be
overcome by enough banging of keys: eventually you can make almost anything
work.

THE HUGO PROGRAMMING MANUAL

8

If you’ve never done any programming before, you can probably expect to
be slightly baffled by at least some of the early going in this manual. The truth
about learning programming is that you’re probably not going to be able to read
through this book (or any book on programming in any other programming
language, for that matter) once, in proper sequence, from cover to cover, and be
able to write programs expertly in the language. Many of things will require the
introduction of concepts that will only be discussed in full later on once a better
grounding in the language is achieved. There will, in fact, be several places in
this book (especially in the early sections) where readers will be encouraged to
not worry if the subject matter at hand seems quite foreign. But rest assured that,
after a brief initial period of acclimation, before long things like “objects”,
“properties”, “routines”, “global variables”, “calling parameters”, and a host of
others will be rolling off your tongue like the alphabet.

To make everything even easier, Hugo is designed so that writing very
basic games will consist largely of defining and describing objects and locations
in a very straightforward manner. All of the complex inner workings of the
game—from the templates for standard rooms and objects and their related
behaviors; to what happens when a player types >GO NORTH or >OPEN THE
CARDBOARD BOX or any other command, recognized or unrecognized; to the
rules of the game world for containment, edibility, bulk, switching things on or
off, or any number of “physical” traits—are handled by the Hugo Library, and a
prospective doesn’t have to worry about where these things are handled or how
until he or she is ready to investigate deeper.

I.g. Working With Hugo

The way Hugo works is fairly standard for a modern programming
language. A programmer begins with a source file, which is a human-readable
text file (created and edited in a separate text-editing application). The source
file contains all the various definitions, instructions, and other text that will
ultimately form the content of the game. The content of a source file is formatted
in the particular structure of the Hugo language—the programming language with
which the majority of this manual will endeavor to help you become acquainted.

The programmer inputs the source file to a compiler (here, specifically, the
Hugo Compiler), which takes the source code and generates an object file. The
object file is—unlike a source file—not human readable, but has instead been
translated by the compiler into a series of optimized instructions that are easily
understood by the computer. The computer can then take that object file and
execute it as a program, just like any application users regularly use
(applications—like word processors and spreadsheets and browsers—which
were probably produced by a compiler in exactly the same process as described

I. INTRODUCTION

9

here). The difference between a Hugo-generated program and such other
compiled programs is that a Hugo program may, once compiled, be run on any
platform for which the Hugo Engine exists. Normally a compiled program can
only be executed on the platform for which it was compiled; Hugo programs are
much more portable, and can be compiled on one platform and subsequently be
run on any other of the large number of platforms that Hugo supports.

The Hugo Engine is the interpreter or runtime for compiled Hugo object
files (also referred to as .HEX files, after their default extension meaning “Hugo
executable”). It functions as a hosting environment in which to load the .HEX
file, in sort of the same way that a browser loads a web page from the Internet.

I.h. Getting Started

Let’s take the first step by becoming acquainted with the tools we’ll be
using. First and foremost is the Hugo Compiler. Compiler usage instructions
may vary slightly depending on what computer and operating system you’re
using.

If you’re using a GUI version of the compiler (such as the one for
Windows), when you start the compiler it will display a form for you to enter the
name of the Hugo program you want to compile, along with any other
compilation options.

If you’re running a command-line version of the compiler, it will behave
pretty much the same regardless of what system you’re on. Type

 hc

without any parameters to get a full listing of available compiler options and
specifications. For example, the Unix and MS-DOS syntax for running the
compiler is

 hc [-switches] <sourcefile[.hug]> <objectfile>

It is not absolutely necessary to specify any switches, the name of the objectfile,
or the sourcefile extension. The bare-bones version of the compiler invocation is

 hc <sourcefile>

With no other parameters explicitly described, the compiler assumes an
extension of .hug. The default object filename is <sourcefile>.hex.

Here’s how to compile the sample game from the sample.hug source
code mentioned earlier in I.e. Packing List. Make sure the compiler executable,

THE HUGO PROGRAMMING MANUAL

10

library files, and sample game source code are all in the current directory, then
type

 hc -ls sample.hug

or simply

 hc -ls sample

and after a few seconds (or more, or less, depending on your processor and
configuration) a screenful of statistical information will appear following the
completed compilation (because of the -s switch). The new file sample.hex will
have appeared in current directory. As well, the -l switch wrote all compile-time
output (which would have included errors, had there been any) to the file
sample.lst.

Note: The next three sections—I.i. Compiler Switches, I.j. Limit Settings, and

I.k. Directories—may seem a little confusing to those without much
compiler experience. Do look them over, but if you’re not exactly sure
what it all means, don’t worry about it. You won’t need to tell the
compiler to do anything particularly acrobatic at the outset, and the
information is here for experimentation and for when you need it.

I.i. Compiler Switches

A number of switches may be selected via the invocation line. These are
one or more single-letter (usually, at least) options that follow a - character. The
available options are:

 -a Abort compilation on any error
 -d compile as an .HDX Debuggable executable
 -e Expanded error format
 -f Full object summaries
 -h compile in .HLB precompiled Header format
 -i display debugging Information
 -l print Listing to disk as <sourcefile>.lst
 -o display Object tree
 -p send output to standard Printer
 -s print compilation Statistics
 -t Text to listfile for spellchecking
 -u show memory Usage for objectfile
 -v Verbose compilation

I. INTRODUCTION

11

 -w Write <objectfile> despite any errors
 -x ignore switches in source code
 -25 compile v2.5 with compatibility

� The -a switch to abort compilation on any error is useful particularly when
you suspect that an error earlier in the program is triggering a string of
compilation errors later on. Using -a will stop compilation after the first
error.

� In order to compile a file usable with the Hugo Debugger (which means it
will contain a large amount of symbolic information not normally included in
a .HEX file), use the -d switch.

� The standard format in which the Hugo Compiler reports errors is relatively
concise, but can sometimes be used by more advanced editors to
automatically locate the error-causing line. To have the compiler print errors
in greater detail than this standard format, use the -e switch.

� Using the -f switch will tell the compiler to output a list of detailed
information about each object, which can sometimes be useful for debugging.

� The -h switch is used to generate a precompiled header, described in
APPENDIX E: PRECOMPILED HEADERS.

� The -i switch tells the compiler to finish compilation by printing a list of all
symbols used, as well as their numerical equivalents and any address
information. Again, this can sometimes be useful in debugging.

� Most programmers will probably make use of the -l switch to record all
compilation output to a listfile, by default called <filename>.lst. Such
recorded output will contain not only any compile-time errors, but also any
output generated by the use of other switches listed here.

� To get a list of all objects (as well as a visual depiction of their inheritance),
use the -o switch.

� The -p switch does not exist in all versions of the Hugo Compiler for all
platforms. Where present, it causes all output to be sent to a named printer,
such as “LPT1” under DOS or Windows, or “/dev/lp” under Unix. (The -p
switch is actually deprecated, as it’s much easier and more flexible to capture
output to a listfile using the -l switch, then subsequently view and/or print
the listfile using a text editor program.)

� Compilation statistics are printed as a summary when compilation is done if
the -s switch is used. The summary includes totals of lines compiled, the
numbers of objects, routines, properties, dictionary words, and other
elements of a .HEX file.

� The -t switch sends all textual output and dictionary entries to the listfile so
that it can be run through a spellchecker.

THE HUGO PROGRAMMING MANUAL

12

� The -u switch gives a breakdown of the memory used by the .HEX file for
various things including the object table, the property table, and executable
code.

� When the -v switch (not available on all versions) is used, the compiler runs
in verbose mode and maintains a real-time display of the number of lines
compiled, and of the percentage of compilation complete.

� Normally if the compiler encounters any errors in the source code, it won’t
generate the gamefile. Use the -w switch to generate <objectfile>
regardless of any errors encountered. This is useful in a situation where you
want to try out a section of code that has nothing to do with another section
that may currently have errors, but is otherwise rarely used (for obvious
reasons—it’s always best to get rid of those pesky errors).

� The version 3.0 (or later) compiler may be invoked with the -25 switch in
order to generate a v2.5 gamefile. Note, however that it’s generally
unnecessary to do so, since v2.5 and v3.x are compatible; i.e., the v3.0 (or
later) engine will run v2.5 gamefiles, and most recent v2.5 builds of the
engine will run v3.0 gamefiles. See APPENDIX F: HUGO VERSIONS for
more information.

I.j. Limit Settings

Also included on the invocation line before the sourcefile may be one or
more limit settings. These settings are primarily for memory management, and
limit the number of certain types of program elements, such as objects and
dictionary entries. In order to allow the compiler to function optimally across a
range of different computer platforms with differing memory management
capabilities, the compiler does not automatically allow an unlimited number of
all language elements. For the most part, you won’t need to worry about upping
any of these settings until your Hugo games begin to reach larger sizes.

To list the settings, type:

 hc $list

You’ll see something like:

--
Static limits (non-modifiable):
 MAXATTRIBUTES 128 MAXGLOBALS 240
 MAXLOCALS 16
--
Default limits:
 MAXALIASES 256 MAXARRAYS 256
 MAXCONSTANTS 256 MAXDICT 1024

I. INTRODUCTION

13

 MAXDICTEXTEND (0) MAXDIRECTORIES 16
 MAXEVENTS 256 MAXFLAGS 256
 MAXLABELS 256 MAXOBJECTS 1024
 MAXPROPERTIES 254 MAXROUTINES 320
 MAXSPECIALWORDS 64

Modify non-static default limits using: $<setting>=<new
limit>
--

To change a non-static limit (and compile a source file), type:

 hc $<setting>=<new limit> <sourcefile>...

Note: Users of Unix or similar systems (including OS X, BeOS, and others)
may, depending on the shell being used, need to escape special tokens
like ‘$’ or enclose these arguments in single quotes (e.g. \$list and
\$<setting>=<new limit> or 'list', '$<setting>=<new
limit>', etc.) to override the shell’s parsing of those tokens in the
compiler invocation line. (Non-Unix users probably don’t need to
worry about what that means.)

For example, to compile the sample game with the maximum number of
dictionary entries doubled from the default limit of 1024, and with the -l and -s
switches set,

 hc -ls $MAXDICT=2048 sample

If a compile-time error is generated indicating that too many symbols of a

particular type have been declared, it is probably possible to overcome this
simply by recompiling with a higher limit for that setting specified in the
invocation line.

See APPENDIX C: LIMIT SETTINGS for a complete listing of valid limit
settings.

I.k. Directories

It is possible to specify where the Hugo Compiler will look for different
types of files. This can be done in the command line via:

 hc @<directory>=<real directory>

THE HUGO PROGRAMMING MANUAL

14

For example, to specify that the source files are to be taken from the directory
c:\hugo\source, invoke the compiler with

 hc @source=c:\hugo\source <filename>

Valid directories (which can be listed using “hc @list”) are:

 source Source files
 object Where the new .HEX file will be created
 lib Library files
 list .lst files
 resource Resources for a resource block
 temp Temporary compilation files (if any)

Note: Again, users of Unix or similar systems may, depending on the shell
being used, need to escape special tokens like ‘@’ or enclose these
arguments in single quotes (e.g. \@list and \@<directory>=<real
directory> or '@list' and '@<directory>=<real directory>')
to override the shell’s parsing of those special tokens in the compiler
invocation line.

Advanced users may take advantage of the ability to set default

directories using environment variables. (The method for setting an
environment variable may vary from operating system to operating system.)
The HUGO_<NAME> environment variable may be set to the <name> directory.
For example, the source directory may be set with the HUGO_SOURCE
environment variable. Command-line-specified directories take precedence over
those set in environment variables. In either case, if the file is not found in the
specified directory, the current directory is searched. (And if you’re not familiar
with environment variables, again, don’t worry about it.)

I.l. The Hugo Engine

Once the sample game has been successfully compiled, you can run it
with the help of the Hugo Engine. The way in which you do this will vary
depending on what platform you’re using.

1. If you’re running a GUI version of the engine (such as for Windows), the
filetype for .HEX files will generally be associated with the Hugo Engine
application, so that double-clicking on the compiled .HEX file will
automatically start the engine.

I. INTRODUCTION

15

2. Most GUI versions also have the functionality that, if you start the Hugo
Engine application directly with no .HEX file given, it will present you
with a file-selector to choose the file to run.

3. Command-line versions of the engine require you to specify the name of
the .HEX file you want to run. Having compiled the sample game, run it
by invoking

 he sample

at the command line (replacing “he” with the name of the engine
executable for your system, if necessary). Again, it should not be
necessary to specify the extension. The engine assumes .hex if none is
given.

Note: If you know how to set environment variables for your system, the
environment variable HUGO_OBJECT or HUGO_GAMES may hold the
directory that the Hugo Engine searches for the specified .HEX file. The
location for save files may be specified with HUGO_SAVE. All of these
are optional.

THE HUGO PROGRAMMING MANUAL

16

I.m. What Should I Be Able To Do Now?

By now, you should be able to:

� browse the sample code and library files;

� run the Hugo Compiler on the platform of your choice, either through

a graphical user interface or via the command line;

� view and set compile-time options such as switches, limits, and

directories; and

� run a compiled Hugo file using the Hugo Engine.

Here’s an example: on the author’s machine, running under a Unix-like

command line, the compiler executable hc is in a directory called
/boot/home/hugo. The library files are in /boot/home/hugo/lib, and the
source code for the game Future Boy! is in /boot/home/hugo/fb, with the
main source file called future.hug.

It’s possible to call the compiler to compile Future Boy! with a number of
different options, including specifying the appropriate directories for source and
library files, increasing the maximum possible number of routines, and printing
all debugging information, the object tree, and statistics to a file. (Assume that
the current directory is /boot/home/hugo and that none of the switches or
directories are set in the source.)

Here’s how that’s done:

hc -lios $maxobjects=512 @source=fb @lib=lib future

(or

hc -lios '$maxobjects=512' '@source=fb', etc.

if the command shell requires that sequences beginning with ’$’ or ‘@’ be
contained in single-quotes or otherwise escaped). This makes use of various
command-line options, including multiple switches, limit settings, and directory
specifications. It sets the desired switches, changes the modifiable limit
MAXOBJECTS from the compiler default, and points the compiler to look for
source files in the source subdirectory and library files in the lib subdirectory
(from the current directory).

II. A FIRST LOOK AT HUGO

17

II. A FIRST LOOK AT HUGO

II.a. Basic Concepts

here are a couple of basic concepts to become familiar with in order to
begin working with Hugo. Once you begin to become familiar with them,
you will hopefully be able to look at a chunk of Hugo source code and—

even if you don’t understand everything it’s doing—be able to at least get a sense
of the general organization.

First of all, the bulk of programming in Hugo will involve the creation of
what are called objects. The word “object” in this sense has two meanings. First
of all, in a programming sense, objects are discrete subsections of source code.
They are referred to by individual names, and they “do something”, whether
that something is storing data or performing some set of functions or both. In
the case of Hugo, however, these are not just abstract tools for structuring a
program. Hugo objects are, more often than not, also representative of objects in
the “physical world” of the game: people, places, and things. If, for example,
you want to create a book in your game, you’ll create a book object that may
comprise the description of the book, what’s written in it, how much it weighs,
how many pages it has, what happens when you drop it, and anything else you
choose to implement.

The rest of a Hugo program is mostly comprised of routines. These are the
sections of code made up of commands or statements that facilitate the actual
behavior of the program at different points in the story. (Routines can also be
part of a containing object—we’ll get to that in a little while.) Routines are less
frequently (although more frequently in other languages) called “functions”—
they may be thought of as performing an operation or series of operations, and
then optionally returning some kind of answer or result. A program may have a
routine called DescribePlace which, when invoked (or “called”, in the
parlance of programming) would print the description of a given location. The
point of routines is that you don’t have to repeat the same code every time you
want a particular task done: you just have to call the routine. Write once, use
many times.

T

THE HUGO PROGRAMMING MANUAL

18

The idea of return values from a routine is an important one and, while
sometimes puzzling to novices, is actually quite uncomplicated. For instance,
often a particular function will be described as “returning true” or “returning
false”—all this means is that when it’s done it returns either a non-zero value
(usually 1) or a zero value, usually to indicate whether the function was
successful or not at whatever it was being asked to do. A program will
constantly be checking the return values of the routines it calls to determine if
particular operations have been successful in order to decide what to do next. A
routine can return any kind of value (listed shortly in II.c Data Types). A very
simple example is a routine that performs a needed operation, such as adding
two supplied values, a and b. Let’s call it AddTwoValues. When
AddTwoValues is called with the two supplied values, it will return the sum a+b.

For those familiar with the common programming languages such as C or
Basic (including Visual Basic), Hugo will not be entirely visually unfamiliar.
Individual objects and routines—as well as conditional blocks—are enclosed in
braces as in C (“{...}”), but unlike C and other C-like languages, a semicolon is
not required at the end of each line to tell the compiler when the line is finished,
and the language itself is considerably less cryptic. Keywords, variables, routine
and object names, and other tokens are not case-sensitive.

II.b. Hello, Sailor!

In the time-honored tradition of programming texts, the introduction to a
new programming language is quite often a description of how to print the
optimistic phrase “Hello, world” as an example of that particular language’s
form and substance. In the almost-equally time-honored tradition of interactive
fiction, we’ll start with the rallying cry “Hello, Sailor!”. Here’s how one
accomplishes that in Hugo:

routine Main
{
 print "Hello, Sailor!"
 pause
 quit
}

The entire program consists of one routine. (Two routines are normally required
for any Hugo program, the other being the Init routine, which is omitted in this
simple example since there isn’t anything required in the way of initialization.)

The Main routine is automatically called by the engine. It is from here
that the central behavior of any Hugo program is controlled. In this case the task
at hand is the printing of “Hello, Sailor!”, followed by a wait for a keypress (the

II. A FIRST LOOK AT HUGO

19

pause) and an order to exit the program (i.e., quit it) so that we don’t strand
the program waiting for input from the player, which is the normal order of
Hugo business.4

II.c. Data Types

Computer programs are mainly about two things: input and output
(called i/o, for short), and modifying values. In fact, the bulk of a computer
program (that is, what happens behind the scenes, whirring away, unbeknownst
to the user) consists of setting, changing, and comparing various values. Hugo is
no exception. All data in Hugo is represented in terms of 16-bit integers5, treated
as signed (-32768 to 32767) or unsigned (0 to 65535) as appropriate. It’s up to the
compiler and engine to decide what a particular value means in a given context.
The name of any individual data type may contain up to 32 alphanumeric
characters (as well as the underscore ‘_’).

 All of the following are valid data types:

Integer values 0, -10, 16800, -25005
(constant values that appear in Hugo source code as numbers)

ASCII characters 'A', 'z', '7'
(constant values equal to the common ASCII value for a character; i.e., 65
for ‘A’)

Objects mysuitcase, emptyroom, player
(constant values representing the object number of the given object)

Variables a, b, score, TEXTCOLOR
(changeable value-holders that may be set to equal another variable or
constant value)

4 Normally, unless the Main routine explicitly returns—as opposed to just running through to the closing
brace—the Hugo Engine continues running. Those familiar with the C programming language may notice
the slight difference here: whereas in C the main() function is the entry point for a C program, in Hugo
Init is the entry point, and Main can be thought of as the “each-turn routine”. For more elaboration on the
execution pattern of a Hugo program, see IX. THE GAME LOOP.
5 While it’s a little beyond the scope of this manual to talk about what exactly a 16-bit integer is (partly
because you don’t need to worry about it, other than to know they involve a range of 65536, either 0 to 65535
or -32768 to 32767). Essentially, “bits” refer to 1s or 0s in a base 2 number system (so that the right-most bit
is the 1s, the next-to-right-most is the 2s, the next the 4s, the next the 8s, etc.) For example, the 4-bit number
1100 is equal to decimal 12, since 8+4=12. (If you’re familiar with bitwise notation, you already knew that.
If you’re not, it probably didn’t particularly clear anything up, but as always, not to worry.)

THE HUGO PROGRAMMING MANUAL

20

Constants true, false, BANNER
(constant—obviously—values that are given a name similarly to a
variable, but are non-modifiable)

Dictionary entries "a", "the", "basketball"
(The appearance of “the” in a line of code actually refers to the location in
the dictionary table where the word “the” is stored. Dictionary entries
are non-modifiable.)

Array elements ranking[1]
(a series of one or more changeable values that may be referenced from a
common base point)

Array addresses ranking
(the base point of an array—see above; the array address itself is non-
modifiable, unlike the contents of the array)

Properties nouns, short_desc, found_in
(variable attachments of data relating specifically to objects)

Attributes open, light, transparent
(less complex attachments of data describing an object, which may be
specified as either having or not having the given attribute)

Most of these types are relatively straightforward, representing in most cases a
simple value. As noted, some values are dynamic (modifiable), while others are
static (non-modifiable). Dictionary entries are addresses in the dictionary table
(comprising all dictionary words in the .HEX file), with the empty string “”
having the value 0. Array addresses (as opposed to separate array elements)
represent the address at which the array begins in the array table (comprising all
array data in the .HEX file). Properties and attributes treated as discrete values
represent the number of that property or attribute, assigned sequentially as the
individual property or attribute is defined.

As mentioned, routines also return values, as do built-in6 engine
functions, so that

FindLight(room)

6 Built-in functions are just like other Hugo functions except that they’re never defined anywhere in source
code or any library file: the compiler and engine always know about them. To distinguish them, they’re
generally printed in lowercase, whereas program-defined routines (including library routines) are almost
always capitalized.

II. A FIRST LOOK AT HUGO

21

and

parent(object)

are also valid integer data types. 7
It’s good medicine to be as descriptive as possible in naming symbols,

regardless of what you’re naming. A variable that holds the count of a number
of objects could be called n, but it’s almost always better (especially after the fact,
when you’re looking at code you’ve written days or even months before) to call it
something more helpful like object_count.

At this point it’s probably helpful to know that you can assign a value to a
variable using the form:

<some variable> = <some value>8

For instance, to set the variable x equal to 5, you would use:

x = 5

To set it equal to element 4 of array some_array, you would use:

x = some_array[4]

Note: What follows is one of those if-you-don’t-quite-understand-yet-don’t-

panic sections of the manual: unless you can think of a place off the top
of your head where something like this would be useful, it’ll probably
be a little while until you need to use it.

When you want to get the return value of a routine, you would use:

x = Routine

If, then, you ever need to get the indexed address of a routine to use it as a value,
as you may at some point, you obviously won’t be able to do:

x = Routine

7 Routine addresses are also stored as 16-bit integers. However, those versed at all in such calculations will
notice that if such a value was treated as an absolute address, then any addressable executable code would
be limited to 64K in size (65536 bytes, the maximum size of an unsigned 16-bit integer). Such is not the case,
since the routine address is actually an indexed representation of the absolute address, allowing Hugo
games to far exceed any such limit in their size of executable code.
8 The section IV.e. Operators and Assignments goes into greater detail on assigning values to variables.

THE HUGO PROGRAMMING MANUAL

22

again and hope that this time it will assign the address of Routine to the
variable x, since that will assign to x the value returned by Routine. Instead,
you can use the address operator ‘&’, as in:

x = &Routine

which won’t actually call Routine but will instead only assign the routine’s
address to x (or, as we’ll see later,

x = &object.property

to get a property routine address instead of calling the property routine itself.)

II.d. Multiple Lines

If any single command is too long to fit on one line, it may be split across
several lines by ending all but the last with the control character ‘\’.

"This is an example string."

and

x = 5 + 6 * higher(a, b)

are the same as

"This is an example \
string."

and

x = 5 + 6 * \
 higher(a, b)

String constants, such as in the below print statement, are an exception

in that they do not require the ‘\’ character at the end of each line (although, as
shown just above, it’s not wrong to use it).

print "The engine will properly

print this text, assuming a
single space at the end of each
line."

II. A FIRST LOOK AT HUGO

23

will result in:

The engine will properly print this text, assuming a
single space at the end of each line.

Care must be taken, however, to ensure that the closing quotes are not left off the
string constant. Failing that, the compiler will likely generate a “Closing brace
missing” or similar error when it overruns the object/routine/event boundary
looking for a resolution to the odd number of quotation marks.

(Habitual double-space-after-a-period typists may find it useful to use the
‘\’ character for line continuation in situations like this:

print "Here, we'll end a sentence on one line. \
However, we'd like to make sure there
are two spaces before the second sentence."

giving:

Here, we'll end a sentence on one line. However, we'd
like to make sure there are two spaces before the
second sentence.

since normally, if the ‘/’ were omitted after “...on one line.”, the compiler would
assume only a single space before continuing with “However...” from the next
line.)

Also, most lines ending in a comma, and, or or will automatically
continue on to the next line (if they occur in a line of code). In other words:

x[0] = 1, 2, 3, ! array assignment x[0]..x[4]
 4, 5

and

if a = 5 and
 b = "tall"

get compiled the same as:

x[0] = 1, 2, 3, 4, 5

and

THE HUGO PROGRAMMING MANUAL

24

if a = 5 and b = "tall"

This is provided primarily so that lengthy lines and complex expressions do not
have to run off the right-hand side of the screen during editing, nor do they
continually need to be extended using ‘\’ and the end of each line.

Note: Multiple lines that are not strictly code, such as property assignments in

object definitions—to be discussed shortly—must still be joined with
‘\’, as in

nouns "plant", "flower", "marigold", \
 "fauna", "greenery"

and similar cases, even if they end in a comma.

There is a complement to the ‘\’ line-control character: the ‘:’ character

allows multiple lines to be put together on a single line, i.e.:

x = 5 : y = 1

or

if i = 1: print "Less than three."

Which the compiler translates to:

x = 5
y = 1

and

if i = 1
 {print "Less than three."}

(We’ll get to exactly what that “if...print...” business means in just a little
bit in IV.h Conditional Expressions and Program Flow.)

II.e. Comments

Comments allow you to insert notes into source code to serve as
reminders, descriptions of what a particular chunk of code does, put a curse
upon the libary/language author, or whatever else you want. Comments are

II. A FIRST LOOK AT HUGO

25

very helpful, and beginning programmers tend to put in either too many
comments or too few. Despite the complaints that some people may have about
over-commented code—generally referring to commenting a line like:

x = 5

with the rather obvious explanation of “set x equal to 5”—it’s always better to err
on the side of too many comments in order to avoid the situation that every
programmer find himself or herself in at least once (and once only if very, very
lucky) of trying to remember what a piece of code does that you wrote yesterday,
or last week, or several months ago. Comment, comment, comment.9

There are two types of comments. Comments on a single line begin with a
‘!’. Anything following on the line is ignored. Multiple-line comments are begun
with ‘!\’ and ended with ‘\!’.

! A comment on a single line

!\ A multiple-line
 comment \!

Note: The ‘!\’ combination must come at the start of a line to be significant; it
cannot be preceded by any other statements or remarks. Similarly, the
‘\!’ combination must come at the end of a line (or alone on an
otherwise blank line).

II.f. Compiler Errors And Warnings

The compiler is pretty good about catching you when you do something
that isn’t going to work. When it encounters something in your source code that
doesn’t make sense, or is illegal in terms of the Hugo language, it’ll tell you.

A compiler error is generally of one of two types. A fatal error looks like
this:

Fatal error: <message>

and halts compiler execution. Fatal errors include things like not being able to
find a requested file, encountering some sort of i/o difficulty (such as not being

9 But keep an eye out for issues of comment maintenance. Again, a good comment should add clarity to a
section of code, but it (usually) shouldn’t restate exactly what the code is doing. Doing that just means that
when you change the code, you have to change the comment to keep it accurate, too, which if you’ve
overcommented means doing the same thing twice, and increasing the chances of getting out of sync so that
the comment doesn’t perfectly reflect the code it’s supposed to be commenting.

THE HUGO PROGRAMMING MANUAL

26

able to read from or write to a necessary file), or having encountered something
in the source code that makes it impossible to continue with compilation.

A non-fatal error typically looks like:

<filename>:<line>: Error: <message>

Non-fatal errors are usually programming mistakes: either doing something
illegal (like trying to assign a value to something to which you’re not allowed to
assign a value), making a syntax error such as using a symbol name that the
compiler doesn’t know about (often due to a typing mistake), or making a
formatting mistake (like missing something that the compiler knows is supposed
to be coming next but you forgot to include). Unless the -a switch is specified at
invocation to tell the compiler to quit after the first error, multiple non-fatal
errors may be printed. The side-effect of this is that a specific error (particularly
a formatting error) may affect many lines of code after it, so that the compiler—
having become lost and not really knowing what you’re trying to do—may
report a whole string of errors, even on lines that, if the compiler understood
their proper context, would be error free.10

When a compiler issues a warning, it looks like:

<filename>:<line>: Warning: <message>

Compilation will continue, but this is an indication that the compiler suspects a
problem at compile-time.

If the -e switch has been set during invocation to generate expanded-
format errors, error output looks like:

<FILENAME>: <LOCATION>
(Error-causing line)
"ERROR: <error message>"

It prints the section of code that caused the error, followed by an explanation of
the problem. Compilation will generally continue unless the -a switch has been
set.

Note: The section of offending code may not be printed exactly as it appears

in the source when using the -e switch, since the compiler occasionally
mildly paraphrases and rebuilds the source line into a more rigid format
before finally compiling it.

10 Which is why, in certain cases, the -a switch can be helpful.

II. A FIRST LOOK AT HUGO

27

II.g. Compiler Directives

A number of special commands may be used that aren’t really part of a
Huge program per se, but rather give instructions to the compiler itself to
determine (a) how the source code—or a part thereof—is read by the compiler
and (b) what special output will be generated at compile-time. These special
commands or instructions are called compiler directives, and are preceded with a
‘#’ character to set them apart.

To set switches within the source code so that they do not have to be
specified each time the compiler is invoked for that particular program, the line

#switches -<sequence>

will set the switches specified by <sequence>, where <sequence> is a string of
characters representing valid switches, without any separators between
characters. Many programmers may find it useful to make

#switches -ls

the first line in every new program, which will automatically print a statistical
summary of compilation (plus any warnings or errors) to the .lst list file.

Using

#version <version>[.<revision>]

specifies that the file is to be used with version <version>.<revision> of the
compiler. If the file and compiler version are mismatched, a warning will be
issued.

Note: The #version directive is intended mainly for things like library files,

and although you may use it in your own source files, it isn’t necessary.
Its general usage is largely deprecated.

To include the contents of another file at the specified point in the current

file, use

#include "<filename>"

where <filename> is the full path and name of the file to be read. When
<filename> has been read completely, the compiler resumes with the statement
immediately following the #include directive. There is no limit on the number

THE HUGO PROGRAMMING MANUAL

28

of files that a single file may include; also, a file may include a file which includes
another file which includes another file and so on. (A file or set of files can be
compiled into a precompiled header using the -h switch, and then linked using
#link instead of #include. See APPENDIX E: PRECOMPILED HEADERS.)

A useful tool for managing Hugo source code is the ability to use compiler
flags for conditional compilation. A compiler flag is simply a user-defined
marker that can control which sections of the source code are compiled. In this
way, a programmer can demarcate sections of a program that can be included or
excluded at will. For example, the library files hugolib.h, verblib.h, and
verblib.g check to see if a flag called DEBUG has been set previously (as it is in
sample.hug). Only if it has do they include the hugofix.h and hugofix.g
files, which in turn provide certain debugging features to a running Hugo
program. (For a final version to be released to the general public for playing,
then, by simply not setting the DEBUG flag those special features are not enabled.)

To set and clear flags, use

#set <flagname>

and

#clear <flagname>

respectively. (Flags can also be explicitly set on the command line during
compiler invocation via

hc #<flagname> <sourcefile>...

similarly to compiler limit settings and directories, with the same caveat that on
some systems it may be necessary to enclose #<flagname> in single quotes or
otherwise escape it, if required.)

Then, check to see if a flag is set or not (and include or exclude the
specified block of source code) by using

#ifset <flagname>

...conditional block of code...
#endif

or

#ifclear <flagname>
 ...conditional block of code...
#endif

II. A FIRST LOOK AT HUGO

29

Conditional compilation constructions may be nested up to 32 levels deep. (Note
also that compiler flags can be specified in the invocation line as #<flag
name>.)

“#if set” and “#if clear” are the long form of “#ifset” and
“#ifclear”, allowing usage of “#elseif” for code such as:

#set THIS_FLAG
#set THAT_FLAG

#if clear THIS_FLAG
#message "This will never be printed."
#elseif set THAT_FLAG
#message "This will always be printed."
#else
#message "But not this if THAT_FLAG is set."
#endif

Use “#if defined <symbol>” and “#if undefined <symbol>” to test if
objects, properties, routines, etc. have previously been defined, where <symbol>
is the name of the object, property, routine, etc. in question.

As seen above, the #message directive can be used as

#message "<text>"

to output <text> when (or if) that statement is processed during the first
compilation pass.

Including “error” or “warning” before “<text>” as in

#message error "<text>"

or

#message warning "<text>"

will force the compiler to issue an error or warning, respectively, as it prints
“<text>”.

Note: It’s worth pointing out that all of the text printed in the above

#if/#elseif example is compile-time output, not runtime output. That
is, it’s printed only when the compiler initially compiles the source
code, not when a player plays the actual game.

THE HUGO PROGRAMMING MANUAL

30

It is also possible to include inline limit settings, such as

$<setting>=<limit>

in the same way as in the invocation line. However, an error will be issued if, for
example, an attempt is made to reset MAXOBJECTS if one or more objects have
already been defined. Any limit settings in the code of a program must be done
before the particular data type for which a new limit is being set has been used.

II. A FIRST LOOK AT HUGO

31

II.h. What Should I Be Able To Do Now?

By now you should:

� be able to look at Hugo source code and start to see the separation into

different discrete parts, such as routines;

� have a general idea about the various Hugo data types, and be able to

differentiate them in Hugo source code;

� know about different aspects of Hugo source code formatting such as

multiple lines and comments;

� know how to read an error produced by the Hugo Compiler; and

� know how to use inline compiler directives to set switches, flags,

limits, and directories.

To experiment a little, make a copy of sample.hug and call it something

like test.hug so that we can modify and use it without changing the original
sample game source code. Pick a line in the new file test.hug like:

#set DEBUG

and add some garbage letters to change it to

asdf#set DEBUG

Now, when you compile, you’ll see:

test.hug:12: Error: Unknown compiler directive:
asdf

(Depending on the contents of test.hug, the actual line number may vary.)
Once we’ve seen the effect of that, go back and remove the “asdf” from
test.hug. Next, let’s try adding the line:

$MAXOBJECTS=50

THE HUGO PROGRAMMING MANUAL

32

to the start of test.hug. Compile again, and you’ll see this time a whole bunch
of compiler errors. Most importantly are the first couple, which look something
like:

test.hug:691: Error: Maximum of 50 objects exceeded

(The other errors basically follow from the last few objects in test.hug not
getting defined, and the compiler subsequently knowing that a particular symbol
is the name of an object.)

Feel free to experiment with test.hug by adding comments, changing
lines, commenting out various objects or routines or other sections of codes, and
seeing what happens when you try to compile it and run it.

III. OBJECTS

33

III. OBJECTS

III.a. Getting To Know Your Objects

bjects are the building blocks of any Hugo program. Anything that will
be accessible to a player during the game—including items, rooms, other
characters, and even directions—will most likely be defined as an object.

The basic object definition looks like this:

object <objectname> "object name"
{
 ...
}

For example, a suitcase object might be defined as:

object mysuitcase "suitcase"
{}

The enclosing braces are needed even if the object definition has no content (yet).
The only data attached to the suitcase object are—from right to left—a name
(“suitcase”), an internal identifier (mysuitcase), and membership in the basic
object class.

The compiler assigns the object labeled <objectname> the next
sequential object number. The first-defined object is object 0; the next-defined
object is object number 1; the one after that is 2, etc. This is academic, however,
as a programmer almost never need know what object number a particular object
is—except for certain debugging situations—and can always refer to an object by
its label <objectname>. If no explicit “object name” (or name property) is
provided, the compiler automatically gives it the name “(<objectname>)”, i.e.,
<objectname> in parentheses. That is, whereas

object mysuitcase "suitcase"
{}

O

THE HUGO PROGRAMMING MANUAL

34

creates an object called “suitcase”,

object placeholder
{}

creates an object called “(placeholder)”. Usually the latter is used for system
objects or classes (see III.e Classes) that will never actually appear in a game.

Note: The compiler automatically creates an object called “display” as the last-

defined object if no other object named “display” is defined by the
program (or the library). The display object can be used to get
information about the engine’s output state and capabilities. See
section XI.a The Display Object.

III.b. The Object Tree

In order for objects to have a “physical place” in the game, i.e., to be in a
room or contained in another object or beside another object, they must occupy a
position in the object tree. The object tree is a simple map which represents the
relationships between all objects in the game. The total number of objects is held
in the global variable objects.

The “nothing” object is defined in the library as object 0 and is referred to
in code using the label nothing. This is the root of the object tree, upon which
all other objects are based.11 (And again, the name “nothing” is given to this first
object by the library.)

Note: When using the standard library routines, ensure that no objects (or

classes, to be discussed later) are defined before hugolib.h is
included. Problems will arise if the first-defined object—object 0—is
not the nothing object. Currently the library will point this out for
you as a runtime error if for some reason it’s not the case.

When referring to object numbers, this manual is generally referring to the

name given the object in the source code: i.e., <objectname>. The compiler
automatically assigns each object an object number, and refers to it whenever a
specified <objectname> is encountered.

11 It’s also no coincidence that the “nothing” object is equal in its value to 0, which also represents the empty
string “” (see II.c Data Types). The fact that these three are (value-wise, at least) identical will come in handy,
as what it means in practice is that 0/null/empty/nothing/etc. is the same in every context.

III. OBJECTS

35

Here is an example of an object tree:

nothing
|
Room
|
Table———Chair———Book———Player
| |
Bowl Bookmark
|
Spoon

A number of built-in functions can be used to read the object tree.

parent
sibling
child
youngest
elder
eldest (same as child)
younger (same as sibling)

and

children

Each function takes a single object as its argument, so that

parent(Table) = Room
parent(Bookmark) = Book
parent(Player) = Room
child(Bowl) = Spoon
child(Room) = Table
child(Chair) = 0 (“nothing”)
sibling(Table) = Chair

sibling(Player) = 0 (“nothing”)
youngest(Room) = Player
youngest(Spoon) = 0 (“nothing”)
elder(Chair) = Table
elder(Table) = 0 (“nothing”)

and

THE HUGO PROGRAMMING MANUAL

36

children(Room) = 4
children(Table) = 1
children(Chair) = 0

(In keeping with the above explanation of object numbers and <objectname>,
the functions in the first set actually return an integer number that refers to the
object <objectname>.)

To better understand how the object tree represents the physical world,
the table, the chair, the book, and the player are all in the room. The bookmark is
in the book. The bowl is on the table, and the spoon is on the bowl. The Hugo
library will assume that the player object in the example is standing; if the player
were seated, the object tree might look like:

nothing
|
Room
|
Table———Chair———Book
| | |
Bowl Player Bookmark
|
Spoon

and

child(Chair) = Player
parent(Player) = Chair
children(Chair) = 1

(Try compiling sample.hug with the -o switch in order to see the object tree for
the sample game. Or, if the DEBUG flag was set during compilation, use the
HugoFix12 command “$ot” or “$ot <object>” during play to view the
current state of the object tree during play. Compiling with the -d switch will
generate a debuggable (.HDX) version of the file—the object tree can then be
viewed directly from the debugger.)

To initially place an object in the object tree, use

in <parent>

in the object definition, or, alternatively

12 See APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER.

III. OBJECTS

37

nearby <object>

or simply

nearby

to give the object the same parent as <object> or, if <object> is not specified,
the same parent as the last-defined object. If no such specification is given (i.e., if
you don’t tell the compiler explicitly where to place the new object), the parent
object defaults to 0—the “nothing” object as defined in the library. All normal
room objects have 0 as their parent.

Therefore, the expanded basic case of an object definition is

object <objectname> "object name"
{
 in <parent object>
 ...
}

(Ensure that the opening brace ‘{’ does not come on the same line as the object
definition. Trying to do:

object <objectname> "object name" {...

is not permitted.)
The table in the example presumably had a definition like

object table "Table"
{
 in room
 ...
}

To put the suitcase object defined earlier into the empty room in shell.hug:

object mysuitcase "suitcase"
{
 in emptyroom
}

Objects can later be moved around the object tree using the move command as
in:

THE HUGO PROGRAMMING MANUAL

38

move <object> to <new parent>

which, essentially, disengages <object> from its old parent, makes the sibling
of <object> the sibling of <object>‘s elder, and moves <object> (along with
all its possessions) to the new parent.

Therefore, in the original example, the command

move bowl to player

would result in altering the object tree to this:

nothing
|
Room
|
Table———Chair——-Book———Player
 | |
 Bookmark Bowl
 |
 Spoon

There is also a command to remove an object from its position in the tree:

remove <object>

which is the same as

move <object> to 0

The object may of course be moved to any position later.
Logical tests can also be evaluated with regard to objects and children.

The structure

<object> [not] in <parent>

will be true if <object> is in <parent> (or false if not is used). In this way,
you can write a piece of code that looks something like:

if mysuitcase in bedroom
{
 "The suitcase is in the bedroom."
}
else

III. OBJECTS

39

{
print "The suitcase is not in the bedroom."

}

(We’ll cover the “if...else...” structure in IV.h Conditional Expressions and
Program Flow.)

III.c. Attributes

Attributes are essentially qualities that every object either does or doesn’t
have13. An attribute is defined as

attribute <attribute name>

Up to 128 attributes may be defined. Those defined in hugolib.h include:

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
plural for plural objects (i.e., some hats)
living if an object is a character
female if a character is female
openable if an object can be opened
open if it is open
lockable if an object can be locked
locked if it is locked
unfriendly if a character is unfriendly
light if an object is or provides light
readable if an object can be read
switchable if an object can be turned on or off
switchedon if it is on
clothing for objects that can be worn
worn if the object is being worn
mobile if the object can be rolled, etc.
enterable if an object is enterable
container if an object can hold other objects
platform if other objects can be placed on it14

13 For this reason, attributes are sometimes thought of as being “lightweight classes” in that, as can be seen
in the list of attributes, they generally categorize an object as a certain “kind” of object—although other than
flagging the object with that particular quality they have no other direct effect.

THE HUGO PROGRAMMING MANUAL

40

hidden if an object is not to be listed
quiet if container or platform is quiet (i.e., the
 initial listing of contents is suppressed)
transparent if object is not opaque
already_listed if object has been pre-listed (i.e., before a
 WhatsIn listing15)
workflag for system use
special for miscellaneous use

Some of these attributes are actually the same attribute with different

names. This is primarily just to save on the absolute number of attributes
defined and is accomplished via

attribute <attribute2> alias <attribute1>

where <attribute1> has already been defined. For example, the library
equates visited with moved (since, presumably, they will never apply to the
same object—rooms are never moved and objects are never visited), so:

attribute visited alias moved

In this case, an object which is visited is also, by default, moved, so it is expected
that attributes which are aliased will never both need to be checked under the
same circumstances. For the most part, you should never need to alias your own
attributes, although it’s helpful to know what it means since the library does it,
and you may run across it in other places.

Attributes are given to an object during its definition as follows:

object <objectname> "object name"
{
 is [not] <attribute1>, [not] <attribute2>, ...
 ...
}

Note: The not keyword in the object definition is important when using a
class instead of the basic object definition, where the class may have
predefined attributes that are undesirable for the current object.

14 The container and platform attributes are mutually exclusive. An object cannot have both attributes, since
in the library the idea of containment is one of an object being either “in” or “on” another object. There are
available classes that aren’t part of the standard library distribution that allow an object to function as both.
15 WhatsIn is a library function used to list in formatted fashion all the objects present in a location: see
APPENDIX B: THE HUGO LIBRARY.

III. OBJECTS

41

To give the suitcase object some appropriate attributes at compile-time,
expand the object definition to include

object mysuitcase "suitcase"
{
 in emptyroom
 is openable, not open
 ...
}

Even if an object was not given a particular attribute in its object

definition, it may be given that attribute at any later point in the program with
the command

<object> is [not] <attribute>

where the not keyword clears the attribute instead of setting it. For example,
when the suitcase is opened, somewhere (likely in the library), the command

mysuitcase is open

will be executed. When the suitcase is closed, the command will be:

mysuitcase is not open

Attributes can also be read using the is and is not structures and

evaluate to either true or false. In code, the expression

<object> is [not] <attribute>

returns true (1) if <object> is (or is not, if not is specified) <attribute>.
Otherwise, it returns false (0). Therefore, given the suitcase object definition:

object mysuitcase "suitcase"
{
 in emptyroom
 is openable, not open
 ...
}

the following equations hold true:

mysuitcase is openable = 1 ! or true

THE HUGO PROGRAMMING MANUAL

42

mysuitcase is open = 0 ! or false
mysuitcase is locked = 0 ! or false

III.d. Properties

Properties are considerably more complex than attributes. First, not every
object may have every property; in order for an object to have a property, it must
be specified in the object definition at the time you create the object. As well,
properties are not simple on/off flags. They are sets of valid data associated
with an object, where the values may represent almost anything, including object
numbers, dictionary addresses, integer values, and sections of executable code.

These are some valid properties as they would appear in an object
definition (using property names defined in hugolib.h)16:

nouns "tree", "bush", "shrub", "plant"

size 20

found_in livingroom, entrancehall

long_desc
{

"Exits lead north and west. A door is set
 in the southeast wall."
}

short_desc
{
 "There is a box here. It is ";
 if self is open
 print "open";
 else
 print "closed";
 print "."
}

before17
{

16 Don’t worry too much about the specifics about what this code is supposed to be doing, or about the
details of the language syntax. We’ll cover all of that in due course.
17 Just for clarity: the Art routine from hugolib.h prints the appropriate article, if any, followed by the
name of the object, such as “an apple” or “a suitcase”. The Acquire routine returns true only if the first
object’s holding property plus the size property of the second object does not exceed the capacity
property of the first object (i.e., if there’s room in the first object to move the second object into it).

III. OBJECTS

43

 object DoGet
 {
 if Acquire(player, self)
 {

"You pick up ";
 print Art(self); "."

}
 else
 return false
 }
}

The nouns property contains four dictionary addresses; the size

property is a single integer value; the found_in property holds two object
numbers; and the long and short description properties are both property routines,
which instead of just containing one or more simple values stored as a data type
are actually sections of executable code attached to the object.

The before property is a special case. This complex property routine is
defined by the compiler and handled differently by the engine than a normal
property routine. In this case, the property value representing the routine
address is only returned if the global variables object and verbroutine
contain the object in question and the address of the DoGet routine, respectively.
If there is a match, the routine is executed before DoGet, which is the library
routine (in verblib.h) that normally handles the taking of objects. (There is
also a companion to before called after, which is checked after the verb
routine has been called.) See V.c Before And After Routines for further elucidation.

There will be more on property routines and complex property routines
later. For now, think of a property as simply containing one or more values of
some kind.

A property is defined similiarly to an attribute as

property <property name>

A default value may be defined for the property using

property <property name> <default value>

where <default value> is a constant or dictionary word. For objects without
a given property, attempting to find that property will result in the default value.
If no default is explicitly declared, it is 0 (or “” or the “nothing” object, whatever
is appropriate in context—since they all represent the same zero value).

The list of properties defined in hugolib.h is:

THE HUGO PROGRAMMING MANUAL

44

name the basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adjective adjective(s) for describing object
article “a”, “an”, “the”, “some”, etc.
preposition “in”, “inside”, “outside of”, etc.
pronoun appropriate for the object in question
react_before to allow reaction by an object that is not
react_after directly involved in the action
short_desc basic “X is here” description
initial_desc supersedes short_desc (or long_desc
 for locations)
long_desc detailed description
found_in in case of multiple locations (virtual,
 not physical parent objects18)
type to identify the type of object
size for holding/inventory
capacity “ “ “
holding “ “ “
reach for limiting object accessibility
list_contents for overriding normal listing
in_scope actor(s) that can access an object
parse_rank for differentiating like-named objects
exclude_from_all for interpreting “all” in player input
door_to for handling “>ENTER <object>“
n_to
ne_to
e_to
se_to
s_to
sw_to (for rooms only, where an exit leads)
w_to
nw_to
u_to
d_to
in_to
out_to
cant_go message if a direction is invalid
extra_scenery unimportant words/objects in location desc.

18 In this usage, a “physical” parent is one in the object tree. The found_in property allows you have an
object considered in a location (i.e., a room object) without it being “physically” in that room object.

III. OBJECTS

45

each_turn a routine called each turn
key_object if lockable, the proper key
when_open supersedes short_desc
when_closed “ “
ignore_response for characters
order_response “ “
contains_desc instead of basic “Inside X are...”
inv_desc for special inventory descriptions
desc_detail parenthetical detail for object listing
misc for miscellaneous use

(For a detailed description of how each property is used, see APPENDIX B: THE
HUGO LIBRARY.)

The following properties are also defined and used exclusively by the
display object:

screenwidth width of the display, in characters
screenheight height of the display, in characters
linelength width of the current text window
windowlines height of the current text window
cursor_column horizontal and vertical position of
cursor_row the cursor in the current text window
hasgraphics true if the current display is graphics-

 capable
title_caption dictionary entry giving the full proper
 name of the program (optional)

statusline_height of the last-printed status line

Property names may be aliased similarly to attributes using:

property <property2> alias <property1>

where <property1> has already been defined. The library aliases (among
others) the following:

nouns alias noun
adjectives alias adjective
prep alias preposition
pronouns alias pronoun

Whereas a simple property is expressed as

THE HUGO PROGRAMMING MANUAL

46

<object>.<property>

The number of elements to a property with more than a single value can be
found via

<object>.#<property>

and a single element is expressed as

<object>.<property> #<element number>

Note: <object>.<property> is simply the shortened version of
<object>.<property> #1.

To add some properties to the suitcase object, expand the object definition

to:

object mysuitcase "big green suitcase"
{
 in emptyroom ! done earlier
 is openable, not open !

 nouns "suitcase", "case", "luggage"
 adjective "big", "green", "suit"
 article "a"
 size 25
 capacity 100
}

Based on the parser’s rules for object identification, the suitcase object may

now be referred to by the player as “big green suitcase”, “big case”, or “green
suitcase” among other combinations. Even “big green” and “suit” may be valid,
provided that these don’t also refer to other objects within valid scope such as “a
big green apple” or “your suit jacket”.

The basic form for identification by the parser is

<adjective 1> <adj. 2> <adj. 3>...<adj. n> <noun>

where any subset of these elements is allowable. However, the noun must come
last, and only one noun is recognized, so that

<noun> <noun>

III. OBJECTS

47

and

<noun> <adjective>

as in “luggage case” and “suitcase green” are not recognized.
One occasional source of befuddling code that doesn’t behave the way the

programmer intended is not allowing enough slots for a property on a given
object. That is, if an object is originally defined with the property

found_in kitchen

and later, the program tries to set

<object>.found_in #2 = livingroom

in order to make the object available in both the kitchen and the living room, it
will have no substantial effect. That is, there will be no space initialized in
<object>‘s property table for a second value under found_in. Trying to read
<object>.found_in #2 will return a value of 0—a non-existent property—not
the number of the livingroom object.

To overcome this, if it is known that eventually a second (or third, or
fourth, or ninth) value is going to be set—even if only one value is defined at the
outset—use

found_in kitchen, 0[, 0, 0,...]

in the object definition. (A useful shortcut for initializing multiple zero values is
to use

found_in #4

instead of

found_in 0, 0, 0, 0

where #n initializes n zero values in the object definition.)
As might be expected, combinations of properties are read left-to-right, so

that

location.n_to.name

THE HUGO PROGRAMMING MANUAL

48

is understood as

(location.n_to).name

which is, in other words, the name property of the object stored in
location.n_to.

III.e. Classes

Classes are objects that are specifically intended to be used as prototypes
for one or more similar objects. They’re extremely useful for when you want to
create a number of objects that will all share certain basic characteristics. Here is
how a class is defined:

class <classname> ["<optional name>"]
{
 ...
}

with the body of the definition being the same as that for an object definition,
where the properties and attributes defined are to be the same for all members of
the class.

For example:

class box
{
 noun "box"
 long_desc

 "It looks like a regular old box."
 is openable, not open
}

box largebox "large box"
{
 article "a"
 adjectives "big", "large"
 is open
}

box greenbox "green box"
{
 article "a"
 adjective "green"
 long_desc

III. OBJECTS

49

 "It looks like a regular old box,
only green."

}

(Beginning the long_desc property routine on the line below the property
name is understood by the compiler as:

 long_desc
 {
 "It looks like a regular old box,

only green."
 }

Since the property is only one line—a single line of text to print—the braces are
unnecessary.)

The definition of an object derived from a particular class is begun with
the name of the prototype object instead of object. All properties and
attributes of the class are inherited (except for its position in the object tree),
unless they have been explicitly defined in the new object (in which case they
take precedence over any defaults defined in the class).

That is, although the box class is defined without the open attribute, the
largebox object will begin the game as open, since this is in the largebox
definition. It will begin the game as openable, as well, as this is inherited from
the box class.

And while the largebox object will have the long_desc of the box class,
the greenbox object replaces the default property routine with a new
description. (An exception to this is an “$additive” property, to be discussed
later, where new properties are added to those of previous classes.)

It is also possible to define an object using a previous object as a class even
though the previous object was not explicitly defined as a class (using the class
keyword). Therefore,

largebox largeredbox "large red box"
{
 adjectives "big", "large", "red"
}

is perfectly valid. We created what amounts to a “copy” of largebox, with a
different name (“large red box” this time) and a different set of adjectives to refer
to it.

Occasionally, it may be necessary to have an object or class inherit from
more than one previously defined class. This can be done using the “inherits”
instruction.

THE HUGO PROGRAMMING MANUAL

50

<class1> <objectname> "name"
{
 inherits <class2>[, <class3>,...]
 ...
}

or even

object <objectname> "name"
{
 inherits <class1>, <class2>[, <class3>,...]
 ...
}

The precedence of inheritance is in the order of occurrence. In either example,
the object inherits its properties and attributes first from <class1>, then from
<class2>, and so on.

The Hugo Object Library (objlib.h) contains a number of useful class
definitions for things like rooms, characters, scenery, vehicles, etc. Sometimes,
however, it may be desirable to use a different definition for, say, the room class
while keeping all the others in the Object Library.

Instead of actually editing objlib.h19, use:

replace <class> ["<optional name>"]
{
 (...completely new object definition...)
}

where <class> is the name of a previously defined object or class, such as
“room”. All subsequent references to <class> will use this object instead of the
previously defined one. (Note that this means that the replacement must come
before20 any uses of the class as the parent class for other objects.)

19 Editing the library files is generally not recommended, and not only because you’ll have to re-apply your
changes if you update to a newer release of the library. If you absolutely must change one of the library
files, make a copy first.
20 In terms of order-of-inclusion.

III. OBJECTS

51

III.f. What Should I Be Able To Do Now?

By now you should:

� be able to create simple objects and add them to an existing game—

whether an empty game based on shell.hug or a copy of
sample.hug complete with existing objects and locations;

� experiment by adding new objects, giving them different names and

starting locations as well as nouns and adjectives to describe them,
assigning new property values or modifying existing ones, setting
different attributes, etc.;

� have a basic understanding of how the object tree works in terms of

how objects are arranged within the physical world of the game,
including rooms or locations, objects within those locations, and
objects within other objects.

THE HUGO PROGRAMMING MANUAL

52

IV. HUGO PROGRAMMING

IV.a. Variables

hat is a variable, exactly? Let’s start with the difference between a
constant value and a variable value. The number 6 is a constant: we
can’t change it. We can’t tell the program: “In this particular

circumstance, let’s treat this 6 like it was actually 21.” Consider a situation,
however, where we may want to record a particular value at one point in order
to refer to it later. In other words, we may want to use a value that we won’t
know at the time we write the code that will be using it.

Here’s a piece of code that, as we’ll see shortly, prints a single line of
output with a number in the middle:

print "The temperature is "; number temp; " degrees."

That statement may print

The temperature is 10 degrees.

or

The temperature is –9 degrees.

or any other similar variation depending on what the variable temp happens to
be equal to at the time.21

Hugo supports two kinds of variables: global and local. Either type simply
holds an integer value, so a variable can hold a simple value, an object number, a
dictionary address, a routine address, or any other standard Hugo data type
through an assignment such as:

21 Those readers who weren’t already aware of variables and their usage may at this point be starting to
have high-school algebra flashbacks. That’s because we’re talking about the same concept—but, promise,
no one is going to be asked to solve any quadratic equations.

W

IV. HUGO PROGRAMMING

53

 a = 1
 nextobj = parent(obj)
 temp_word = "the"

Global variables are visible throughout the program. They must be

defined similarly to properties and attributes as

global <global variable name>[= <initial value>]

Local variables, on the other hand, are recognized only within the routine in
which they are defined. They are defined using

local <local variable name>[= <initial value>]

Global variables must of course have a unique name, different from that of any
other data object; local variables, on the other hand, may share the names of local
variables in other routines.

In either case, global or local, the default initial value is 0 if no other value
is given. For example,

global time_of_day = 1100

is equal to 1100 when the program is run, and is visible at any point in the
program, by any object or routine. On the other hand, the variables

local a, max = 100, t

are visible only within the block of code where they are defined, and are
initialized to 0, 100, and 0, respectively, each time that section of code (be it a
routine, property routine, event, etc.) is run.

The compiler defines a set of engine globals: global variables that are
referenced directly by the engine, but which may otherwise be treated like any
other global variables. These are:

object direct object of an action
xobject indirect object
self self-referential object
words total number of words in command
player the player object
actor the player, or character obj. (for scripts)
verbroutine specified by the command
location location of the player object

THE HUGO PROGRAMMING MANUAL

54

endflag if not false (0), run EndGame routine
prompt for input; default is “>“
objects the total number of objects
system_status after certain operations

The object, xobject, and verbroutine globals are set up by the

engine depending on what command is entered by the player. The self global
is undefined except when an object is being referenced (as in a property routine
or event). In that case, it is set to the number of that object. The player variable
holds the number of the object that the player is controlling; the endflag
variable must be 0 unless something has occurred to end the game; and the
prompt variable represents the dictionary word appearing at the start of an
input line (which most programs set to “>” by convention).

The objects variable can be set by the program, but to no useful effect.
The engine will reset it to the “real” value whenever referenced. (All object
numbers range from 0 to the value of objects.) The system_status variable
may be read (after a resource operation or a system call; see the relevant
sections for an explanation of these functions) to check for an error value. See the
section on “Resources” for possible return values.

Note: Setting endflag to a non-zero value forces an immediate break from

the game loop. Statements following the endflag assignment even in
the same function are not executed; control is passed directly to the
engine, which calls the EndGame routine.

IV.b. Constants

Constants are simply labels that represent a non-modifiable value.

constant FIRST_NAME "John"
constant LAST_NAME "Smith"

(Note the lack of an ‘=’ sign between, for example, FIRST_NAME and “John”.)

print LAST_NAME; ", "; FIRST_NAME

results in:

Smith, John

IV. HUGO PROGRAMMING

55

Constants can, like any other Hugo data type, be integers, dictionary entries,
object numbers, etc.

It is not absolutely necessary that a constant be given a definite value if the
constant is to be used as some sort of flag or marker, etc. Therefore,

constant THIS_RESULT
constant THAT_RESULT

will have unique values from each other, as well as from any other constant
defined without a specific value.

Sometimes it may be useful to enumerate a series of constants in sequence.
Instead of defining them all individually, it is possible to use:

enumerate start = 1
{
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
}

giving:

MONDAY = 1, TUESDAY = 2, WEDNESDAY = 3,
THURSDAY = 4, FRIDAY = 5

The start value is optional. If omitted, it is 0. Also, it is possible to change the
current value at any point (therefore also affecting all following values).

enumerate
{
 A, B, C = 5, D, E
}

giving:

A = 0, B = 1, C = 5, D = 6, E = 7.

Finally, it is possible to alter the step value of the enumeration using the step
keyword followed by +n, -n, *n, or /n, where n is a constant integer value. To
start with 1 and count by multiples of two:

enumerate step *2
{
 A = 1, B, C, D
}

THE HUGO PROGRAMMING MANUAL

56

giving:

A = 1, B = 2, C = 4, D = 8.

Enumeration of global variables is also possible, using the globals

specifier, as in:

enumerate globals
{
 <global1>, <global2>,...
}

Otherwise the specifier “constants” (as opposed to “globals”) is implied as
the default.

IV.c. Printing Text

Text can be printed—that is, output to the screen during running of a
Hugo program—using two different methods. The first is the basic print
command, the simplest form of which is

print "<string>"

where <string> consists of a series of alphanumeric characters and

punctuation.
The backslash character (‘\’) is handled specially. It modifies how the

character following it in a string is treated.22

\" inserts quotation marks
\\ insert a literal backslash character
_ insert a forced space, overriding left-justification for the rest of the

string
\n insert a forced newline

As usual, a single ‘\’ at the end of a line signals that the line continues

with the following line.

Examples:

22 These formatting combinations are valid for printing only; they are not treated as literal characters, as in,
for example, expressions involving dictionary entries. Note also that (unlike in languages such as C)
formatting sequences such as “\n” are treated as two characters in a string.

IV. HUGO PROGRAMMING

57

print "\"Hello!\""

"Hello!"

print "Print a...\n...newline"

Print a...
...newline

print "One\\two\\three"

One\two\three

print " Left-justified"
print "_ Not left-justified"

Left-justified
 Not left-justified

print "This is a \
 single line."

This is a single line.

(Although

print "This is a
 single line."

will produce the same result, since the line break occurs within quotation marks.)
After each of the above print commands, a newline is printed. To avoid

this, append a semicolon (‘;’) to the end of the print statement.

print "This is a ";
print "single line."

This is a single line.

Print statements may also contain data types, or a combination of data types and
strings. The command

print "The "; object.name; " is closed."

THE HUGO PROGRAMMING MANUAL

58

will print the word located at the dictionary address specified by object.name,
so that if object.name points to the word “box”, the resulting output would be:

The box is closed.

To capitalize the first letter of the specified word, use the capital modifier.

print "The "; capital object.name; " is closed."

The Box is closed.

To print the data type as a value instead of referencing the dictionary, use the
number modifier. For example, if the variable time holds the value 5,

print "There are "; number time; " seconds remaining."

There are 5 seconds remaining.

If number were not used, the engine would try to find a word at the dictionary
address 5, and the result will likely be garbage.

Mainly for debugging purposes, the modifier hex prints the data type as a
hexadecimal number instead of a decimal one. If the variable val equals 127,

print number val; " is "; hex val; " in hexadecimal."

127 is 7F in hexadecimal.

The second way to print text is from the text bank, from which—if

memory is in short supply—sections are loaded from disk only when they are
needed by the program. This method is provided so that lengthy blocks of text—
such as description and narration—do not take up valuable space if memory is
limited. The command consists simply of a quoted string without any preceding
statement.

"This string would be written to disk."

This string would be written to disk.

or

"So would this one ";
"and this one."

IV. HUGO PROGRAMMING

59

So would this one and this one.

Notice that a semicolon at the end of the statement still overrides the

newline. The in-string formatting combinations are still usable with these print
statements, but since each statement is a single line, data types and other
modifiers may not be compounded. Because of that,

"\"Hello,\"" he said."

will write

“Hello,” he said.

to the .HEX file text bank, but

"There are "; number time_left; " seconds remaining."

is illegal.
The color of text may be changed using the color command (also valid

with the U.K. spelling colour). The format is

color <foreground>[, <background>[, <input color>]]

where the background color is not necessary. If no background color is specified,
the current one is assumed). The input color is also not necessary—this refers to
the color of player input and, if not given, is the same as the foreground color.

The standard color set with corresponding values and constant labels
(defined in hugolib.h) is:

 COLOR VALUE LABEL
 Black 0 BLACK
 Blue 1 BLUE
 Green 2 GREEN
 Cyan 3 CYAN
 Red 4 RED
 Magenta 5 MAGENTA
 Brown 6 BROWN
 White 7 WHITE
 Dark gray 8 DARK_GRAY
 Light blue 9 LIGHT_BLUE
 Light green 10 LIGHT_GREEN
 Light cyan 11 LIGHT_CYAN

THE HUGO PROGRAMMING MANUAL

60

 Light red 12 LIGHT_RED
 Light magenta 13 LIGHT_MAGENTA
 Yellow 14 YELLOW
 Bright white 15 BRIGHT_WHITE
 Default foreground 16 DEF_FOREGROUND
 Default background 17 DEF_BACKGROUND
 Default statusline (fore) 18 DEF_SL_FOREGROUND
 Default statusline (back) 19 DEF_SL_BACKGROUND
 Match foreground 20 MATCH_FOREGROUND

(Since the labels are defined in hugolib.h, when using the library, it is never
necessary to refer to a color by its numerical value.)

It is expected that, regardless of the system, any color will print visibly on
any other color. Video technology and shortcomings of the visible light
spectrum conspire to foil this plan, however, it is suggested for practicality that
white (and less frequently bright while) be used for most text-printing. Blue and
black are fairly standard background colors for light-colored (such as white)
text—this is a common combination for default text (as is dark text, such as black,
on a white background). A game author can use the DEF_FOREGROUND,
DEF_BACKGROUND, DEF_SL_FOREGROUND, and DEF_SL_BACKGROUND colors
(as is done in sample.hug and is the default in shell.hug) since this uses the
colors supplied by the Hugo Engine, allowing the user to change colors to his or
her liking if the port supports that capability.

Magenta printing on a cyan background is accomplished by

color MAGENTA, CYAN

or

color 5, 3 ! if not using HUGOLIB.H

A current line can be filled—with blank spaces in the current color—to a
specified column (essentially a tab stop) using the “print to...” structure as
follows:

print "Time:"; to 40; "Date:"

where the value following to does not exceed the maximum line length in the
engine global linelength.

The resulting output will be something like:

Time: Date:

IV. HUGO PROGRAMMING

61

Text can be specifically located using the locate command via

locate <column>, <row>

where

locate 1, 1

places text output at the top left corner of the current text window. Neither
<column> nor <row> may exceed the current window boundaries—the engine
will automatically constrain them as necessary.

IV.d. More Formatting Sequences

As listed above, the following are valid printing sequences that may be
embedded in printed strings:

\" quotation marks
\\ a literal backslash character
_ a forced space, overriding left-justification for the rest of the string
\n a newline

The next set of formatting sequences control the appearance of printed

text by turning on and off boldface, italic, proportional, and underlined printing.
Not all computers and operating systems are able to provide all types of printed
output; however, the engine can be relied upon to properly process any
formatting—i.e., proportionally printed text will still look fine even on a system
that has only a fixed-width font, such as a Unix text terminal or DOS output
(although, of course, it won’t be proportionally spaced).

\B boldface on
\b boldface off
\I italics on
\i italics off
\P proportional printing on
\p proportional printing off
\U underlining on
\u underlining off

A statement like the following:

THE HUGO PROGRAMMING MANUAL

62

"A \Bbold string with some \Iitalics\i and
\Uunderline\b thrown in.\u"

will result in output like:

A bold s t r ing wi th some i ta l ics and under l ine thrown
in.

Print style can also be changed using the Font routine in hugolib.h, so

that in

Font()

the can be one or more of:

BOLD_ON BOLD_OFF

ITALICS_ON ITALICS_OFF

UNDERLINE_ON UNDERLINE_OFF

and can subsequently be used alone or in combination such as:

Font(BOLD_ON | ITALICS_ON | PROP_OFF)

It’s preferable to rely on the Font function and the various font constants

instead of embedding multiple font-change formatting sequences because if for
no other reason than it being clearer to understand when reading the source
code.

Special characters can also be printed via formatting sequences. Note that
these characters are contained in the Latin-1 character set; if a particular system is
incapable of displaying it, it will display the normal-ASCII equivalent. (The
following examples, appearing in parentheses, may not display properly on all
computers and printers.)

\` accent grave followed by a letter
 e.g. “\`a” will print an ‘a’ with an accent grave (à)

\’ accent acute followed by a letter
 e.g. “\’E” will print an ‘E’ with an accent acute (É)

\~ tilde followed by a letter

IV. HUGO PROGRAMMING

63

 e.g. “\~n” will print an ‘n’ with a tilde (ñ)

\^ circumflex followed by a letter
 e.g. “\^i” will print an ‘i’ with a circumflex (î)

\: umlaut followed by a letter
 e.g. “\:u” will print a ‘u’ with an umlaut (ü)

\, cedilla followed by c or C
 e.g. “\,c” will print a ‘c’ with a cedilla (ç)

\< or \> Spanish quotation marks (« »)
\! upside-down exclamation point (¡)
\? upside-down question mark (¿)
\ae ae ligature (æ)
\AE AE ligature (Æ)
\c cents symbol (¢)
\L British pound (£)
\Y Japanese Yen (¥)

\#xxx any ASCII or Latin-1 character where xxx represents the

three-digit ASCII number (or Latin-1 code) of the character
to be printed, e.g. “\#065” will print an ‘A’ (ASCII 65)
(Care should be taken when using codes other than those for
which special character support explicitly exists, as not all
systems or fonts may display all desired non-ASCII
characters.)

Note: It is possible to embed Latin-1 characters directly into printed text in

source code using a text editor that allows it—but ensure that the non-
ASCII characters are indeed Latin-1. Using non-Latin-1 fonts (such as
Mac-encoded fonts or other encodings) will result in the wrong
character(s) being printed on various platforms. Also note that
platforms which cannot display Latin-1 characters (including some
Unix-based terminal displays, DOS windows, etc.) may not have proper
Latin-1-to-ASCII translation in order to decode Latin-1 characters
embedded directly in printed text. For this reason, or if you’re not
positive whether your font encoding is Latin-1, stick to using the
special-character sequences described above, which are guaranteed to
work properly across platforms.

THE HUGO PROGRAMMING MANUAL

64

IV.e. Operators and Assignments

Hugo allows use of all standard mathematical operators:

* multiplication
/ integer division

which take precedence23 over:

+ addition
- subtraction

Comparisons are also valid as operators, returning Boolean true or false (1 or 0)
so that

2 + (n = 1)
5 - (n > 1)

evaluate respectively to 3 and 5 if n is 1, and 2 and 4 if n is 2 or greater. Valid
relational operators are

= equal to
~= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Logical operators (and, or, and not) are also allowed.

(x and y) or (a and b)
(j + 5) and not ObjectisLight(k)

Using and results in true (1) if both values are non-zero. Using or results in true
if either is non-zero; not results in true only if the following value is zero.

1 and 1 = 1
1 and 0 = 0
5 and 3 = 1
0 and 9 = 0
0 and 169 and 1 = 0

23 Hugo follows standard order of operations for operator precedence.

IV. HUGO PROGRAMMING

65

1 and 12 and 1233 = 1

1 or 1 = 1
35 or 0 = 1
0 or 0 = 0

not 0 = 1
not 1 = 0
not 8 = 0
not (8 and 0) = 1

1 and 7 or (14 and not 0) = 1
(0 or not 1) and 3 = 0

Additionally, bitwise operators are provided:

1 & 1 = 1 (Bitwise and)
1 & 0 = 0

1 | 0 = 1 (Bitwise or)
1 | 1 = 1

~0 = -1 (Bitwise not/inverse)

(As mentioned previously, a detailed explanation of bitwise operations is a little
beyond the scope of this manual; programmers may occasionally use the ‘|’
operator to combine bitmask-type parameters for certain library functions such
as fonts and list-formats, but only advanced users should have to worry about
employing bitwise operators to any great extent in practical programming.)

Any Hugo data type can appear in an expression, including routines,
attribute tests, properties, constants, and variables. Standard mathematical rules
for order of significance in evaluating an expression apply, so that parenthetical
sub-expressions are evaluated first, followed by multiplication and division,
followed by addition and subtraction.

Some sample combinations are:

10 + object.size ! integer constant and

! property

object is openable + 1 ! attribute test and constant

FindLight(location) + a ! return value and variable

THE HUGO PROGRAMMING MANUAL

66

1 and object is light ! constant, logical test,
 ! and attribute

Expressions can be evaluated and assigned to either a variable, a property,

or an array element.

<variable> = <expression>

<object>.<property> [#<element>] = <expression>

<array>[<element>] = <expression>

IV.f. Efficient Operators

Something like

number_of_items = number_of_items + 1
if number_of_items > 10
{
 print "Too many items!"
}

can be coded more simply as

if ++number_of_items > 10
{
 print "Too many items!"
}

The ‘++’ operator increases the following variable by one before returning the
value of the variable. Similarly, ‘--’ can precede a variable to decrease the value
by one before returning it. Since these operators act before the value is returned,
they are called “pre-increment” and “pre-decrement”.

If ‘++’ or ‘--’ comes after a variable, the value of the variable is returned
and then the value is increased or decreased, respectively. In this usage, the
operators are called “post-increment” and “post-decrement”.

For example,

while ++i < 5 ! pre-increment
{
 print number i; " ";
}

IV. HUGO PROGRAMMING

67

will output:

1 2 3 4

But

while i++ < 5 ! post-increment
{
 print number i; " ";
}

will output:

1 2 3 4 5

Since in the second example, the variable is increased before getting the value,
while in the second example, it is increased after checking it.

It is also possible to use the operators ‘+=’, ‘-=’, ‘*=’, ‘/=’, ‘&=’, and ‘|=’.
These can also be used to modify a variable at the same time its value is being
checked. All of these, however, operate before the value in question is returned.

x = 5
y = 10
print "x = "; number (x*=y); ", y = "; number y

Result:

x = 50, y = 10

When the compiler is processing any of the above lines, the efficient operator
takes precedence over a normal (i.e., single-character) operator. For example,

x = y + ++z

is actually compiled as

x = y++ + z

since the ‘++’ is parsed first. To properly code this line with a pre-increment on
the z variable instead of a post-increment on y, use parentheses to order the
various operators:

x = y + (++z)

THE HUGO PROGRAMMING MANUAL

68

IV.g. Arrays And Strings

Prior to this point, little has been said about arrays. Arrays are sets of
values that share a common name, and where the elements are referenced by
number. Arrays are defined by

array <arrayname> [<array size>]

where <array size> must be a numerical constant.
An array definition reserves a block of memory of <array size>24, so

that, for example,

array test_array[10]

reserves ten possible storage elements for the array.
Keep in mind that <array size> determines the size of the array, not

the maximum element number. Elements begin counting at 0, so that
test_array, with 10 elements, has members numbered from 0 to 9. Trying to
access test_array[10] or higher will return a zero value (and, if running in
the debugger, cause a debugger warning). Trying to assign it by mistake will
have no effect.

To prevent such out-of-bounds array reading/writing, an array’s length
may be read via:

array[]

where no element number is specified. Using the above example,

print number test_array[]

would result in “10”.
Array elements can be assigned more than one at a time, as in

<arrayname> = <element1>, <element2>, ...

where <element1> and <element2> can be expressions or single values.
Elements need not be all of the same type, either, so that

test_array[0] = (10+5), "Hello!", FindLight(location)

24 Measured in 16-bit words, or 2 bytes per element.

IV. HUGO PROGRAMMING

69

is perfectly legal (although perhaps not perfectly useful). More common is a
usage like

names[0] = "Ned", "Sue", "Bob", "Maria"

or

test_array[2] = 5, 4, 3, 2, 1

The array can then be accessed by

print names[0]; " and "; names[3]

Ned and Maria

or

b = test_array[3] + test_array[5]

which would set the variable b to 4 + 2, or 6.
Because array space is statically allocated by the compiler, all arrays must

be declared at the global level. Local arrays are illegal, as are entire arrays
passed as arguments25. However, single elements of arrays are valid arguments.

It is, however, possible to pass an array address as an argument, and the
routine can then access the elements of the array using the array modifier. For
example, if items is an array containing:

items[0] = "apples"
items[1] = "oranges"
items[2] = "socks"

The following:

routine Test(v)
{
 print array v[2]
}

can be called using

Test(items)

25 “Arguments” are simply parameters passed to a routine at calling time. See V.a Routines.

THE HUGO PROGRAMMING MANUAL

70

to produce the output

socks

even though v is an argument (i.e., local variable), and technically not an array.
The line

print array v[2]

tells the engine to treat v as an array address, so that we can follow it with
[<element number>].

Arrays also allow a Hugo programmer to implement what are known as
string arrays, which are textual strings, somewhat similar but not identical to
dictionary entries. Most significantly, since they are arrays, string arrays may be
altered at runtime by a program (unlike dictionary entries, which are hard-coded
into the program’s dictionary). A string array is an array containing a series of
character values, terminated by a zero value.

If the array apple_array holds the string array “apple”, the actual
elements of apple_array look like:

apple_array[0] = 'a'
apple_array[1] = 'p'
apple_array[2] = 'p'
apple_array[3] = 'l'
apple_array[4] = 'e'
apple_array[5] = 0

Hugo provides a handy way to store a dictionary entry in an array as a

series of characters using the string built-in function:

string(<array address>, <dict. entry>, <max. length>)

For example,

string(a, word[1], 10)

will store up to 10 characters from word[1] into the array a.

Note: It is expected in the preceding example that a would have at least 11
elements, since string expects to store a terminating 0 after the string
itself.

IV. HUGO PROGRAMMING

71

It’s not necessary to look at the return value from string, but it can be
useful, since it lets us know how many characters were written to the string. For
example,

x = string(a, "microscopic", 10)

will store up to 10 characters of “microscopic” in the array a, and return the
length of the stored string to the variable x.26

The Hugo Library defines the functions StringCopy, StringEqual,
StringLength, and StringPrint, which are extremely useful when dealing
with string arrays.

StringCopy copies one string array to another array.

StringCopy(<new array>, <old array>[, <length>])

For example,

StringCopy(a, b)

copies the contents of b to a, while

StringCopy(a, b, 5)

copies only up to 5 characters of b to a.

x = StringEqual(<string1>, <string2>)
x = StringCompare(<string1>, <string2>)

StringEqual returns true only if the two specified string arrays are

identical. StringCompare returns 1 if <string1> is lexically greater than
<string2>, -1 if <string1> is lexically less than <string2>, and 0 if the two
strings are identical.

StringLength returns the length of a string array, as in:

len = StringLength(a)

and StringPrint prints a string array (or part of it).

StringPrint(<array address>[, <start>, <end>])

26 (The built-in engine variables ‘parse$’ and ‘serial$’ may be used in place of the dictionary entry
address; see VII.b The Parser for a description.)

THE HUGO PROGRAMMING MANUAL

72

For example, if the array a contains “presto”,

StringPrint(a)

will print “presto”, but

StringPrint(a, 1, 4)

will print “res”. (The <start> parameter in the first example defaults to 0, not
1—remember that the first numbered element in an array is 0.)

An interesting side-effect of being able to pass array addresses as
arguments is that it is possible to “cheat” the address, so that, for example,

StringCopy(a, b+2)

will copy b to a, beginning with the third letter of b (since the first letter of b is
b[0]).

It should also be kept in mind that string arrays and dictionary entries are
two entirely separate animals, and that comparing them directly is using
StringCompare is not possible. That is, while a dictionary entry is a simple
value representing an address, a string array is a series of values each
representing a character in the string.

The library provides the following to overcome this:

StringDictCompare(<array>, <dict. entry>)

which returns the same values (1, -1, 0) as StringCompare, depending on
whether the string array is lexically greater than, less than, or equal to the
dictionary entry.

There is also a complement to string: the dict built-in function, that
dynamically creates a new dictionary entry at runtime. Its syntax is:

x = dict(<array>, <maxlen>)
x = dict(parse$, <maxlen>)

where the contents of <array> or parse$ are written into the dictionary, to a
maximum of <maxlen> characters, and the address of the new word is returned.

However, since this requires extending the actual length of the dictionary
table in the game file, it is necessary to provide for this during compilation.
Inserting

$MAXDICTEXTEND=<number>

IV. HUGO PROGRAMMING

73

at the start of the source file will write a buffer of <number> empty bytes at the
end of the dictionary. (MAXDICTEXTEND is, by default, 0.)

Dynamic dictionary extension is used primarily in situations where the
player may be able to, for example, name an object, then refer to that object by
the new name, or whenever the game needs to introduce new words into the
dictionary that are not known at compile-time. However, a guideline for
programmers is that there should be a limit to how many new words the
program or player can cause to be created, so that the total length of the new
entries never exceeds <number>, keeping in mind that the length of an entry is
the number of characters plus one (the byte representing the actual length). That
is, the word “test” requires 5 bytes.)

IV.h. Conditional Expressions and Program Flow

Program flow can be controlled using a variety of constructions, each of
which is built around an expression that evaluates to false (zero) or non-false
(non-zero).

The most basic of these is the if statement.

if <expression>
 {...conditional code block...}

The enclosing braces are not necessary if the code block is a single line. Note also
that the conditional block may begin (and even end) on the same line as the if
statement provided that braces are used.

if <expression>
 ...single line...

if <expression> {...conditional code block...}

If braces are not used for a single line, the compiler automatically inserts

them, although special care must be taken when constructing a block of code
nesting several single-line conditionals. While

if <expression1>
 if <expression2>
 ...conditional code block...

may be properly interpreted, other constructions (particularly those involving
some of the more complex program-flow concepts we’re about to get into) may

THE HUGO PROGRAMMING MANUAL

74

not be. Therefore, it’s always best to be as clear as possible about your intent,
more along the lines of:

if <expression1>
{
 if <expression2>
 ...conditional code block...
}

More elaborate uses of if involve the use of elseif and else.

if <expression1>
 ...first conditional code block...
elseif <expression2>
 ...second conditional code block...
elseif <expression3>
 ...third conditional code block...
...
else
 ...default code block...

In this case, the engine evaluates each expression until it finds one that is true,
and then executes it. Control then passes to the next non-if/elseif/else
statement following the conditional construction. If no true expression is found,
the default code block is executed. If, for example, <expression1> evaluates to
a non-false value, then none of the following expressions are tested.

Of course, all three (if, elseif, and else) need not be used every time,
and simple if-elseif and if-else combinations are perfectly valid.

In certain cases, the if statement may not lend itself perfectly to clarity,
and the select-case construction may be more appropriate. The general form
is:

select <var>
 case <value1>[, <value2>, ...]
 ...first conditional code block...
 case <value3>[, <value4>, ...]
 ...second conditional code block...
 ...
 case else
 ..default code block...27

27 C programmers are used to cases that “fall through” to the next case unless explicitly told not to do so;
such is not the case with Hugo.

IV. HUGO PROGRAMMING

75

In this case, the evaluation is essentially

if <var> = <value1> [or <var> = <value2> ...]

There is no limit on the number of values (separated by commas) that can appear
on a line following case28. The same rules for bracing multiple-line code blocks
apply as with if (as well as for every other type of conditional block).

Basic loops may be coded using while and do-while.

while <expression>
 ...conditional code block...

do
 ...conditional code block...
while <expression>

Each of these executes the conditional code block as long as <expression>
holds true. It is assumed that the code block somehow alters <expression> so
that at some point it will become false; otherwise the loop will execute endlessly.

while x <= 10
{

x = x + 1
 print "x is "; number x
}

do
{

x = x + 1
 print "x is "; number x
}
while x <= 10

The only difference between the two is that if <expression> is false at the
outset, the while code block will never run. The do-while code block will run
at least once even if <expression> is false at the outset.

It is also important to recognize—with while or do-while loops—that
the expression is tested each time the loop executes. The most important side
effect of this is that if you’re doing something in the expression that has some

28 Okay, this isn’t quite true. While there isn’t an explicit limit, if you create a single ‘case’ line that runs on
forever and ever, eventually you’ll reach the point where, for buffer reasons, the compiler isn’t able to
compile it, and it will complain with an appropriate error.

THE HUGO PROGRAMMING MANUAL

76

effect—whether printing something, calling a function, or modifying some other
value—this will happen every time the expression is evaluated.

The most complex loop construction uses the for statement:

for (<assignment>; <expression>; <modifier>)
 ...conditional code block...

For example:

for (i=1; i<=15; i=i+1)
 print "i is equal to: "; number i

First, the engine executes the assignment setting “i = 1”. Next, it checks to see
if the expression holds true (if i is less than or equal to 15). If it does, it executes
the print statement and the modifying assignment that increments i. It
continues the loop until the expression tests false.

Not all elements of the for construction are necessary. For example, the
assignment may be omitted, as in

for (; i<=15; i=i+1)

and the engine will simply use the existing value of i, whatever it was before
this point. With

for (i=1;;i=i+1)

the loop will execute endlessly, unless some other means of exit is provided.
The modifying expression does not have to be an arithmetic expression as

shown above. It may be a routine that modifies a global variable, for example,
which is then tested by the for loop.

A second form of a for loop is:

for <var> in <object>
 ...conditional code block...

which loops through all the children of <object> (if any), setting the variable
<var> to the object number of each child in sequence, so that

for i in mysuitcase
 print i.name

will print the names of each object in the mysuitcase object.

IV. HUGO PROGRAMMING

77

Hugo also supports jump commands and labels. A label is simply a user-
specified token preceded by a colon (‘:’) at the beginning of a line. The label
name must be a unique token in the program.29

print "We're about to make a jump."
jump NextLine
print "This will never get printed."

:NextLine
print "But this will."

One final concept is important in program flow, and that is break. At

any point during a loop, it may be necessary to exit immediately (and probably
prematurely). The break statement passes control to the statement immediately
following the current loop. In the example:

do
{
 while <expression2>
 {
 ...
 if <expression3>
 break
 ...
 }
 ...
}
while <expression1>

the break causes the immediately running while <expression2> loop to
terminate, even if <expression2> is true. However, the external do-while
<expression1> loop continues to run.

It has been previously stated that lines ending in and or or are continued
onto the next line in the case of long conditional expressions. A second useful
provision is the ability to use a comma to separate options within a conditional
expression. As a result,

if word[1] = "one", "two", "three"

while object is open, not locked

29 The jump keyword is more or less equivalent to goto in other languages. The reason it’s different in
Hugo is mainly to encourage the use of the proper alternatives (i.e., for and while or do-while loops) in
keeping with proper programming practices. And, in the end, less jumps and labels make for far more
readable code.

THE HUGO PROGRAMMING MANUAL

78

if box not in livingroom, garage

if a ~= 1, 2, 3

are interpreted as:

if word[1]="one" or word[1]="two" or word[1]="three"

while object is open and object is not locked

if box not in livingroom and box not in garage

if a ~= 1 and a ~= 1 and a ~= 3

respectively.
Note that with an ‘=’ or in comparison, a comma results in an or

comparison. With ‘~=’ or an attribute comparison, the result is an and
comparison. The compiler looks after this translation for you.

IV. HUGO PROGRAMMING

79

IV.i. What Should I Be Able To Do Now?

Example: Mixing Text Styles

! Sample to print various typefaces/colors:

#include "hugolib.h"

routine main
{
 print "Text may be printed in \Bboldface\b,
 \Iitalics\i, \Uunderlined\u, or
 \Pproportional\p typefaces."

 color RED ! or color 4
 print "\nGet ready. ";
 color YELLOW ! color 14
 print "Get set. ";
 color GREEN ! color 2
 print "Go!"
}

The output will be:

Text may be printed in boldface, i t a l i cs, underlined,
or proportional typefaces.

Get ready. Get set. Go!

with “boldface”, “italics”, “underlined”, and “proportional” printed in their
respective typefaces. “Get ready”, “Get set”, and “Go!” will all appear on the
same line in three different colors.

Note that not all computers will be able to print all typefaces. The basic
Unix and MS-DOS ports, for example, use color changes instead of actual
typeface changes, and do not support proportional printing.

Example: Managing Strings

#include "hugolib.h"

routine main

THE HUGO PROGRAMMING MANUAL

80

{
 StringTests
 return
}

array s1[32]
array s2[10]
array s3[10]

routine StringTests
{
 local a, len

 a = "This is a sample string."
 len = string(s1, a, 31)
 string(s2, "Apple", 9)
 string(s3, "Tomato", 9)

 print "a = \""; a; "\""
 print "(Dictionary address: "; number a; ")"
 print "s1 contains \""; StringPrint(s1); "\""
 print "(Array address: "; number s1;
 print ", length = "; number len; ")"
 print "s2 is \""; StringPrint(s2);
 print "\", s3 is \""; StringPrint(s3); "\""

 "\nStringCompare(s1, s2) = ";
 print number StringCompare(s1, s2)
 "StringCompare(s1, s3) = ";
 print number StringCompare(s1, s3)
}

The output will be:

a = "This is a sample string."
(Dictionary address = 887)
s1 contains "This is a sample string."
(Array address = 1625, length = 24)
s2 is "Apple", s3 is "Tomato"

StringCompare(s1, s2) = 1
StringCompare(s1, s3) = -1

As is evident above, a dictionary entry does not need to be a single word; any
piece of text which is referred to by the program as a value gets entered into the
dictionary table.

IV. HUGO PROGRAMMING

81

The argument 31 in the first call to the string function allows up to 31
characters from a to be copied to s1, but since the length of a is only 24
characters, only 25 values (including the terminating 0) get copied, and the string
length of s1 is returned in len.

Since “A(pple)” is lexically less than “T(his...)”, comparing the two returns
-1. As “To(mato)” is lexically greater than “Th(is...)”, StringCompare returns 1.

THE HUGO PROGRAMMING MANUAL

82

V. ROUTINES AND EVENTS

V.a. Routines

outines are blocks of code that may be called at any point in a program. A
routine may or may not return a value, and it may or may not require a
list of parameters or arguments. (Some different uses of routines have

already been encountered in previous examples, but here is the formal
explication.) Routines are also sometimes referred to subroutines or functions, the
latter particularly when they’re returning a value, i.e., performing some function
and reporting the result.

A routine is defined as:

routine <routinename> [(<arg1>, <arg2>, ...)]
{
 ...
}

once again ensuring that the opening brace (‘{’) comes on a new line following
the routine specifier.

Note: To substitute a new routine for an existing one with the same name

(such as in a library file), define the new one using replace instead of
routine.

replace <routinename> [(<arg1>, <arg2>, ...)]

An example of a simple routine definition is:

routine TestRoutine(obj)
{
 print "The "; obj.name; " has a size of ";
 print obj.size; "."
 return obj.size
}

R

V. ROUTINES AND EVENTS

83

Where TestRoutine takes a single value as an argument, assigns it to a local
variable obj, executes a simple printing sequence, and returns the property
value: obj.size.

The return keyword exits the current routine, and returns a value if
specified. Both

return

and

return <expression>

are valid. If no expression is given, the routine returns 0. If no return
statement at all is encountered, the routine continues until the closing brace (‘}’),
then returns 0.30

Once defined, TestRoutine can be called several ways:

TestRoutine(mysuitcase)

will (assuming the mysuitcase object as been defined as previously illustrated)
print

"The big green suitcase has a size of 25."

The return value will be ignored. On the other hand,

x = TestRoutine(mysuitcase)

will print the same output, but will assign the return value of TestRoutine to
the variable x.

Now, unlike C and similar languages, Hugo does not require that routines
follow a strict prototype. Therefore, both

TestRoutine

and

TestRoutine(mysuitcase, 5)

30 Routines return 0 by default, with the exception of property routines, which we’ll discuss shortly and which
return true (or 1) by default.

THE HUGO PROGRAMMING MANUAL

84

are valid calls for the above routine. In the first case, the argument obj defaults
to 0, since no value is passed. (The parentheses are not necessary if no
arguments are passed.) In the second case, the value 5 is passed to
TestRoutine, but ignored.

Arguments are always passed by value, not by reference or address. A
local variable in one routine can never be altered by another routine. What this
means is that, for example, in the following routines:

routine TestRoutine
{
 local a

 a = 5
 Double(a)
 print number a
}

routine Double(a)
{
 a = a * 2
}

calling TestRoutine would print “5” and not “10” because the local variable a
in Double is only a copy of the variable passed to it as an argument.

These two routines would, on the other hand, print “10”:

routine TestRoutine
{
 local a

 a = 5
 a = Double(a)
 print number a
}

routine Double(a)
{
 return a * 2
}

The local a in TestRoutine is reassigned with the return value from the
Double routine.

V. ROUTINES AND EVENTS

85

An interesting side-effect of a zero (0) return value can be seen using the
print command31. Consider the The routine in hugolib.h, which prints an
object’s definite article (i.e., “the”, if appropriate), followed by the object’s name
property.

print "You open "; The(object); "."

might result in

You open the suitcase.

Note that the above print command itself really only prints

"You open "

and

"."

It is the The routine that prints

the suitcase

Since The returns 0 (the empty string, or “”), the print command is actually
displaying

"You open ", "", and "."

where the empty string (“”) is preceded on the output line by The’s printing of
“the ” (notice the trailing space) and the object name.

V.b. Property Routines

Property routines are slightly more complex than the simple routines
described so far, but follow the same basic rules. Normally, a property routine
runs when the program attempts to get the value of a property that contains a
routine.

That is, instead of having the property value:

size 10

31 Remember here that both zero (0) and the empty string “” are equal in value.

THE HUGO PROGRAMMING MANUAL

86

an object may contain the property:

size
{
 return some_value + 5
}

Trying to read object.size in either case will return an integer value,
although in the second case it is calculated by a routine.

Note: While normal routines return false (or 0) by default, property routines

return true (or 1) by default.

Here’s another example. Normally, if <object> is the current room
object, then <object>.n_to would contain the object number of the room to
the north (if there is one). The library checks <object>.n_to to see if a value
exists for it; if none does, the move is invalid.

Consider this:

n_to office

and

n_to
{

"The office door is locked."
}

or

n_to
{
 "The office door is locked. ";
 return false
}

In the first case, an attempt on the part of the player to move north would result
in parent(player) being changed to the office object. In the second case, a
custom invalid-move message would be displayed. In the third case, the custom
invalid-move message would be displayed, but then the library would continue
as if it had not found a n_to property for <object>, and it would print the
standard invalid-move message (without a newline, thanks to the semicolon):

V. ROUTINES AND EVENTS

87

"The office door is locked. You can’t go that way."

(For those wondering why the true (i.e., equal to 1) return value in the

second case doesn’t prompt a move to object number 1, the library DoGo routine
assumes that there will never be a room object numbered one, since there are all
manner of system objects that get defined first.)

Property routines may be run directly using the run command:

run <object>.<property>

If <object> does not have <property>, or if <object>.<property> is not a
routine, nothing happens. Otherwise, the property routine executes. Property
routines do not take arguments.

Remember that at any point in a program, an existing property may be
changed using

<object>.<property> = <value>

A property routine may be changed using

<object>.<property> =
{
 ...the new code for this property routine...
}

where the new routine must be enclosed in braces.
It is entirely possible to change what was once a property routine into a

simple value, or vice-versa, providing that space for the routine (and the
required number of elements) was allowed for in the original object definition.
Even if a property routine is to be assigned later in the program, the property
itself must still be defined at the outset in the original object definition. A simple

<property> 0

or

<property> {return false}

will suffice.
There is, however, one drawback to this reassignment of property values

to routines and vice-versa. A property routine is given a “length” of one value,
which is the property address. When assigning a value or set of values to a
property routine, the engine behaves as if the property was originally defined for

THE HUGO PROGRAMMING MANUAL

88

this object with only one word of data, since it has no way of knowing the
original length of the property data.

For example, if the original property specification in the object definition
was:

found_in bedroom, livingroom, garage

and at some point the following was executed:

found_in = { return basement }

then the following would not subsequently work:

found_in #3 = attic

because the engine now believes <object>.found_in to have only one
element—a routine address—attached to it.

Finally, keep in mind that whenever calling a property routine, the global
variable self is normally set to the object number. To avoid this, such as when
“borrowing” a property from another object from within a different object,
reference the property via

<object>..<property>

using ‘..’ instead of the normal property operator.

V.c. Before And After Routines

The Hugo Compiler predefines two special properties: before and
after. They are unique in that not only are they always routines, but they are
much more complex (and versatile) than a standard property routine.

Complex properties like before and after are defined with

property <property name> $complex

as in:

property before $complex
property after $complex

Here is the syntax for the before property:

V. ROUTINES AND EVENTS

89

before
{
 <usage1> <verbroutine1>[, <verbroutine2>,...]
 {
 ...
 }
 <usage2> <verbroutine3>[, <verbroutine4>,...]
 {
 ...
 }
 ...
}

(The after property is the same, substituting after for before.)
The <usage> specifier is a value against which the specified object is

matched. Most commonly, it is “object”, “xobject”, “location”, “actor”,
“parent(object)”, etc. The <verbroutine> is the name of a verb routine to
which the usage in question applies.

When the Hugo Engine goes to execute a player command, it runs a series
of tests on the various elements of the command, such as the object on which the
specified verb is to be enacted32. Know for now that when a player command is
executed, the before properties of the object (i.e., the direct object) and xobject
(i.e., the indirect object)33 are checked, then if neither has returned non-false, the
appropriate verbroutine is run. Afterward, the after properties are checked;
if neither returns non-false, a default message is normally printed by the
verbroutine. In other words, before routines typically pre-empt the execution
of a verbroutine, and after routines typically pre-empt the default response of a
verbroutine.

When the <object>.before property is checked, with the global
verbroutine set to one of the specified verbroutines in the before property,
and <usage> in that instance is “object”, then the following block of code is
executed. If no match is found, <object>.before returns false.

Here is an example applied to the mysuitcase object created previously:

before
{
 object DoEat
 {
 "You can't eat the suitcase!"
 }

32 The actual mechanics are described in VIII.g Perform.
33 In the imperative sentence “Put the book on the shelf”, the book is the direct object, and the shelf is the
indirect object.

THE HUGO PROGRAMMING MANUAL

90

}

after
{
 object DoGet
 {
 "With a vigorous effort, you pick up
 the suitcase."
 }
 xobject DoPutIn
 {
 "You put ";
 The(object)
 " into the suitcase."
 }
}

When the player tries the command “eat suitcase”, the response printed will be:

You can't eat the suitcase!

and the normal verbroutine for “eat”, the library’s DoEat verbroutine, will not
be run. When the player tries to “get the suitcase”, the library’s DoGet
verbroutine will be run (since no before property interrupts it), but instead of
the default library response (which is a simple “Taken.”), the game will print:

With a vigorous effort, you pick up the suitcase.

Finally, when the player tries to put something into the suitcase using, say, “put
the book in the suitcase”, the normal DoPutIn routine will be run, but the
custom response of the suitcase will be printed instead:

You put the book into the suitcase.

Each of these examples will return true (as property routines do by
default), thereby overriding the engine’s default operation34. In order to fool the
engine into continuing normally, as if no before or after property has been
found, return false from the property routine.

after
{
 object DoGet

34 See IX THE GAME LOOP.

V. ROUTINES AND EVENTS

91

 {
"Fine. ";

 return false
}

}

will result in:

>GET SUITCASE
Fine. Taken.

Since the after routine returns false, and the library’s default response for a
successful call to DoGet is “Taken.”

It is important to remember that, unlike other property routines, before
and after routines are also additive; i.e., a before (or after) routine defined in
an inherited class or object is not overwritten by a new property routine in the
new object. Instead, the definition for the routine is—in essence—added onto.
An additive property is defined using the $additive qualifier, as in:

property <property name> $additive <default value>

All previously inherited before/after subroutines are carried over. However,
the processing of a before/after property begins with the present object,
progressing backward through the object’s ancestry until a usage/verbroutine
match is found; once a match is made, no further preceding class inheritances are
processed (unless the property routine in question returns false).

Note: To force a before or after property routine to apply to any

verbroutine, do not explicitly specify a verbroutine.

For example:

before
{
 xobject
 {
 ...property routine...
 }
}

The specified routine will be run whenever the object in question is the xobject of
any valid input.

THE HUGO PROGRAMMING MANUAL

92

If a non-specific block occurs before any block(s) specifying verbroutines,
then the following blocks, if matched, will run as well so long as the block does
not return true. If the non-specific block comes after any other blocks, then it will
run only if no other object/verbroutine combination is matched.

A drawback of this non-specification is that all verbroutines are
matched—both verbs and xverbs35. This can be particularly undesirable in the
case of location before/after properties, where you may wish to be
circumventing any action the player tries to perform in that location, but where
the non-specific response will be triggered even for save, restore, etc. (i.e.,

To get around this, the library provides a function AnyVerb, which takes
an object as its argument and returns that object number if the current
verbroutine is not within the group of xverbs; otherwise it returns false.
Therefore, it can be used via:

before
{
 AnyVerb(location)
 {
 ...
 }
}

instead of

before
{
 location
 {
 ...
 }
}

The former will execute the conditional block of code whenever the location
global matches the current object and the current verbroutine is not an xverb.
The latter (without using AnyVerb), will run for verbs and xverbs. (The reason
for this, simply put, is that the location global always equals the location
global (of course!). But AnyVerb(location) will only equal the location
global if the verbroutine is not an xverb.)

35 Verbs are actions that the player uses to interact with the physical world of the game. Xverbs are “non-
action” verbs that generally deal with system functions, such as getting help, saving a game, etc. but don’t
otherwise affect the state of the game world See VII.a Grammar Definition.

V. ROUTINES AND EVENTS

93

V.d. Init And Main

At least two routines are typically part of every Hugo problem: Init and
Main. Init is optional but almost always implemented. If it exists, is called
once at the start of the program (as well as during a restart command). The
routine should configure all variables, objects, and arrays needed to set up the
game state and begin the game. Here’s the Init routine from shell.hug:

routine init
{

Start the counter at one turn before 0 turns, since Main will
increment it to begin the game:

 counter = -1

Set up the kind of statusline we’re going to be displaying, as well
as define the default text colors36:

 STATUSTYPE = 1 ! score/turns
 TEXTCOLOR = DEF_FOREGROUND
 BGCOLOR = DEF_BACKGROUND
 SL_TEXTCOLOR = DEF_SL_FOREGROUND
 SL_BGCOLOR = DEF_SL_BACKGROUND

Set the player prompt to the default “>”, and set the starting
foreground and background colors:

 prompt = ">"
 color TEXTCOLOR, BGCOLOR

Clear the screen before starting the game, set the font to the default
font, and print the game title (“SHELL”, in this case) and a
subtitle, followed by the BANNER constant:

 cls
 Font(BOLD_ON | DEFAULT_FONT)
 "SHELL"
 Font(BOLD_OFF)
 "An Interactive Starting Point\n"
 print BANNER

Set the player to the “you” object (from objlib.h), and set up
the starting location:

36 All of the capitalized CONSTANTS used here are defined in hugolib.h.

THE HUGO PROGRAMMING MANUAL

94

 player = you ! player initialization
 location = emptyroom
 old_location = location

Move the player to the starting location, run the library rules to
see if there’s light in the location, then describe the starting
location and flag it as visited. Also, determine the starting bulk of
whatever the player is carrying at the outset (if anything):

 move player to location
 FindLight(location)
 DescribePlace(location)
 location is visited
 CalculateHolding(player)

Finally, if we’ve defined USE_PLURAL_OBJECTS37, call the
appropriate initialization routine:

#ifset USE_PLURAL_OBJECTS
 InitPluralObjects
#endif
}

Main is called every turn. It should take care of general game

management such as moving ahead the counter, as well as running events and
scripts38. The Main routine from shell.hug is as follows:

routine main
{

The counter global gets incremented each turn, and the
statusline gets updated:

 counter = counter + 1
 PrintStatusLine

The each_turn property of the current location object gets
run. The runevents statement runs all valid events. The
RunScripts library routine runs any active scripts:

37 A constant that tells objlib.h that we’re implementing a special class of plural/identical objects for use
in the game.
38 Events and scripts are discussed next.

V. ROUTINES AND EVENTS

95

 run location.each_turn
 runevents
 RunScripts

Finally, we check to see if the player is currently engaged in
conversation with a character (if the speaking global is set) and,
if so, if the character in question has left the current location:

 if parent(speaking)~=location
 speaking = 0
}

V.e. Events

Events are useful for bringing a game to life, so that little quirks,
behaviors, and occurrences can be provided for with little difficulty or
complexity. Events are also routines, but their special characteristic is that they
may be attached to a particular object, and they are run as a group by the
runevents command. Events are defined as:

event
{
 ...Event routine...
}

for global events, and

event [in] <object>
{
 ...Event routine...
}

for events attached to a particular object. (The in is optional, but is
recommended for legibility.) If an event is attached to an object, it is run only
when that object has the same grandparent as the player object, where
“grandparent” refers to the last object before 0 (the nothing object as defined in
hugolib.h), or can otherwise be determined to be in the player’s current
location39.

Note: If the event is not a global event, the self global is set to the number of

the object to which the event is attached.

39 That is, by the FindObject routine in hugolib.h, as called by the engine.

THE HUGO PROGRAMMING MANUAL

96

V.f. What Should I Be Able To Do Now?

Example: “Borrowing” Property Routines

Consider a situation where a class provides a particular property routine.
Normally, that routine is inherited by all objects defined using that class. But
there may arise a situation where one of those objects must have a variation or
expansion on the original routine.

class food
{
 bites_left 5
 eating
 {
 self.bites_left = self.bites_left - 1
 if self.bites_left = 0
 remove self ! all gone
 }
}

food health_food
{
 eating
 {
 actor.health = actor.health + 1
 run food..eating
 }
}

(Assuming that bites_left, eating, and health are defined as properties,
with eating being called whenever a food object is eaten.)

In this case, it would be inconvenient to have to retype the entire
food.eating routine for the health_food object just because the latter must
also increase actor.health. Using ‘..’ calls food.eating with self set to
health_food, not the food class, so that food.eating affects health_food.
This also allows changes to be made to any property, attribute, or property
routine in a class, and that change will be reflected in all objects built from that
class.

V. ROUTINES AND EVENTS

97

Example: Building a (More) Complex Object

At this point, enough material has been covered to develop a
comprehensive example of a functional object that will serve as a summary of
concepts introduced so far, as well as providing instances of a number of
common properties from hugolib.h.

object woodcabinet "wooden cabinet"
{
 in emptyroom
 article "a"
 nouns "cabinet", "shelf", "shelves", \
 "furniture", "doors", "door"
 adjectives "wooden", "wood", "fine", "mahogany"

 short_desc
 "A wooden cabinet sits along one wall."
 when_open
 "An open wooden cabinet sits along

one wall."
 long_desc
 {
 "The cabinet is made of fine mahogany wood,
 hand-crafted by a master cabinetmaker. In
 front are two doors (presently ";
 if self is open
 print "open";
 else: print "closed";
 print ")."
 }
 contains_desc
 "Behind the open doors of the cabinet you
 can see"; ! note semicolon--
 ! no line feed

 key_object cabinetkey ! a cabinetkey object
 ! must also be created

 holding 0 ! starts off empty
 capacity 100

 before
 {
 object DoLookUnder
 {"Nothing there but dust."}

THE HUGO PROGRAMMING MANUAL

98

 object DoGet
 {"The cabinet is far too heavy
 to lift!"}
 }
 after
 {
 object DoLock
 {"With a twist of the key, you lock the
 cabinet up tight."}
 }

 is container, openable, not open
 is lockable, static
}

Now, for bonus points for those who have looked ahead to APPENDIX B:

THE HUGO LIBRARY to see what things like when_open, contains_desc,
and static are for, how could the cabinet be converted into, say, a secret
passage into another room?

The answer is: by adding a door_to property, such as:

door_to secondroom ! a new room object

and

is enterable

as a new attribute. The cabinet can now be entered via: “go cabinet”, “get into
cabinet”, “enter cabinet”, etc.

Example: Building a Clock Event

Suppose that there is a clock object in a room. Here is a possible event:

event in clock
{
 local minutes, hours

 hours = counter / 60
 minutes = counter - (hours * 60)

 if minutes = 0
 {
 print "The clock chimes ";

V. ROUTINES AND EVENTS

99

 select hour
 case 1: print "one";
 case 2: print "two";
 case 3: print "three";
 .
 .
 .
 case 12: print "twelve";40
 print " o'clock."
 }
}

Whenever the player and the clock are in the same room (when a runevents
command is given), the event will run.

Now, suppose the clock should be audible throughout the entire game—
i.e., in any location on the game map. Simply changing the event definition to:

event ! no object is given
{
 ...
}

will make the event a global one. (In this case, the self global is not altered.)

40 You can actually use the NumberWord routine from hugolib.h to do this a lot more efficiently.

THE HUGO PROGRAMMING MANUAL

100

VI. FUSES, DAEMONS, AND SCRIPTS

VI.a. Introduction

hile most of the previously discussed elements of programming with
Hugo (such as events) are part of the internal architecture of the Hugo
Engine, the means of running fuses, daemons, and scripts are written

entirely in the Hugo language itself and contained in the Hugo Library.

VI.b. Fuses And Daemons

A daemon is the traditional name for a recurring activity. Hugo handles
daemons as special events attached to objects that may be activated or
deactivated (i.e., moved in and out of the scope of runevents). Since the
daemon class is defined in the library, define a daemon itself using:

daemon <name>
{}

The body of the daemon definition is empty. The daemon object is only needed
to attach the daemon event to, so the daemon definition must be followed by:

event [in] <name>
{
 ...
}

Activate it by:

Activate(<name>)

which moves the specified daemon object into scope of the player. This way,
whenever a runevents command is given (as it should be in the Main routine),
the event attached to <name> will run.

W

VI. FUSES, DAEMONS, AND SCRIPTS

101

Deactivate the daemon using:

Deactivate(<name>)

which removes the daemon object from scope. (It can be seen here that a
daemon is actually a special type of object which is moved in and out of the
scope of runevents, and that it is the event attached to the daemon that actually
contains the code.)

A fuse is the traditional name for a timer—i.e., any event set to happen
after a certain period of time. The fuse itself is a slightly more complex version of
a daemon object, containing two additional properties as well as in_scope:

timer the number of turns before the fuse event runs

tick a routine that decrements timer and returns the number of

turns remaining (i.e., the value of timer)

Similarly to a daemon, define a fuse in two steps:

fuse <name>
{}

event [in] <name>
{
 ...
 if not self.tick
 {
 ...
 }
}

and turn it on or off by:

Activate(<name>, <setting>)

and

Deactivate(<name>)

where <setting> is the initial value of the timer property.
Note that it is up to the event itself to run the timer and check for its

expiration. The line

THE HUGO PROGRAMMING MANUAL

102

if not self.tick

runs the tick property—defined in the library, which is responsible for
decrementing the timer—and executes the following conditional block if
self.timer is 0.

VI.c. Scripts

Scripts are considerably more complex than fuses and daemons. The
purpose of a script (also called a character script) is to allow an object—usually a
character—to follow a sequence of actions turn-by-turn, independent of the
player. Up to 16 scripts may be running at once.41

A script is represented by two arrays: scriptdata and setscript.
The latter was named for programming clarity rather than for what it actually
contains. Here’s why:

To define a script, use the following notation:

setscript[Script(<char>, <num>)] = &CharRoutine, obj,
 &CharRoutine, obj,
 ...

(remembering that a hanging comma at the end of a line of code is a signal to the
compiler that the line continues onto the next unbroken.)

Notice that “setscript” is actually an array, taking its starting element
from the return value of the Script routine, which has <object> and
<number> as its arguments.

Script returns a pointer within the large “setscript” array where
<num> number of steps of a script for <object> may reside. A single script
may have up to 32 steps. A step in a script consists of a routine and an object—
both are required, even if the routine does not require an object. (Use the
nothing object (0); see the CharWait routine in hugolib.h for reference.)

The custom in hugolib.h is that character script routines use the prefix
“Char” although this is not required. Currently, routines provided include:

CharMove (requiring a direction object)
CharWait (using the nothing object)
CharGet (requiring a takeable object)
CharDrop (requiring an object held by the character)

41 This is a library-set limit.

VI. FUSES, DAEMONS, AND SCRIPTS

103

as well as the special routine

LoopScript (using the nothing object)

which indicates that a script will continually execute. (It is the responsibility of
the programmer to ensure that the ending position of the character or object is
suitable to loop back to the beginning if LoopScript is used. That is, if the
script consists of a complex series of directions, the character should always
return to the same starting point.)

The sequence of routines and objects for each script is stored in the
setscript array.

Scripts are run using the RunScripts routine, similar to runevents, the
only difference being that runevents is an engine command while
RunScripts is contained entirely in hugolib.h. The line:

RunScripts

will run all active object/character scripts, one turn at a time, freeing the space
used by each once it has run its course.

Here is a sample script for a character named “Ned”:

setscript[Script(ned, 4)] = &CharMove, s_obj,
 &CharGet, cannonball,
 &CharMove, n_obj,
 &CharWait, 0,
 &CharDrop, cannonball

Ned will go south, retrieve the cannonball object, bring it north, wait a

turn, and drop it. (The character script routines provided in the library are
relatively basic; for example, CharGet assumes that the specified object will be
there when the character comes to get it, so it’s more or less up to the game
author—at least when using the default library routines for character scripting—
to have things well planned out.)

Other script-management routines in hugolib.h include:

 CancelScript(obj) to immediately halt execution of the script for
<obj>

 PauseScript(obj) to temporarily pause execution of the script for

<obj>

 ResumeScript(obj) to resume execution of a paused script

THE HUGO PROGRAMMING MANUAL

104

 SkipScript(obj) skips the script for <obj> during the next call

to RunScripts only

The RunScripts routine also checks for before and after properties.

It continues with the default action—i.e., the character action routine specified in
the script—if it finds a false value.

To override a default character action routine, include a before property
for the character object using the following form:

before
{
 actor CharRoutine
 {
 ...
 }
}

where CharRoutine is CharWait, CharMove, CharGet, CharDrop, etc.

VI.d. A Note About The event_flag Global

The library routines—particularly the DoWait... verb routines (invoked
whenever a player types “wait”, “wait for (someone)”, or “wait for 5
turns”—expect the event_flag global variable to be set to a non-false value if
something happens (i.e., in an event or script) so that the player may be notified
and given the opportunity to quit waiting. For instance, the character script
routines in hugolib.h set event_flag whenever a character does something
in the same location as the player.

If hugolib.h is to be used, the convention of setting event_flag after
every significant event should be adhered to.

VI. FUSES, DAEMONS, AND SCRIPTS

105

VI.e. What Should I Be Able To Do Now?

Example: A Simple Daemon and a Simpler Fuse

The most basic daemon would be something like a sleep counter, which
measures how far a player can go beginning from a certain rested state. Assume
that the player’s amount of rest is kept in a property called rest, which
decreases by 2 each turn.

daemon gettired
{}

event in gettired
{
 player.rest = player.rest - 2
 if player.rest < 0
 player.rest = 0

 select player.rest
 case 20
 "You're getting quite tired."
 case 10
 "You're getting \Ivery\i tired."
 case 0
 "You fall asleep!"
}

Start and stop the daemon with Activate(gettired) and
Deactivate(gettired).

Now, as for a fuse, why not construct the most obvious example: that of a
ticking bomb? (Assume that there exists another physical bomb object;
tickingbomb is only the countdown fuse.)

fuse tickingbomb
{}

event in tickingbomb
{
 if not self.tick
 {
 if Contains(location, bomb)

THE HUGO PROGRAMMING MANUAL

106

 "You vanish in a nifty KABOOM!"
 else
 "You hear a distant KABOOM!"
 remove bomb
 }
}

Start it (with a countdown of 25 turns):

Activate(tickingbomb, 25)

and stop it with:

Deactivate(tickingbomb)

VII. GRAMMAR AND PARSING

107

VII. GRAMMAR AND PARSING

VII.a. Grammar Definition

very valid player command must specified. More precisely, each usage of
a particular verb must be detailed in full by the source code. Grammar
definitions must always come at the start of a program, preceding any

objects or executable code. That is, if several additional grammar files are to be
included, or new grammar is to be explicitly defined in the source code, it must
be done before any files containing executable code are included, or any routines,
objects, etc. are defined.

The syntax used for grammar definition is:

[x]verb "<verb1>" [, "<verb2>", "<verb3>",...]
* <syntax specification 1> <VerbRoutine1>
* <syntax specification 2> <VerbRoutine2>
...

Now, what does that mean? Here are some examples from the library grammar
file verblib.g:

verb "get"
 * DoVague
 * "up"/"out"/"off" DoExit
 * "outof"/"offof"/"off" object DoExit
 * "in"/"on" object DoEnter
 * multinotheld "from"/"off" parent DoGet
 * multinotheld "offof"/"outof" parent DoGet
 * multinotheld DoGet

verb "take"
 * DoVague
 * "off" multiheld DoTakeOff
 * multiheld "off" DoTakeOff
 * multinotheld DoGet

E

THE HUGO PROGRAMMING MANUAL

108

 * multinotheld "from"/"off" parent DoGet
 * multinotheld "offof"/"outof" parent DoGet

xverb "save"
 * DoSave
 * "game" DoSave

verb "read", "peruse"
 * DoVague
 * readable DoRead

verb "unlock"
 * DoVague
 * lockable "with" held DoUnLock
 * lockable DoUnLock

Each verb or xverb header begins a new verb definition. An xverb is a

special signifier that indicates that the engine should not call the Main routine
after successful completion of the action. xverb is typically used with non-
action, housekeeping-type verbs such as saving, restoring, quitting, and
restarting.

Another thing that can be done is to specify:

verb some_object
 * object DoVerb

which will have the effect of, instead of defining the verb with a dictionary word,
checking at runtime some_object.noun as the verb word to be matched. What
this allows is for the some_object.noun property to be a routine that can
return varying values at runtime in order to provide for dynamic grammar, if
required. However, since this sort of dynamic grammar isn’t often required,
static grammar definitions are far more common.

Next in the header comes one or more verb words. Each of the specified
words will share the following verb grammar exactly. This is why “get” and
“take” in the above examples are defined separately, instead of as

verb "get", "take"

In this way, the commands like

>get up

and

VII. GRAMMAR AND PARSING

109

>take off hat

are allowable, while

>take up

and

>get off hat

won’t make any sense.
Each line beginning with an asterisk (‘*’) is a separate valid usage of the

verb being defined. (Every player input line must begin with a verb. Exceptions,
where a command is directed to an object as in

>Ned, get the ball

will be dealt with later.)
Up to two objects and any number of dictionary words may make up a

syntax line. The objects must be separated by at least one dictionary word.
Valid object specifications are:

object any visible object (the direct object)
xobject the indirect object
attribute any visible object that is attribute
parent an xobject that is the parent of the object
held any object possessed by the player object
notheld an object explicitly not held
anything any object, held or not, visible or not
multi multiple visible objects
multiheld multiple held objects
multinotheld multiple notheld objects
number a positive integer number
word any dictionary word
string a quoted string
(RoutineName) a routine name, in parentheses
(objectname) a single object name, in parentheses

(If a number is specified in the grammar syntax, it will be passed to the
verbroutine in the object global. If a string is specified, it will be passed in the

THE HUGO PROGRAMMING MANUAL

110

engine’s parse$ variable, which can then be turned into a string array using the
string function.)

Dictionary words that may be used interchangeably are separated by a
slash (‘/’).

Two or more dictionary words in sequence must be specified separately.
That is, in the input line:

>take hat out of suitcase

the syntax line

* object "out" "of" container

will be matched, while

* object "out of" container

would never be recognized, since the engine will automatically parse “out” and
“of” as two separate words; the parser will never find a match for “out of”.

Regarding object specification within the syntax line: once the direct
object has been found, the remaining object in the input line will be stored as the
xobject. That is, in the example immediately above, a valid object in the input
line with the attribute container will be treated as the indirect object by the
verb routine.

Note: An important point to remember when mixing dictionary words and

objects within a syntax line is that, unless directed differently, the
parser may confuse a word-object combination with an invalid object
name.

Consider the following:

verb "pick"
 * object DoGet
 * "up" object DoGet

This definition will result in something like

>pick up box
You haven’t seen any "up box", nor are you likely to
in the near future even if such a thing exists.

VII. GRAMMAR AND PARSING

111

(assuming that “up” has been defined elsewhere as part of a different object
name, as in objlib.h), because the processor processes the syntax

* object

and determines that an invalid object name is being used; it never gets to

* "up" object

The proper verb definition would be ordered like

verb "pick"
 * "up" object DoGet
 * object DoGet

so that both “pick <object>“ and “pick up <object>“ are valid player
commands. It’s generally good practice to make sure that more specific
grammar precedes more general grammar for this reason.

To define a new grammar condition that will take precedence over an
existing one—such as in verblib.g—simply define the new condition first (i.e.,
before including verblib.g).

Note: As a rule, unless you need to preempt the library’s normal grammar

processing, include any new grammar after the library files. (The
reason for this is that the library grammar is carefully tuned to handle
situations exactly like that described above.)

A single object may be specified as the only valid object for a particular

syntax:

verb "rub"
 * (magic_lamp) DoRubMagicLamp

will produce a “You can’t do that with...” error for any object other
than the magic_lamp object.

Using a routine name to specify an object is slightly more involved: the
engine calls the given routine with the object specified in the input line as its
argument; if the routine returns true, the object is valid—if not, a parsing error is
expected to have been printed by the routine. If two routine names are used in a
particular syntax, such as

* (FirstRoutine) "with" (SecondRoutine)

THE HUGO PROGRAMMING MANUAL

112

then FirstRoutine validates the object and SecondRoutine validates the
xobject.

VII.b. The Parser

Immediately after an input line is received, the engine calls the parser, and
the first step taken is to identify any invalid words, i.e., words that are not in the
dictionary table.

Note: One non-dictionary word or phrase is allowed in an input line,

providing it is enclosed in quotation marks. If the command is
successfully parsed and the quoted word or phrase is matched to a
string grammar token, that string is passed to parse$. More than one
non-dictionary word or phrase (even if the additional phrases are
enclosed in quotes) are not allowed.

The next step is to break the line down into individual words. Words are

separated by spaces and basic punctuation (including “!” and “?”) which are
removed. All characters in an input line are converted to lowercase (except those
inside quotation marks).

The next step is to process the four types of special “words” which may be
defined in the source code.

Removals are the simplest. These are simply words that are to be
automatically removed from any input line, and are generally limited to words
such as “a” and “the” which would, generally speaking, only make grammar
matching more complicated and difficult. The syntax for defining a removal is:

removal "<word1>"[, "<word2>", "word<3>",...]

as in

removal "a", "an", "the"

Punctuation is similar to a removal, except it specifies the removal of

individual characters instead of whole words:

punctuation "<character1>[<character2>...]

as in

punctuation "$%"

VII. GRAMMAR AND PARSING

113

Synonyms are slightly more complex. These are words that will never be

found in the parsed input line; they are replaced by the specified word for which
they are a synonym.

synonym "<synonym>" for "<word>"

as in

synonym "myself" for "me"

The above example will replace every occurrence of “myself” in the input line
with “me”. Usage of synonyms will likely not be extensive, since of course it is
possible to, particularly in the case of object nouns and adjectives specify
synonymous words which are still treated as distinct.

Compounds are the final type of special word, specified as:

compound "<word1>", "<word2>"

as in

compound "out", "of"

so that the input line

>get hat out of suitcase

would be parsed to

>get hat outof suitcase

Depending on the design of grammar tables for certain syntaxes, the use of
compounds may make grammar definition more straightforward, so that by
using the above compound,

verb "get"
 * multinotheld "outof"/"offof"/"from" parent

is possible, and likely more desirable to

verb "get"
 * multinotheld "out"/"off" "of" parent
 * multinotheld "from" parent

THE HUGO PROGRAMMING MANUAL

114

When the parser has finished processing the input line, the result is a specially
defined (by the Hugo Engine) array called word[], where the number of valid
elements is held in the global variable words. Therefore, in

>get the hat from the table

the parser—using the removals defined in hugolib.h—will produce the
following results:

word[1] = "get"
word[2] = "hat"
word[3] = "from"
word[4] = "table"

words = 4

Note: Multiple-command input lines are also allowed, provided that the
individual commands are separated by a period (“.”).

>get hat. go n. go e.

would become

word[1] = "get"
word[2] = "hat"
word[3] = ""
word[4] = "go"
word[5] = "n"
word[6] = ""
word[7] = "go"
word[8] = "e"
word[9] = ""

words = 9

(See hugolib.h for an example of how

>get hat then go n

is translated into:

word[1] = "get"
word[2] = "hat"

VII. GRAMMAR AND PARSING

115

word[3] = ""
word[4] = "go"
word[5] = "n"

in the Parse routine.)

A maximum of thirty-two words is allowed. The period is in each case

converted to the empty dictionary entry (“”; dictionary address = 0), which is a
signal to the engine that processing of the current command should end here.

Note: The parsing and grammar routines also recognize several system words,

each in the format “~word”. These are:

~and referring to: multiple specific objects
~all “ “ multiple objects in general
~any “ “ any one of a list of objects
~except “ “ an excluded object
~oops to correct an error in the previous input line

To allow an input line to access any of these system words, a synonym

must be defined, such as:

synonym "and" for "~and"

The library defines several such synonyms.

THE HUGO PROGRAMMING MANUAL

116

VII.c. What Should I Be Able To Do Now?

It should by now be relatively straightforward how to go about adding a
new verb (with appropriate grammer)—or even modifying an existing one. For
instance, consider a game in which disco dancing plays an absolutely vital role,
and where the command “>GET DOWN” must at all costs be implemented as a
synonym for “>DANCE” or “>BOOGIE”.

For starters, you’ll need to add the initial grammar and verbroutine:

verb "dance", "boogie"
 * DoDance

and

routine DoDance
{
 "You get down, all night long."
}

Keep in mind that the verb definition, as with all grammar, must come

before any other code, definitions, etc. Now, you’ll have to add the “>GET
DOWN” grammar:

verb "get"
 * "down" DoDance

Now, this must come both before any other code or definitions as well as

the existing grammar for “>GET <object>” (from VERBLIB.G). Otherwise, the
regular grammar for

 * object DoGet

will take precedence. By superseding it, however, we ensure that any grammar
matching the desired pattern will result in DoDance being called instead.

VIII. JUNCTION ROUTINES

117

VIII. JUNCTION ROUTINES

VIII.a. Before We Get To The Routines

ecause, the engine is unaware of such things as attributes, properties, and
objects in anything but a technical sense42, there are provided a number of
routines to facilitate communication between the engine and the program

proper. Along with these junction routines are certain global variables and
properties that are pre-defined by the compiler and accessed directly by the
engine. They are:

GLOBALS
object the direct object of a verb
xobject the indirect object
self self-referential object
words total number of words
player the player object
actor the player, or character obj. (for scripts)
location location of the player
verbroutine the verb routine address
endflag if not false (0), call EndGame
prompt for the player input line
objects total number of objects
system_status after certain operations

PROPERTIES
name basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object

42 In other words, it is the library that defines all the rules and useful-sounding names for properties,
routines, and the like; the engine doesn’t really have any idea about the higher-level work being done by the
library.

B

THE HUGO PROGRAMMING MANUAL

118

adjective adjective(s) for referring to object
article “a”, “an”, “the”, “some”, etc.

(Additionally, the aliases nouns and adjectives for noun and adjective,
respectively, are defined by the library.)

Junction routines are not required. The engine has built-in default
routines, although it’s likely that not all of these will be satisfactory for most
programmers. hugolib.h contains each of the following routines which fully
implement all the features of the library. If a different routine is desired in place
of a provided one, the routine should be substituted using replace.

VIII.b. Parse

The Parse routine, if one exists, is called by the engine parser. Here, the
program itself may modify the input line before grammar matching is attempted.
What happens is:

1. The input line is split into discrete words (by the engine).

2. The Parse routine, if it exists, is called.

3. Control returns to the engine for grammar matching.

4. During grammar matching, the FindObject routine may be called

(possibly repeatedly).

For example, the Parse routine in hugolib.h takes care of such things

as pronouns (“he”, “she”, “it”, “them”) and repeating the last legal command
(with “again” or simply “g”).

Returning true from the Parse routine calls the engine parser again (i.e.,
returns to step 1 in the process above); returning false continues normally. This
is useful in case the Parse routine has changed the input line substantially,
requiring a reconfiguration of the already split words.

The HugoFix debugging library can be used at runtime to monitor the
goings-on of the Parse routine by enabling parser monitoring with the “$pm”
command.43

43 For more information on debugging using HugoFix, see APPENDIX D: HUGOFIX AND THE HUGO
DEBUGGER.

VIII. JUNCTION ROUTINES

119

Note: Since the library’s Parse routine is rather extensive, a provision is
made for a PreParse routine—which in the library is defined as being
empty—which may more easily be replaced for additional parsing.

VIII.c. ParseError

The ParseError routine is called whenever a command is invalid.
ParseError is called in the form:

ParseError(<errornumber>, <object>)

where <object> is the object number (if any) of the object involved in the error.

Note: The engine also sets up the special variable parse$, which represents
the illegal component of an input line, whether it is the verb itself, an
object name, a partial object name, or any other word combination.

For example:

print "The illegal word was: "; parse$; "."

The default responses provided by the engine parse error routine are:

 ERROR NUMBER RESPONSE

 0 “What?”

 1 “You can’t use the word

<parse$>.”

 2 “Better start with a verb.”

 3 “You can’t <parse$> multiple

objects.”

 4 “Can’t do that.”

 5 “You haven’t seen any <parse$>,

nor are you likely to in the
near future even if such a thing
exists.”

THE HUGO PROGRAMMING MANUAL

120

 6 “That doesn’t make any sense.”

 7 “You can’t use multiple objects

like that.”

 8 “Which <parse$> do you

mean,...?”

 9 “Nothing to <parse$>.”

 10 “You haven’t seen anything like

that.”

 11 “You don’t see that.”

 12 “You can’t do that with the

<parse$>.”

 13 “You’ll have to be a little more

specific.”

 14 “You don’t see that there.”

 15 “You don’t have that.”

 16 “You’ll have to make a mistake

first.”

 17 “You can only correct one word

at a time.”

The ParseError routine in hugolib.h provides customized responses

that take into account such things as, for example, whether the player is first or
second-person, whether or not an object is a character or not, and if so, if it is
male or female, etc.

If the ParseError routine does not provide a response for a particular
<errornumber>, it should return false. Returning false is a signal that the
engine should continue with the default message. Returning 2 is a signal to
reparse the entire existing line (useful in cases where a peculiar syntax is trapped
as an error, changed, and must then be reparsed).

VIII. JUNCTION ROUTINES

121

Note: If custom error messages are desired for user parsing routines, replace
the routine CustomError with a new routine (called with the same
parameters as ParseError), providing that <errornumber> is greater
than or equal to 100.

VIII.d. EndGame

The EndGame routine is called immediately whenever the global variable
endflag is non-zero, regardless of whether or not the current function has not
yet been terminated.

hugolib.h’s EndGame routine behaves according to the value to which
endflag is set:

endflag RESULT

 1 Player wins

 2 Player’s demise

 0 Other ending—not provided for by default PrintEndGame

routine)

Returning false from Endgame terminates the game completely; returning non-
false restarts.

Note: To modify only the message displayed at the end of the game (defaults:

“*** YOU’VE WON THE GAME! ***” and “*** YOU ARE DEAD
***”), replace the PrintEndGame routine. Other than being non-false,
the various values of endflag are insignificant except to
PrintEndGame.

VIII.e. FindObject

The FindObject routine takes into account all the relevant properties,
attributes, and object hierarchy to determine whether or not a particular object is
available in the current context. For example, the child of a parent object may be
available if the parent is a platform, but unavailable if the parent is a container
(and closed)—although internally, the object hierarchy is the same.
FindObject is called via:

FindObject(<object>, <location>)

THE HUGO PROGRAMMING MANUAL

122

where <object> is the object in question, and <location> is the object where
its availability is being tested. (Usually <location> is a room, unless a
different parent has been specified in the input line.)

FindObject returns true (1) if the object is available, false (0) if
unavailable. It returns 2 if the object is visible but not physically accessible.

The FindObject routine in hugolib.h considers not only the location
of <object> in the object tree, but also tests the attributes of the parent to see if
it is open or closed. As well, it checks the found_in property, in case
<object> has been assigned multiple locations instead of an explicit parent, and
then scans the in_scope property of the object (if one exists).

Finally, the default behavior of the library’s FindObject requires that a
player have encountered an object for it to be valid in an action, i.e., it must have
the known attribute set. To override this, replace the routine ObjectisKnown
with a routine that returns an unconditional true value.

There is one special case in which the engine expects the FindObject
routine to be especially helpful: that is if the routine is called with <location>
equal to 0. This occurs whenever the engine needs to determine if an object is
available at all—regardless of any rules normally governing object availability—
such as when an anything grammar token is encountered, or the engine needs
to disambiguate two or more seemingly identical objects. (Also, FindObject
may be called by the engine with both <object> and <location> equal to 0 to
reset any library-based object disambiguation.)

The HugoFix debugging library can be used at runtime to monitor calls to
FindObject by enabling the “$fi” command. 44

VIII.f. SpeakTo

The SpeakTo routine is called whenever an input line begins with a valid
object name instead of a verb. This is so the player may direct commands to
(usually) characters in the game. For example:

>Professor Plum, drop the lead pipe

It is up to the SpeakTo routine to properly interpret the instruction. SpeakTo is
called via:

SpeakTo(<character>)

44 For more information on debugging using HugoFix, see APPENDIX D: HUGOFIX AND THE HUGO
DEBUGGER.

VIII. JUNCTION ROUTINES

123

where <character> in the above example would be the Professor Plum object.
The globals object, xobject, and verbroutine are all set up as normal. For
the above example, then, these would be

object leadpipe
xobject nothing
verbroutine &DoDrop

when SpeakTo is called.
hugolib.h’s SpeakTo routine provides basic interpretation of questions,

so that

>Professor Plum, what about the lead pipe?

may be directed to the proper verb routine, as if the player had typed:

>ask Professor Plum about the lead pipe

Imperative commands are, such as

>Colonel Mustard, stand up

are first directed to the order_response property of the character object in
question. It is subsequently up to <character>.order_response to analyze
verbroutine (as well as object and xobject, if applicable) to see if the
request is a valid one. If no response is provided, order_response should
return false.

The HugoFix debugging library can be used at runtime to monitor calls to
SpeakTo by enabling the “$pm” command. 45

order_response
{
 if verbroutine = &DoGet
 "I would, but my back is too sore."
 else
 return false
}

Note: It is important to check in an order_response property if any objects to
be acted upon are present (or otherwise available), since this check is
not necessarily done before SpeakTo is called.

45 For more information on debugging using HugoFix, see APPENDIX D: HUGOFIX AND THE HUGO
DEBUGGER.

THE HUGO PROGRAMMING MANUAL

124

When something like the following is directed toward a character:

>BOB, GET THE PACKAGE

SpeakTo(bob) will be called with verbroutine = &DoGet and object =
package, even if the package object is not physically present.

VIII.g. Perform

The Perform routine is what is called by the engine in order to execute
the appropriate verbroutine with the given object(s) and/or indirect object, if
either or both are applicable. It is the responsibility of Perform to do the
appropriate checking of before routines to determine if execution actually gets
to the verbroutine. Perform is called as:

Perform(<verbroutine>, <object>, <xobject>, <queue>,

<isxverb>)

The first three arguments represent the match verb (always), object (if given),
and indirect object, i.e., the xobject (if given). The <queue> is 0 unless the
verbroutine is being called more than once for multiple objects. (As a special
case, <queue> is –1 if object or xobject is a number supplied in the input as
one or more digits, in order to signal Perform not to do normal before/after
routine calling.) The <isxverb> argument is true if the grammar for invoking
Perform designates an xverb46.

For example, various player commands might (approximately, depending
on verbroutine and object names) result in the routine calls:

>i
Perform(&DoInventory, 0, 0, 0)

>get key
Perform(&DoGet, key_object, 0, 0)

>put the key on the table
Perform(&DoGet, key_object, 0, 0)

>turn the dial to 127
Perform(&DoTurn, dial, 127, -1)

46 The <isxverb> argument is new in v3.1.

VIII. JUNCTION ROUTINES

125

>get key and banana
Perform(&DoGet, key_object, 0, 1)
Perform(&DoGet, banana, 0, 2)

(If no Perform routine exists, the engine performs a default calling of

player.before, location.before, xobject.before, object.before,
and finally verbroutine if none of those returns true.)

Using HugoFix’s parser monitoring (“$pm”) at runtime will trace calls to
Perform. 47

47 For more information on debugging using HugoFix, see APPENDIX D: HUGOFIX AND THE HUGO
DEBUGGER.

THE HUGO PROGRAMMING MANUAL

126

IX. THE GAME LOOP

IX.a. Overview Of The Game Loop

his the basic execution pattern that the Hugo Engine follows during
program execution. (Also mentioned are the calling of before routines
and the verbroutine by Perform in hugolib.h. While not necessarily

part of the game loop—since they may or may not be included in a program—
they are mentioned here because they are relevant to any Hugo program that
uses the standard Hugo Library.)

Init: The Init routine is called only when the program is first

run, or when a restart command is issued.

Main: At the start of the game loop, the engine calls the Main

routine. The routine should—as in the provided sample
programs—take care of advancing the turn counter,
executing the runevents command, and calling such
library routines as RunScripts and PrintStatusLine.

Input: Keyboard input is received.

Parsing: The input line is checked for validity, synonyms and other

special words are checked, and the user Parse routine (if
any) is called.

Grammar matching:
 The engine attempts to match the input line with a valid

verb and syntax in the grammar table. If no match is found,
the engine loops back to Input.

T

IX. THE GAME LOOP

127

 Otherwise, a successful grammar match results in at least the
verbroutine global being set, as well as potentially
object and xobject.

Before routines (as called by Perform in hugolib.h):
 If any objects were specified in the input line, their before

properties are checked in the following order, for each
object:

 player.before
 location.before
 xobject.before (if applicable)
 object.before (if applicable)

 If any of these property routines returns true, the engine

skips the verb routine. (The react_before property for
relevant objects is checked at this time as well.)

Verb routine (as called by Perform in hugolib.h):
 If no before property routine returns true, the verb routine is

run.

 If an action is successfully completed, the verb routine

should return true. Returning false negates any remaining
commands in the input line.

Perform does not run any after property routines for
object or xobject; that is up to the verb routine. It does
run both player.after and location.after if the
verbroutine returns true. (The react_after property for
relevant objects is checked at this time as well.)

 (Control returns from the library Perform routine to the

engine)

When finished, the engine loops back to Main, calling the
Main routine only if the last verb matched was not an xverb.

Note: Setting the global endflag at any point to a non-zero value will

terminate the game loop and run the EndGame junction routine.

THE HUGO PROGRAMMING MANUAL

128

IX.b. What Should I Be Able To Do Now?

By this point, you’ve been introduced to the basic facilities through which
the Hugo Engine communicates with a running Hugo game: the junction
routines EndGame, FindObject, Parse, ParseError, Perform, and
SpeakTo. Becoming familiar with their implementation and use (and even inner
workings) is an important step toward mastering an understanding of the Hugo
game loop, including determining how a player input line is parsed, what objects
are available or in scope, and how a command is either dispatched to a
verbroutine or directed to another character. You should be able to create your
own verbroutines (and grammar) to handle actions not provided by default in
the library. You should now understand how to create an order_response
property for characters to respond to actions passed to them by SpeakTo.

It should be apparent how a game can implement custom versions of
things like end-of-game behavior, parser messages, etc. without editing the
library itself by using the compiler’s replace directive with library routines
such as EndGame and ParseError. Most often, a programmer will copy the
selected routine out of hugolib.h (or wherever it comes from) and paste it into
the game’s source, changing (for instance):

routine EndGame ...

to

replace EndGame ...

and customize the EndGame routine’s messages, behavior, or whatever the
desired modifications may involve.

For instance, to change the default parser error message

You don’t need to use the word "<unknown word>".

to something along the lines of

[This game does not recognize "<unknown word>".]

first copy the ParseError routine from hugolib.h to the game’s source, and
change, in the copied ParseError,

routine ParseError(errornumber, object)

IX. THE GAME LOOP

129

to

replace ParseError(errornumber, object)

and modify the case for the error message in question from

case 1
 print CThe(player); \

MatchPlural(player, "doesn't, "don't"); \
need to use the word \""; \

 parse$; "\"."

to

case 1
 print "[This game does not recognize \""; \
 parse$; "\".]"

You should also by now have an understanding of how to override the

game loop using before and after routines in order to provide for custom
responses and/or behavior not directly provided by the library. Normally, for
example, an object having the static attribute is automatically treated as
untakeable by the library. But what if you created a heavy boulder and wanted
to have the response

The boulder is far too heavy to lift!

in place of the library’s default “You can't take that.” message? You
would simply interrupt the DoGet routine before it even executes via a before
property on the boulder object:

before
{
 object DoGet
 {
 "The boulder is far too heavy to lift!"
 }
}

THE HUGO PROGRAMMING MANUAL

130

X. USING THE OBJECT LIBRARY

The Hugo Object Library (objlib.h), included by default by hugolib.h
as part of the standard Hugo Library, provides a number of useful classes for
common elements of many games. These classes can be used as-is to create
objects or as base classes for more complex and/or game-specific classes.

X.a. Rooms and Directions

Most games will make use of rooms, directions, and possibly characters.
A room in this context is an object which specifically functions as a location in
the game world, and as such contains other objects as children in branches
beneath it in the object tree. Despite being called “rooms”, these generic
locations aren’t explicitly indoors or outdoors; most games won’t make a
distinction except in the textual description (the long_desc) of the location.

A room is defined like this:

room living_room "living room"
{
 long_desc
 "The living room is about fifteen feet
 square, with a bay window on one wall
 looking out over the garden. The kitchen
 is to the south, or you can walk into the
 back hallway to the east."
}

Since a room is not placed within another object in the object tree (using

the in directive), it automatically has a parent of 0 or nothing. By inheriting
from the room class, the living_room object acquires the characteristics
defined in the object library, including being static and light48.

48 This also means that in order to create a dark location—i.e., one that has no intrinsic lighting—it is
necessary to put an explicit “not light” in the object’s definition. In that case, in order for the player to
see anything in the location, light will have to be provided either by an object in the location (such as a
lamp) or by something portable that can be brought into the location (like a flashlight).

X. USING THE OBJECT LIBRARY

131

Additionally, as with other classes in the object library, the type property
of an object can be checked to see which class it was derived from. In this case,
living_room.type would equal room. (Of course, living_room or an object
subsequently derived from living_room could set its type property to
something other than room.)

Travel between rooms is managed by default using the eight cardinal
compass directions (north, northeast, east, southeast, south, southwest, west,
northwest) as well as up, down, in, and out. These are represented in object form
as n_obj, ne_obj, e_obj, se_obj, s_obj, sw_obj, w_obj, nw_obj, u_obj,
d_obj, in_obj, and out_obj (each derived from the direction class). Each
of these objects is defined in the object library as a child of the compass parent
object, and each defines an appropriate dir_to property reflecting the direction
of travel it describes. For instance, n_obj.dir_to equals n_to,
in_obj.dir_to equals in_to, etc. It is the dir_to property of a direction
that is used to map out travel from one location to another.

The living_room object’s description claims that the kitchen is to the
south and the back hallway is to the east, but neither connection is known to the
game until those directional links are added to the object definition (and, of
course, assuming that the kitchen and back_hallway objects also exist).

room living_room "living room"
{
 long_desc
 "The living room is about fifteen feet
 square, with a bay window on one wall
 looking out over the garden. The kitchen
 is to the south, or you can walk into the
 back hallway to the east."
 s_to kitchen
 e_to back_hallway
}

The player will now be able to go either south or east from the kitchen.

Keep in mind, however, that it is possible to make travel from one location to
another one-way. In order to allow the player to travel back to the living kitchen
in the same direction, you would need to add

n_to living_room

to the kitchen object and

w_to living_room

THE HUGO PROGRAMMING MANUAL

132

to the back_hallway object.

X.b. Characters

The basic character class takes care of defining the basic elements that
the library expects character objects to have. These include obvious attributes
such as living, as well as useful properties such as capacity and holding
for carrying objects. Also importantly, the character class defines its
pronouns property as:

pronouns "he", "him", "his", "himself"

The accompanying female_character class (which is identical to the
character class but with the female attribute) defines:

pronouns "she", "her", "her", "herself"

The order of pronouns is subject, object, possessive, reflexive, so that the library can
refer to the pronouns property to print appropriate messages such as:

print capital object.pronoun; " is in the room."

 He is in the room.

print "Bob gave "; object.pronoun #2; " the box. "

 Bob gave him the box.

print capital object.pronoun; " opened ";
object.pronoun #3; " box. "

 He opened his box.

print capital object.pronoun; " looked at ";
object.pronoun #4; " in the mirror. "

 He looked at himself in the mirror.

A player_character class is also provided that will usually be the

basis for the player character (PC). A game’s PC can be defined easily as:

player_character you "you"
{}

X. USING THE OBJECT LIBRARY

133

The PC is by default named in the second person (as opposed to the first-

person “I” or the third-person “he”, “she”, “it”, or “them”). To change to
another form, it will be necessary to redefine the PC’s pronouns property
accordingly, as well as to change the global variable player_person49 (which
defaults to 2) to 1 or 3, as appropriate, and optionally to give a plural PC the
plural attribute (in the rare case where that may be desired).

X.c. Character responses

One thing that will likely be important for NPCs (non-player characters) is
enabling them to respond to questions and otherwise interact with the player.
This is traditionally accomplished by implementing NPC responses to the
verbroutines DoAsk, DoTell, DoShow, and DoGive.

>ASK GUSTAV ABOUT APPLE
"I must admit I rather prefer them to bananas," Gustav
tells you.

>GIVE BANANA TO GUSTAV
"No, thank you," Gustav says. "I would rather have an
apple."

The grammar for asking an NPC about something looks something like

this:

verb "ask"
 * living about xobject DoAsk

The object is the NPC being asked, the xobject is whatever is being asked about,
and the verbroutine is DoAsk. The response is handled in the NPC’s after
property routine:

after
{
 object DoAsk
 {
 select xobject
 case apple
 "\"I must admit I rather prefer them to

bananas,\" Gustav tells you."

49 The library uses the player_person global to properly format messages to the player.

THE HUGO PROGRAMMING MANUAL

134

 case else
 return false ! important
 }
}

Note that it’s necessary to return false if the routine fails to find an

appropriate response.
DoTell responses are handled similarly to DoAsk, since the NPC is the

object and whatever is being told about is the xobject:

verb "tell"
 * living about xobject DoTell

DoGive and DoShow, however, are handled differently, since the word

ordering is different:

verb "give"
 * object to living DoGive

verb "show"
 * object to living DoShow

For these, the after property routine will look something like:

after
{
 object DoAsk
 {
 ...
 }
 xobject DoGive
 {
 select object
 case banana
 "\"No thank you,\" Gustav says. \"I

would rather have an apple.\""
 case else
 return false
 }
 xobject DoShow
 {
 select object
 ...

X. USING THE OBJECT LIBRARY

135

 case else
 return false
 }
}

X.d. Scenery and Components

It has become more and more expected of interactive fiction that objects
mentioned in the textual description of a location should be implemented in a
manipulable fashion. With this goal in mind, something like the following
would be less than desirable:

PRISON CELL
 The entire place is probably just shy of fifty
square feet. The bars on the doors and single small
window ensure that you won’t be going anywhere anytime
soon.

>EXAMINE WINDOW
You don't need to use the word "window".

Depending on the game (and, arguably, the player) that response may be

somewhat jarring in light of the window just mentioned in the room description.
It may be gotten around by adding an embellishment like this:

scenery prison_window "prison window"
{
 in prison_cell
 article "a"
 adjectives "single", "small", "prison", "cell"
 noun "window"
}

The most important characteristic of a scenery object created using the

scenery class is that it will not be listed by the library as part of the room’s
contents (in this case, the contents of prison_cell). The scenery class is
otherwise relatively unadorned: looking at a scenery object will produce a
generic message about seeing nothing special, attempting to take a scenery object
will generate a generic “You can’t take that”-type response, etc.50 The scenery
object can be fleshed out with a long_desc property and before/after
handling for desired verbroutines.

50 The scenery class has the static attribute, which makes scenery objects untakeable. This is largely the
point of scenery objects.

THE HUGO PROGRAMMING MANUAL

136

Components are similar to scenery objects in two important respects in
that they’re not intended to be taken and they’re not specifically listed in any
itemization of contents. Consider a case where a game might contain a machine
(for fun, a nefarious machine) and a lever. The intention might be that the lever
can be manipulated separately from the nefarious machine itself so that “>PULL
LEVER” elicits a different response than simply “>PULL MACHINE”. At the same
time, however, something like the following is probably undesirable:

A nefarious machine whirs and buzzes in the corner.
There is also a lever here.

What is needed is a way to implement the lever as a separate though inseparable
part of the nefarious machine object. The component class provides for this.

component lever "lever"
{
 part_of nefarious_machine
 article "a"
 noun "lever"
}

The part_of property specifies the primary object (the nefarious

machine) of which this object (the lever) is a component; it is not necessary to
place the component object in the primary object; in fact, doing so will probably
lead to all manner of extra complications especially if the primary object isn’t a
container or platform, isn’t open, etc. A component object will automatically be
available to the player whenever the primary object is.

X.e. Doors

Doors are fairly common objects, and a given game—particularly one with
a significant number of indoor locations—will likely make frequent use of them.
The unfortunate thing is that they can be somewhat finicky and repetitive to
code, ensuring that they respond to opening, closing, locking (if applicable),
providing an appropriate open or closed description, and behaving
appropriately from either side. The object library’s door class provides a simple
implementation that will largely suffice for most basic doors.

Here’s how to put a simple door between the kitchen and
living_room locations created above:

door kitchen_door "kitchen door"
{

X. USING THE OBJECT LIBRARY

137

 between kitchen, living_room
 article "the"
 adjective "kitchen"
 noun "door"
}

The between property takes care of making the room available in both

locations as well as determining where the player travels to when leaving either
location. In order to incorporate the door into the kitchen and living_room
locations, it’s only necessary to change the two room objects to specify:

n_to
{
 return kitchen_door.door_to
}

for the kitchen object and

s_to
{
 return kitchen_door.door_to
}

for the living_room object. Notice that the use of kitchen_door.door_to is
the same for both; the door class’s door_to property returns the appropriate
location from the between property depending on where the player is when the
door_to property is checked. The door_to property will also automatically
result in an attempt to open a closed door (by calling the DoOpen verbroutine),
resulting in an additional turn by calling the Main routine.

X.f. Vehicles

Less frequently used but somewhat more complex than doors are vehicles.
Anything from a car to a UFO to a wild zebra may make an appearance in a
game, and often it is necessary that the player be able to use that object—
whatever it may be—as a means of moving around the game’s geography. The
object library’s vehicle class provides a generic class that can be used to
implement any of these (just for starters), allowing behavior like the following:

>GET ON THE HORSE
You get on the wild mustang.

>RIDE WEST

THE HUGO PROGRAMMING MANUAL

138

Dusty Trail
 This trail leads southwest out of town toward the
river valley and the old prospector's camp.

Note: Before using vehicle objects it is necessary to set the compiler flag
USE_VEHICLES.

Create a vehicle from the vehicle class like this:

vehicle mustang "wild mustang"
{
 article "a"
 adjectives "wild", "untamed"
 nouns "mustang", "horse"
 vehicle_verb "ride"
 preposition "on", "off"
}

The vehicle_verb property provides one or more synonyms for the

verb used to “drive” this particular vehicle object. In the case of a horse, it is
appropriately “ride”. The preposition property defaults in the vehicle class
itself defaults to “in” and “out”, but in the case of a horse should be changed to
the more suitable “on” and “off”.

It is also necessary to provide grammar to relate the words in the
vehicle_verb list to the object library’s DoMoveInVehicle routine.Grammar
he following is recommended:

verb "<verb1>"[, "<verb2>",...]
* DoMoveinVehicle
* object DoMoveinVehicle

So, for our horse “vehicle”, something like the following might suffice:

verb "ride
* DoMoveinVehicle
* object DoMoveinVehicle

It is possible to easily maintain some control over whether a vehicle is

currently capable of moving via the vehicle_move property. This property,
which is true by default, can return false (after printing an appropriate failure
message) if the vehicle is currently not capable of being driven (or ridden or
sailed or whatever the appropriate action may be).

X. USING THE OBJECT LIBRARY

139

To prevent the player from riding the mustang until the horse has been
fed, implement a vehicle_move property similar to this:

vehicle_move
{
 if self is not fed ! assuming a 'fed' attribute
 {
 "This horse isn't going anywhere until you

feed it."
 return false
 }
 else
 return true
}

And finally, it is also necessary to give the vehicle some idea about where

it is able to move. Every location that a vehicle may travel to must contain the
vehicle in a vehicle_path property. For instance, a location to which both the
mustang and a wagon object may move would need:

vehicle_path mustang, wagon

X.g. Plural and Identical Objects

Sometimes it is desirable to have a player be able to (or required to) refer
to multiple objects as a group, or to be able to refer to only a certain number of
such objects out of a larger group even if all the objects are identical. The object
library’s plural_class and identical_class make these sorts of things
possible.

Note: Before using plural or identical objects it is necessary to set the compiler

flag USE_PLURAL_OBJECTS and call InitPluralObjects (usually in
the Init routine).

The plural_class is used in situations where two or more similar

objects may be grouped together and referred to as a unit. For instance:

There are a fudge sundae and a butterscotch sundae
here.

>GET BUTTERSCOTCH SUNDAE
Taken.

>GET FUDGE SUNDAE

THE HUGO PROGRAMMING MANUAL

140

Taken.

All’s well and good. But it would also maybe be nice to be able to take both at
the same time.

>GET SUNDAES
fudge sundae: Taken.
butterscotch sundae: Taken.

That’s where the plural_class comes in.

plural_class sundaes "sundaes"
{
 plural_of fudge_sundae, butterscotch_sundae
 noun "sundaes"
 single_noun "sundae"
}

object fudge_sundae "fudge sundae"
{
 article "a"
 adjective "fudge"
 noun "sundae"
 plural_is sundaes
}

object butterscotch_sundae "butterscotch_sundae"
{
 article "a"
 adjective "butterscotch"
 noun "sundae"
 plural_is sundaes
}51

The plural_of property on the plural class enumerates the objects

which it encompasses; each object encompassed by the plural class then points
back to the plural class in its plural_is property.

The plural_verbs property governs which verbs may be used on the
plural object. The plural_class class itself provides a default plural_verbs
which allows basic verbroutines like DoLook, DoDrop, DoGet, and DoPutIn to
be used. Other actions will result in a response on the order of “You’ll have to

51 One could prevent duplication of properties and other parts of the object definitions by creating a
common sundae class and deriving both fudge_sundae and butterscotch_sundae from it, changing
only the adjective property.

X. USING THE OBJECT LIBRARY

141

do that one at a time”. To change the possible actions for a given plural object,
provide a custom plural_verbs replacement that returns true only if the
verbroutine global variable is a valid verbroutine for the object.

Now, consider the following:

There are five bananas here.

>GET TWO BANANAS
banana: Taken.
banana: Taken.

>INVENTORY
You are carrying two bananas.

>LOOK
There are three bananas here.

Something like that can be done easily by creating an identical object from

the identical_class in the object library. The identical_class is similar
to the plural_class except for a couple details of implementation and
behavior.

identical_class bananas "bananas"
{
 plural_of banana1, banana2, banana3,

banana4, banana5
 noun "bananas"
 single_noun "banana"
}

object banana1 "banana"
{
 noun "banana"
 identical_to bananas
}

banana1 banana2 "banana"52
{}

banana1 banana3 "banana"
{}

...

52 Using banana1 as a class to build subsequent banana objects from is a simple way of copying objects (and
saves typing and/or copying-and-pasting).

THE HUGO PROGRAMMING MANUAL

142

The identical object bananas will allow a player to use all the facilities of

the identical_class in order to manipulate one or more otherwise
indistinguishable banana objects.53

X.h. Attachables

Ropes and other similar objects—anything, really, which ties onto
something else or, even worse, ties between two or more objects—are notoriously
difficult to code. Safe advice on how to code a rope used to be: code a block of
wood instead. The object library provides an attachable class which has
successfully been used for everything from ropes to blankets to three-ended
chains and darts.54

Note: Before using attachable objects it is necessary to set the compiler flag

USE_ATTACHABLES.

The attachable class’s attachable_to property contains a list of all

items to which the object may be attached. The attached_to property contains
a list of all the objects to which the attachable object currently is attached. When
defined, it must be given an appropriate number of elements. For instance,
something that is attachable to only one object would have

attached_to 0

while, for instance, a rope that can be tied between two other objects must have:

attached_to 0, 0

The 0 value (the nothing object) is just an empty placeholder for the
attached_to property. If the attachable’s initial state is to be attached to a
given object, that object can be used instead. For example, a harness that is
already attached to a wagon, but which can also be attached to six horses
(objects) at the same time, might be initialized as follows:

attached_to wagon, 0, 0, 0, 0, 0, 0

with room for seven elements.

53 The author encourages the implementation of bananas in any game. More bananas mean more monkeys,
and monkeys are always fun.
54 See sample.hug for examples of the last two.

X. USING THE OBJECT LIBRARY

143

The attach_take and attach_drop properties are less frequently
used. If attach_take is true, an attempt to take (via calling the DoTake
verbroutine) the attachable is made before attaching (or detaching) it. If
attach_drop is true, the object is automatically dropped after it is attached.

The attach_verbs and detach_verbs properties contain lists of all
valid verbs to attach or detach the object. The DoAttachObject and
DoDetachObject verbroutines can be used by all basic attachables, with new
grammar specified for the object (corresponding exactly to the verb lists in
attach_verbs and detach_verbs) as in:

verb "<verb1>"[, "<verb2>",...]
 * DoVague
 * object DoAttachObject
 * object "to" xobject DoAttachObject
 ...

For instance:

verb "tie", "fasten"
 * DoVague
 * object DoAttachObject
 * object "to" xobject DoAttachObject

DoAttachObject expects a second object (the xobject) to be given as the target
for the object to be attached to; the routine itself contains appropriate error-
handling if only one object is supplied.

To attach and detach an attachable from an object, use the AttachObject
and DetachObject routines:

AttachObject(attachable_object, to_object)

and

DetachObject(attachable_object, from_object)

Either routine returns true on success or false on failure.
To check if a particular object is kept immovable by an attachable, call

ObjectisAttached(this_object); it returns the object number of the
attachable keeping this_object from moving, or false if there is no such
impediment and this_object is free to move. Also, any routine that moves
the player or player’s parent—such as MovePlayer or DoMoveinVehicle—
should call MoveAllAttachables to reconcile the location of attached objects
(since they are not necessarily connected via the object tree).

THE HUGO PROGRAMMING MANUAL

144

Objects with the mobile attribute set may be dragged. Non-attachables
may have an attach_immobile property, which governs whether they may be
pulled, dragged, etc. by returning false when freely moveable or true if
something is keeping it from moving. In the second case, attach_immobile is
also responsible for printing any explanatory message.

X. USING THE OBJECT LIBRARY

145

X.i. What Should I Be Able To Do Now?

By now you should feel comfortable experimenting with the classes in the
object library. You should be able to look at the various implementations of
scenery, components, characters, doors, vehicles, identical/plural objects, and
attachables in existing code (such as in sample.hug) and not only understand
what the various properties of the objects are for, but also how to modify them to
achieve a desired effect.

You should, for instance, be able to implement the following:

1. Two rooms, such as a garden and a shed;

2. A door leading into the shed;

3. Various static scenery objects in each location;

4. A dozen identical roses;

5. A rideable bicycle vehicle kept from going anywhere by a locked

attachable bicycle lock; and even

6. A gardener character who is capable of answering questions
about the things in the shed and the garden.

THE HUGO PROGRAMMING MANUAL

146

XI. ADVANCED FEATURES

XI.a. The Display Object

he display object is a special object with which the Hugo Engine
interacts to allow the program to be knowledgeable about as well as
set certain characteristics of the display. The engine provides access

to the following read-only properties (although the names themselves are
defined in hugolib.h):

screenwidth - width of the display, in characters
screenheight - height of the display, in characters
linelength - width of the current text window
windowlines - height of the current text window
cursor_column - horizontal and vertical position of
cursor_row - the cursor in the current text window
hasgraphics - returns true if graphic display is available
hasvideo - returns true if video playback is available
pointer_x - horizontal mouse position (in characters)
pointer_y - vertical mouse position (in characters)

Note: In this usage, “display” refers to the virtual screen usable by the Hugo
Engine. Depending on the mode of the engine, this may refer to the
full-screen (as for terminal-based ports) or a subsection thereof (i.e., for
the engine running in a window).

Additionally, the following display object properties are also writable by a
program:

title_caption - sets the window title for the game (where

supported)

T

XI. ADVANCED FEATURES

147

needs_repaint - set to true when the GUI display changes
(such as when window size is changed); may
then be reset to false by the program

The Hugo Library also defines the normal read/writable:

statusline_height - of the last-printed status line

In order for the engine to properly identify the display object, it selects the object
(if any) with the textual name “(display)”, i.e., an object that is defined as

object display
{
 ...
}

with no explicit textual name. This is how the Hugo Library defines the display
object, so that the various display object properties are readable as
display.screenheight, display.cursor_column, etc.

XI.b. Windows

It is possible to create an enclosing window within the full-screen display
for text output. Cursor position, line-wrapping, etc. are trimmed to the
boundaries of the current window. Cursor positioning and window boundaries
are always calculated in fixed-width character dimensions. Various syntaxes for
the window statement are:

window 0 Restores full-screen output

window n Creates a window of n lines, bordering
{...} on the top edge and sides of the full-

screen

window l, t, r, b Creates a window with the left-top
{...} corner (l, t) and the right-bottom

corner (r, b), where these coordinates
are character coordinates on the full-
screen

window Redraws the last-defined window
{...}

THE HUGO PROGRAMMING MANUAL

148

Each usage except “window 0” is followed by a block of code during

which, normally, text is output to the window. The window (i.e., its boundaries)
exists for the duration of the “{...}” block. After it finishes, the top of the main
text window is redefined as being immediately below the lowest-drawn window.
To clear the record of any window and restore the main text window to the full-
screen, use “window 0”.

A windowing library file exists called window.h which defines a
window_class and the associated properties so a window object can be created
via:

window_class <window name> "title"
{
 win_position <screen column>, <screen row>
 win_size <columns>, <rows>

 win_textcolor <text color>
 win_backcolor <background color>
 win_titlecolor <title text>
 win_titleback <title background>
}

The window_class also incorporates the property routines win_init,
win_clear, and win_end.

Note: It may be important to keep in mind that measures such as

display.screenwidth may change during execution, particularly in a
graphical user interface windowing environment which allows resizing
of the Hugo program window. For this reason, it is wise to resample
display.<property> whenever a window is to be drawn instead of
basing the coordinates on, for example, a set of boundaries calculated
during program initialization.

XI.c. Reading And Writing Files

There may be times when it will be useful to store data in a file for later
recovery. The most basic way of doing this involves

x = save

and

XI. ADVANCED FEATURES

149

x = restore

where save and restore return a true value if successful, or a false value if for
some reason they fail. The user is promped for a filename, and, in either case, the
entire set of game data—including object locations, variable values, arrays,
attributes, etc.—is saved or restored, as appropriate.

Other times, it may be desirable to save only certain values. For example,
a particular game may allow a player to create certain player characteristics or
other “remembered data” that can be restored in the same game or in different
games. To accomplish this, use the writefile and readfile operations.

The structure

writefile <filename>
{
 ...
}

will, at the start of the writefile block, open <filename> for writing and
position <filename> to the start of the (empty) file. (If the file exists, it will be
cleared/erased.) At the conclusion of the block, the file will be closed again.

Within a writefile block, write individual values using

writeval <value1>[, <value2>, ...]

where one or more values can be specified.
To read the file, use the structure

readfile <filename>
{
 ...
}

which will contain the assignment

x = readval

for each value to be read, where x can be any storage type such as a variable,
property, etc.

For example:

local count, test

THE HUGO PROGRAMMING MANUAL

150

count = 10
writefile "testfile"
{
 writeval count, "telephone", 10
 test = FILE_CHECK
 writeval test
}
if test ~= FILE_CHECK ! an error has occurred
{
 print "An error has occurred."
}

will write the variable count, the dictionary entry “telephone”, and the value 10
to “testfile”. Then,

local a, b, c, test

readfile "testfile"
{
 a = readval
 b = readval
 c = readval
 test = readval
}
if test ~= FILE_CHECK ! an error has occurred
{
 print "Error reading file."
}

If the readfile block executes successfully, a will be equal to the former value
count, b will be “telephone”, and c will be 10.

The constant FILE_CHECK, defined in hugolib.h, is useful because
writefile and readfile provide no explicit error return to indicate failure.
FILE_CHECK is a unique two-byte sequence that can be used to test for success.
In the writefile block, if the block is exited prematurely due to an error, test
will never be set to FILE_CHECK. The if statement following the block tests for
this. In the readfile block, test will only be set to FILE_CHECK if the
sequence of readval functions finds the expected number of values in “testfile”.
If there are too many or too few values in “testfile”, or if an error forces an early
exit from the readfile block, test will equal a value other than FILE_CHECK.

XI. ADVANCED FEATURES

151

XI.d. Mouse Input

If the player clicks somewhere on the screen with the mouse pointer (or
taps on the screen on a handheld device, or whatever the comparable action is
for the platform in question), a Hugo program may read that action. Specifically,
a pause statement, which normally stores the ASCII value of a keypress in
word[0], will instead store the value MOUSE_CLICK (defined in hugolib.h to
be 1) if the mouse is clicked while the engine is waiting for that keypress.

A mouse click (or equivalent action) has no effect during player input—
i.e., when the program is waiting for a typed command—unless the individual
port provides some behavior such as bringing up a menu, entering a double-
clicked word into the input line, etc. The running Hugo program cannot itself
monitor mouse input during typed input.

As mentioned above, the display object provides the read-only properties
pointer_x and pointer_y, which give the horizontal and vertical position of
the mouse (in characters) respectively.

THE HUGO PROGRAMMING MANUAL

152

XII. RESOURCES

XII.a. Creating And Using Resources

he engine allows a Hugo program to access external media data (called
resources) compiled into a specially formatted file called a resourcefile.
Resourcefiles contain sounds, music, images, and video files used by the

program. A resourcefile is created using:

resource "<resourcefile>"
{
 "<resource1>"
 "<resource2>"
 ...
}

The <resourcefile> name must be 8 or fewer alphanumeric characters

which will automatically be converted to all-uppercase. (The reason for this is to
maximize portability across different platforms and filenaming systems—
unfortunately not everyone adheres to the same conventions, so this restriction is
intended to reduce filenaming to the lowest common denominator.)

Currently Hugo supports as resources: JPEG graphic files, RIFF/WAV
audio samples, MOD/S3M/XM music modules, MIDI and MP3 songs, and
MPEG and AVI movies.55

For example, here is an imaginary example resourcefile compiled on a
Windows platform:

resource "GAMERES1"
{
 "c:\hugo\graphics\logo.jpg"
 "h:\data\scenic panorama.jpg"
 "h:\data\background.jpg"

55 Versions of Hugo prior to v3.0 may not support all resource types. See APPENDIX F: HUGO VERSIONS
for more information.

T

XII. RESOURCES

153

 "c:\music\intro_theme.s3m"
 "c:\music\theme2.xm"
 "c:\sounds\sample1.wav"
 "c:\sounds\sample2.wav"
}

It doesn’t matter that the nomenclature within a resource definition is

non-portable. In the above “GAMERES1”, for example, the filenaming is specific
to Windows, since that’s where the original files will be found. The resources,
however, are accessed only by their filenames as entries in the resourcefile index.
Therefore, after “GAMERES1” is created, the three pictures are referred to as
“logo”, “scenic panorama” and “background” within the resourcefile
“GAMERES1”. (Note that any drive/path or extension specification is removed
and not included in the index. As a result, two resources with the same name
but different paths/extensions cannot be written into the same resourcefile.)

Because of the relative non-portability of resourcefiles (plus the additional
time it may take on slower machines to index and consolidate potentially
hundreds of kilobytes of data), it is recommended that resources be compiled
from separate source files than the rest of a Hugo game.

The library extension resource.h provides useful routines for managing
resources in a Hugo program. It also defines the following potential values for
the system_status global, which may be tested after a resource operation. If
system_status is non-zero (where zero signifies normal status), it will contain
one of the following values56:

 -1 STAT_UNAVAILABLE
 101 STAT_NOFILE
 102 STAT_NORESOURCE
 103 STAT_LOADERROR

XII.b. Pictures

A picture is displayed as a resource in a resourcefile using:

picture "<resourcefile>", "<picture>"

For example,

picture "gameres1", "logo"

56 The result codes are defined in resource.h.

THE HUGO PROGRAMMING MANUAL

154

(It is also possible to enter the path of a picture directly, such as

picture "c:\hugo\graphics\logo.jpg"

but since this path/filename is obviously operating-system-specific, it should be
used for testing only. If the named picture is not found in the given resourcefile,
the engine will similarly try to load the picture as an independent file from the
current search path(s).)

The picture will be displayed in the currently defined text window. If the
picture is smaller than the current window, it will be centered. If larger, it will be
shrunk to fit. If the particular version of the Hugo Engine being used is not
graphics-enabled, picture will have no effect. If the picture is not found or a
recoverable error occurs during loading, normal engine execution continues
uninterrupted.

resource.h provides a couple of useful routines for managing graphics:

LoadPicture("resourcefile", "picture")
LoadPicture("picture")

PictureinText("file", "pic", width, height, preserve)
PictureinText("picture", width, height, preserve)

LoadPicture is essentially a simple wrapper for the picture statement,
providing the additional service of checking display.hasgraphics to ensure
that graphics display is available. PictureinText is slightly more complex. It
allows a picture to be displayed in the normal flow of text in the main window.
The <width> and <height> arguments give the fixed-width character
dimensions of the display area. (Because displays differ in their character
dimensions, it is recommended to calculate these based on
display.screenwidth and display.screenheight instead of passing
absolute values.) The <preserve> parameter, if given, specifies the number of
lines (i.e., one or more) at the top of the screen that are protected from scrolling
off.

(Either LoadPicture or PictureinText can be called with only a
picture, i.e., with no resourcefile named. In this case, resource.h will attempt
to find the resource in the last used resourcefile, stored in the
last_resource_file global. Wherever possible, however, it is recommended
to always specify the resourcefile name.)

XII.c. Sound And Music

Sounds and music are played as follows:

XII. RESOURCES

155

sound [repeat] <resourcefile>, <resource>[, <vol>]
music [repeat] <resourcefile>, <resource>[, <vol>]

The repeat keyword is optional; if supplied, it forces the engine to repeatedly
play the sound/music resource until further notice (i.e., until it is stopped or a
new sound/music resource is played). The <vol> argument is optional. If
given, it gives a volume percentage (0-100) for playback. Currently playing
sound or music can be stopped using:

sound 0
music 0

resource.h provides a pair of wrapper functions to manage playing of

audio resources:

PlaySound(resourcefile, sample, loop, force)
PlayMusic(resourcefile, song, loop, force)

In either case, if <loop> is true, it has the same effect as using the repeat token
after sound or music. If <force> is true, the sample or song is restarted even if
that same sample or song is already playing (otherwise the PlaySound or
PlayMusic call will have essentially no effect). To stop a sample or song from
playing via the library interface, use:

PlaySound(SOUND_STOP)
PlayMusic(MUSIC_STOP)

(where SOUND_STOP and MUSIC_STOP are constants defined in resource.h).

XII.d. Video

Video is displayed similarly to static graphic images (that is, it is
displayed in the currently window) and controlled similarly to music and sound.
The syntax for playing video looks like:

video [repeat] <resfile>, <res>[, <vol>, <bkground>]

The video resource res is played from resourcefile resfile, at the

volume vol. If the optional repeat keyword is used, the video plays in a loop,
starting over at the beginning when it hits the end. Normally the engine waits
for the video to finish playing. If the bkground parameter is given and is non-

THE HUGO PROGRAMMING MANUAL

156

false, the video plays in the background and the program continues to run, the
player may type input, etc. In combination with the repeat token, this is useful
for creating background/scenic animations.

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

157

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

and

Description: Logical AND.

Syntax: x = <value1> and <value2>

Result: x will be true if <value1> and <value2> are both

non-zero, false if one or both is zero.

anything

Description: Object specifier in grammar syntax line, indicating
that any nameable object in the object tree is valid.

array

Description: When used as a data type modifier, specifies that the
following value is to be treated as an array address.

Example: <var1> = array <var2>[<n>]

 The variable <var2> will be treated as an array

address.

break

Description: Terminates the immediate enclosing loop.

Example: while <expression1>
 {
 while <expression2>

THE HUGO PROGRAMMING MANUAL

158

 {
 if <expression3>
 break
 ...
 }
 ...
 }

 The break statement, if encountered, will terminate

the innermost loop.

call

Description: Calls a routine indirectly, i.e., when the routine
address has been stored in a variable, object property,
etc.

Syntax: call <value>[(<arg1>, <arg2>,...)]

 or

 x = call <value>(...)

 where <value> is a valid data type holding the

routine address.

Value: When used as a function, returns the value returned

by the specified routine.

capital

Description: Print statement modifier, indicating that the next
word should be printed with the first letter
capitalized.

Syntax: print capital <address>

 where <address> is any dictionary word, such as,

for example, an object.name property.

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

159

case

Description: Specifies a conditional case in a select structure.

Syntax: select <val>
 case <case1>[, <case2>,...]
 ...
 case <case3>[, <case4>,...]
 ...

 where <val> is value such as a variable, routine

return value, object property, array element, etc., and
each <case> is a single value for comparison (not an
expression).

child

Syntax: x = child(<parent>)

Return value: The object number of the immediate child object of

<parent>, or 0 if <parent> has no children.

children

Syntax: x = children(<parent>)

Return value: The number of child objects possessed by <parent>.

cls

Description: Clears the current text window repositions the output
coordinates at the bottom left of the text window.

Syntax: cls

color (colour)

Description: Sets the display colors for text output.

Syntax: color <foreground>[, <background>]

THE HUGO PROGRAMMING MANUAL

160

 where <background> is optional

Parameters: Standard color values for <foreground> and

<background> with constants defined in
hugolib.h (see page 59) are:

 0 Black BLACK
 1 Blue BLUE
 2 Green GREEN
 3 Cyan CYAN
 4 Red RED
 5 Magenta MAGENTA
 6 Brown BROWN
 7 White WHITE
 8 Dark gray DARK_GRAY
 9 Light blue LIGHT_BLUE
 10 Light green LIGHT_GREEN
 11 Light cyan LIGHT_CYAN
 12 Light red LIGHT_RED
 13 Light magenta LIGHT_MAGENTA
 14 Light yellow LIGHT_YELLOW
 15 Bright white BRIGHT_WHITE

dict

Description: Dynamically creates a new dictionary entry at
runtime.

Syntax: x = dict(<array>, <maxlen>)

 x = dict(parse$, <maxlen>)

 where <array> or parse$ holds the string to be

written into the dictionary, and <maxlen> represents
the maximum number of characters to be written.
Returns the new dictionary address.

 Note: Space should be reserved for any dictionary

entries to be created at runtime using the
$MAXDICTEXTEND setting during compilation.

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

161

do

Description: Marks the starting point of a do-while loop.

Syntax: do
 {
 ...
 }
 while <expr>

 The loop will continue to run as long as <expr>

holds true.

elder

Syntax: x = elder(<object>)

Return value: The object number of the object preceding <object>

on the same branch in the object tree. The reverse of
sibling.

eldest

Same as child.

else

Description: In an if-elseif-else conditional block, indicates
the default operation if no previous condition has
been met.

Syntax: if <condition>
 ...
 else
 ...

elseif

Description: In an if-elseif-else conditional block, indicates a
condition that will be checked only if no preceding
condition has been met.

THE HUGO PROGRAMMING MANUAL

162

Syntax: if <condition1>
 ...
 elseif <condition2>
 ...
 elseif <condition3>
 ...

false

Description: A predefined constant value: 0.

for

Description: Loop construction.

Syntax: for (<initial>; <test>; <mod>)
 {
 ...
 }

 for <var> in <object>
 {
 ...
 }

 For the first form, where <initial> is the initial

assignment expression (e.g. a = 1), <test> is the
test expression (e.g. a < 10), and <mod> is the
modifying expression (e.g. a = a + 1). The loop
will execute as long as <test> holds true.

 The second form loops through all the children of

<object> (if any), setting <var> to each child object
in sequence.

held

Description: Object specifier in grammar syntax line, indicating
that any single object possessed by the player object is
valid.

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

163

hex

Description: Print statement modifier signifying that the following
value is not a dictionary address, but should be
printed as a hexadecimal number.

Syntax: print hex <var>

 where, for example, <var> is equal to 26, will print

“1A”.

if

Description: A conditional expression.

Syntax: if <condition>
 ...

 where <condition> is an expression or value, will

run the following statement block only if
<condition> is true.

in

Description: When used in an object definition, places the object in
the object tree as a possession of the specified parent.
When used in an expression, returns true if the object
is in the specified parent.

Syntax: in <parent>

 or, for example:

 if <object> [not] in <parent>
 {
 ...
 }

THE HUGO PROGRAMMING MANUAL

164

input

Description: Receive input from keyboard, storing the dictionary
addresses of the individual words in the word array.
Unrecognized words are given a value of 0.

Syntax: input

is

Description: Attribute assignment/testing.

Syntax: <object> is [not] <attribute>

Usage: When used as an assignment on its own, will set (or

clear, if not is used) the specified attribute for the
given object. May also be used in an expression.

Return value: When used in an expression, returns true if

<object> has the specified attribute set (or cleared,
if not is used). Otherwise, it returns false.

jump

Description: Jumps to a specified label.

Syntax: jump <label>

 where a unique <label> exists on a separate line

somewhere in the program, in the form:

 :<label>

local

Description: Defines one or more variables local to the current
routine.

Syntax: local <var1>[, <var2>, <var3>,...]

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

165

locate

Description: Sets the cursor position within the current text
window.

Syntax: locate(<row>, <column>)

Note: The maximum horizontal/vertical cursor position is

constrained by the boundaries of the current text
window. The cursor position is calculated in fixed-
width character coordinates.

move

Description: Moves an object with all its possessions to a new
parent.

Syntax: move <object> to <new parent>

multi

Description: Object specifier in grammar syntax line, indicating
that multiple available objects are valid.

multiheld

Description: Object specifier in grammar syntax line, indicating
that multiple objects possessed by the player object
are valid.

multinotheld

Description: Object specifier in grammar syntax line, indicating
that multiple objects explicitly not held by the player
object are valid.

music

Description: Load and play a music resource (if audio output is
available).

THE HUGO PROGRAMMING MANUAL

166

Syntax: music [repeat] "file", "song"[, vol]
 music 0

 where <file> is a compiled Hugo resourcefile, and

<song> is a music module in MOD, S3M, or XM
format. The optional <vol> argument, if given,
ranges from 0 to 100 and gives a percentage of
volume for playback. If the repeat token is used,
the song continues to loop until either a new song is
played, or the current song is stopped (using “music
0”).

nearby

Description: Used in an object definition to place the object in the
specified position in the object tree.

Syntax: nearby <object>

 Gives the current object the same parent as

<object>.

 nearby

 Gives the current object the same parent as the last-

defined object.

newline

Description: Print statement modifier, indicating that a line feed
and carriage return should be issued if the current
output position is not already at the start of a blank
line.

Syntax: print newline

not

Description: Logical not.

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

167

Syntax: x = not <value>

 <object> is not <attribute>

Result: In the first example, x will be true if <value> is false,

or false if <value> is true.

 In the second, the specified attribute will be cleared

for <object> when used alone as an assignment. As
part of an expression, it will return true only if
<object> does not have <attribute> set.

notheld

Description: Object specifier in grammar syntax line, indicating
that a single object explicitly not held by the player
object is valid.

number

Description: When used in a grammar syntax line, indicates that a
single positive integer number is valid.

 When used as a print statement modifier, indicates

that the following value is not a dictionary address,
but should be printed as a positive integer number.

Syntax: (for usage as a print statement modifier)

 print number <val>

 where, for example, <val> is equal to 100, will print

“100” instead of the word beginning at the address
100 in the dictionary table.

object

Description: Global variable holding the object number of the
direct object, if any, specified in the input line.

THE HUGO PROGRAMMING MANUAL

168

 When used in a grammar syntax line, indicates that a
single available object is valid.

or

Description: Logical OR.

Syntax: x = <value1> or <value2>

Result: x will be true if either <value1> or <value2> is

non-false, or false if both are false.

parent

(Usage 1)

Syntax: x = parent(<object>)

Return value: The object number of <object>‘s parent object.

(Usage 2)

Description: When used in a grammar syntax line, indicates that

the domain for validating the availability of the
specified direct object should be set to the parent
object specified in the input line.

parse$

Description: Read-only engine variable that contains either the
offending portion of an invalid input line or any
section of the input line enclosed in quotes.

pause

Description: Pauses until a key is pressed. The value of the key is
stored in word[0].

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

169

picture

Description: Load and display an image resource in the currently
defined window (if graphics are available).

Syntax: picture "<resourcefile>", "<picture>"
 picture "<picturefile>"

 where, while <resourcefile> is optional, it is very

highly recommended (otherwise, <picturefile>
will likely not be named in a cross-platform portable
format).

playback

Description: Plays back recorded commands from a file in place of
keyboard input (by prompting the user).

Syntax: x = playback

Return value: True if successful, false if not.

print

Description: Print text output.

Syntax: print <output>

 where <output> can consist of both test strings

enclosed in quotation marks (“...”), and values
representing dictionary addresses, such as object
names. Separate components of <output> are
separated by a semicolon (‘;’). Each component may
also be preceded by a modifier such as capital,
hex, or number.

printchar

Description: Prints a character or series of characters at the current
cursor position. No newline is printed.

THE HUGO PROGRAMMING MANUAL

170

Syntax: printchar <val1>[, <val2>,...]

quit

Description: Terminates the game loop.

Syntax: quit

random

Description: Engine function which generates a random number.

Syntax: x = random(<val>)

Return value: Where <val> is a positive integer number, will

return a random number between 1 and <val>,
inclusively.

readfile

Description: A structure that allows values to be read from a file
written using writefile.

Syntax: readfile <filename>
 {
 ...
 }

 The file is opened and positioned to the start at the

beginning of the readfile block, and closed at the
end.

readval

Description: Reads a value in a readfile block.

Syntax: x = readval

Value: The value read, or 0 in the case of an error. Use the

FILE_CHECK constant defined in hugolib.h to

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

171

determine if a readfile block has been executed
successfully.

recordoff

Description: Ends recording commands to a file.

Syntax: x = recordoff

Value: True if successful, false if not.

recordon

Description: Begins recording commands to a file (by prompting
the user).

Syntax: x = recordon

Value: True if successful, false if not.

remove

Description: Removes an object from the object tree.

Syntax: remove <object>

 (The same as: move <object> to 0)

restart

Description: Reloads the initial game data from the .HEX file and
calls the Init routine.

Syntax: x = restart

Note: The restart statement does not technically restart

the engine; the game loop continues uninterrupted
after Init is called, only with the game data restored
to its initial state.

THE HUGO PROGRAMMING MANUAL

172

Value: True if successful, false if not.

restore

Description: Restores a saved game’s state data from a previously
saved file (by prompting the user).

Syntax: x = restore

Value: True if successful, false if not.

return

Description: Returns from a called routine.

Syntax: return [<expression>]

Return value: Returns <expression> if provided, otherwise

returns false.

run

Description: Runs an object property routine if one exists.

Syntax: run <object>.<property>

Return value: None; any value returned by the property routine is

discarded.

runevents

Description: Calls all events which are either global or currently
within the event scope of the player object.

Syntax: runevents

save

Description: Saves the current game state to a file (by prompting
the user).

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

173

Syntax: x = save

Value: True if successful, false if not.

scriptoff

Description: Turns transcription off.

Syntax: x = scriptoff

Value: True if successful, false if not.

scripton

Description: Turns transcription (i.e., recording output to a file or
to a printer) on.

Syntax: x = scripton

Value: True if successful, false if not.

select

Description: Specifies the value for comparison in a select-case
conditional structure.

Syntax: select <val>
 case <case1>[, <case2>,...]
 ...
 case <case3>[, <case4>,...]
 ...

 where <val> is value such as a variable, routine

return value, object property, array element, etc., and
each <case> is a single value for comparison (not an
expression).

THE HUGO PROGRAMMING MANUAL

174

serial$

Description: Read-only engine variable that contains the serial
number as written by the compiler.

sibling

Syntax: x = sibling(<object>)

Return value: The number of the object next to <object> on the

same branch of the object tree.

sound

Description: Load and play an audio sample resource (if waveform
audio output is available).

Syntax: sound [repeat] "file", "sample"[, vol]
 sound 0

 where <file> is a compiled Hugo resourcefile, and

<sample> is a waveform sample in RIFF/WAV
format. The optional <vol> argument, if given,
ranges from 0 to 100 and gives a percentage of
volume for playback. If the repeat token is used,
the sample continues to loop until either a new
sample is played, or the current sample is stopped
(using “sound 0”).

string

Description: When used in a grammar syntax line, indicates that a
string array enclosed in quotation marks is valid.

 When used as a function, stores a dictionary entry in a

string array.

Syntax: x = string(<array>, <dict>, <maxlen>)

 x = string(<array>, parse$, <maxlen>)

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

175

 where <array> is an array address, stores the either
the dictionary entry given by <dict> or the contents
of parse$ as a series of characters, to a maximum of
<maxlen> characters. Returns the length of the
string stored in <array>.

system

Description: Built-in function to call low-level system functions.

Syntax: system(<function>)

FUNC. LABEL DESCRIPTION
 11 READ_KEY Read keypress
 21 NORMALIZE_RANDOM Make random values predictable
 22 INIT_RANDOM Restore “random” random values
 31 PAUSE_SECOND Pause for one second
 32 PAUSE_100TH_SECOND Pause for 1/100th of a second
 41 GAME_RESET Returns true after restore or undo
 51 SYSTEM_TIME Stores system time in parse$
 61 MINIMAL_INTERFACE Returns true for minimal ports

(Labels are defined as a constants in system.h.)

If <function> is unavailable, the engine may set system_status to -1
(STAT_UNAVAILABLE).

text

text to <val> Sends text to the array table, beginning at address
<val>.

text to 0 Restores normal printing.

to

Description: In a print statement, prints blank spaces in the
current background color to the specified position.

Syntax: print to <val>

THE HUGO PROGRAMMING MANUAL

176

 where <val> is a positive integer less than or equal to

the maximum column position

true

Description: Predefined constant: 1.

undo

Description: Attempts to recover the state of the game data before
the last player command.

Syntax: x = undo

Value: True if successful, false if not.

verb

Description: Begins definition of a regular verb. Upon returning
true from the verb routine, Main is called.

Syntax: verb "<word1>"[, "<word2>",...]

while

Description: Component of while or do-while loop construct.

Syntax: while <expr>
 {
 ...

 }

 or

 do
 {
 ...
 }
 while <expr>

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

177

 where the loop will run as long as <expr> holds true.

window

Description: Switches output to the status window.

Syntax: window a[, b, c, d]
 {...}

 or

 window
 {...}

 or

 window 0

 If only a single value <a> is given, a window of <a>

lines from the top of the screen is created. If more
values are given, a window from top-left (a, b) to
bottom-right (c, d) is created. If no values are given,
the last-defined window is recreated. The new
boundaries apply for the length of the following
“{...}” code block.

 “window 0” restores full-screen display. There is no

following code block.

writefile

Description: A structure that writes values to a file that may be
read using readfile.

Syntax: writefile <filename>
 {
 ...
 }

 The file is opened and positioned to the start at the

beginning of the writefile block, and closed at the
end.

THE HUGO PROGRAMMING MANUAL

178

writeval

Description: Writes one or more values in a writefile block.

Syntax: writefile value1[, value2, ...]

xobject

Description: Global variable holding the object number of the
indirect object, if any, specified in the input line.

 When used in a grammar syntax line, indicates that a

single available object is valid.

xverb

Description: Begins definition of non-action verb. Upon returning
from the verb routine, Main is not called.

Syntax: xverb "<word1>"[, "<word2>", ...]

younger

Same as sibling.

youngest

Syntax: x = youngest(<parent>)

Return value: The number of the object most recently added to

parent <parent>.

APPENDIX B: THE HUGO LIBRARY

179

APPENDIX B: THE HUGO LIBRARY

ATTRIBUTES

clothing for objects that can be worn
container if an object can hold other objects
enterable if an object is enterable
female if a character is female
hidden if an object is not to be listed
known if an object is known to the player
light if an object is or provides light
living if an object is a character
lockable if an object can be locked
locked if an object is locked
mobile if an object can be rolled, etc.
moved if an object has been moved
open if an object is open
openable if an object can be opened
platform if other objects can be placed on it
 Note: container and platform are

generally mutually exclusive)
plural for plural objects (i.e., some hats)
quiet if container or platform is quiet (i.e., the initial

listing of contents is suppressed)
readable if an object can be read
special for miscellaneous use
static if an object cannot be taken
switchable if an object can be turned on or off
switchedon if an object is on
transparent if an object is not opaque
unfriendly if a character is unfriendly
visited if a room has been visited
worn if an object is being worn

THE HUGO PROGRAMMING MANUAL

180

For system use:

already_listed if object has been pre-listed (i.e., before, for

example, a WhatsIn listing)
workflag for system use

GLOBALS

The first 12 globals are pre-defined by the compiler:

object direct object of a verb action
xobject indirect object
self self-referential object
words total number of words
player the player object
actor player, or another char. (for scripts)
location location of the player object
verbroutine the verb routine
endflag if not false (0), run EndGame
prompt for the player input line
objects the total number of objects
system_status after certain operations

Game setup global variables:

MAX_SCORE total possible score
MAX_RANK up to x levels of player ranking
player_person first (1), second (2), or third (3)

Formatting/output global variables:

FORMAT specifies text-printing format
DEFAULT_FONT initially 0; could be set to, e.g., PROP_ON
STATUSTYPE 0=none, 1=score/turns, 2=time
TEXTCOLOR normal text color
BGCOLOR normal background color
SL_TEXTCOLOR statusline text color
SL_BGCOLOR statusline background color
INDENT_SIZE for paragraph indenting
AFTER_PERIOD string of spaces following a full-stop

APPENDIX B: THE HUGO LIBRARY

181

Runtime global variables:

counter elapsed turns (or time, as desired)
event_flag set when something happens (see DoWait)
general for general use
light_source light source in location
number_scripts number of active character scripts
obstacle if something is stopping the player
score accumulated score
speaking if the player is talking to a character
verbosity for room descriptions

it_obj to reference objects via pronouns
her_obj
him_obj
them_obj

The following are generally for system use, but may be accessed if necessary:

customerror_flag true once CustomError is called
last_object set by Perform to value of object
list_nest used by ListObjects
need_newline true when newline should be printed
old_location whenever location changes
override_indent true if no indent should be printed

ARRAYS

_temp_array[256] used by string manipulation functions
menuitem[11] required by the Menu function
oldword[MAX_WORDS] for “again” command
parse_rank[] for library parser state
ranking[] in tandem with scoring
replace_pronoun[] for it_obj, him_obj, etc.
scriptdata[] for object scripts
setscript[] the actual scripts

CONSTANTS

BANNER should be printed in every game header

THE HUGO PROGRAMMING MANUAL

182

MAX_SCRIPTS that may be active at one time
MAX_WORDS in a parsed input line

Color constants:

BLACK DARK_GRAY
BLUE LIGHT_BLUE
GREEN LIGHT_GREEN
CYAN LIGHT_CYAN
RED LIGHT_RED
MAGENTA LIGHT_MAGENTA
BROWN YELLOW
WHITE BRIGHT_WHITE

DEF_FOREGROUND DEF_BACKGROUND
DEF_SL_FOREGROUND DEF_SL_BACKGROUND
MATCH_FOREGROUND

Printing format mask constants (for setting the FORMAT global):

LIST_F print itemized lists, not sentences
NORECURSE_F do not recurse object contents
NOINDENT_F do not indent listings
DESCFORM_F alternate room description formatting
GROUPPLURALS_F list plurals together where possible

Font style mask constants (for use with the Font routine):

BOLD_ON BOLD_OFF boldface
ITALIC_ON ITALIC_OFF italics
UNDERLINE_ON UNDERLINE_OFF underline
PROP_ON PROP_OFF proportional printing

Additional constants:

UP_ARROW LEFT_ARROW for reading keystrokes
DOWN_ARROW ENTER_KEY
RIGHT_ARROW ESCAPE_KEY
MOUSE_CLICK

AND_WORD (“and”) IN_WORD (“in”)
ARE_WORD (“are”) IS_WORD (“is”)
HERE_WORD (“here”) ON_WORD (“on”)

APPENDIX B: THE HUGO LIBRARY

183

FILE_CHECK for verifying writefile and
 readfile operations

MENU_TEXTCOLOR normal menu text color
MENU_BGCOLOR normal menu background color
MENU_SELECTCOLOR menu highlight color
MENU_SELECTBGCOLOR menu highlight background color)

PROPERTIES

The first 6 properties are pre-defined by the compiler:

name basic object name
before pre-verb routines
after post-verb routines
noun (nouns) noun(s) for referring to object
adjective (adjectives) adjective(s) describing object
article “a”, “an”, “the”, “some”, etc.

preposition (prep) “in”, “inside”, “outside of”, etc.57

capacity contains a value representing the

capacity of a container or platform

exclude_from_all returns true if the object should be

excluded from actions such as “>GET
ALL”

found_in in case of multiple virtual (not

“physical”) parents, found_in may
hold one or more object numbers; in this
case, an “in <object>” specifier
should probably not be included in the
object definition, since found_in
values are unrelated to “<object> in
<parent>” relationships

57 Used generally for room objects in order to give a grammatically correct description if necessary; also for
containers and platforms.

THE HUGO PROGRAMMING MANUAL

184

holding contains a value representing the
current encumbrance of a container or
platform

in_scope contains a list of actors or objects to

which the object is accessible beyond the
use of the object tree or the found_in
property; generally contains either the
player object (or, less commonly,
another character) and is set using
PutInScope or cleared using
RemoveFromScope

initial_desc routine; same as above, but if object has

not been moved and an initial_desc
exists, it is called in place of
short_desc

list_contents a routine that overrides the normal

contents listing for a room or object;
normal listing is only carried out if it
returns false

long_desc routine; detailed description of an object

misc miscellaneous use

parse_rank when there is ambiguity between

similarly named objects, the parser will
choose the one with a higher
parse_rank over one with a lower (or
non-existent) value; used when
FindObject(<object>, 0) is called

pronoun “he”, “him”, “his” or equivalent, so that

an object is properly referred to

reach for enterable objects such as chairs,

vehicles, etc., if the accessibility of
objects outside the object in question is
limited, reach contains a list of the
objects which may be accessed

APPENDIX B: THE HUGO LIBRARY

185

react_before to allow reaction by an object that is not

react_after directly involved in the action

short_desc routine; basic “X is here” description

size for holding/inventory purposes,

contains a value representing the size of
an individual object

type to identify the type of object, used

primarily by class definitions in
objlib.h

For room objects only:

n_to If a player can move to another
ne_to location to the north, then n_to
e_to holds the new room object; if the
se_to new object is to the south, s_to
s_to holds the new object, etc.
sw_to
w_to
nw_to
u_to
d_to
in_to
out_to

cant_go routine; message instead of the default

“You can’t go that way.”

For non-room objects only:

contains_desc a routine that prints the introduction to

a list of child objects, instead of the
default “Inside <object> are
...” or “<Character> has ...”;
contains_desc should always

THE HUGO PROGRAMMING MANUAL

186

conclude with a semicolon (‘;’) instead
of a new line

desc_detail a routine that prints a parenthetical

detail following an object listing, such
as: “ (which is open)”; the leading
space is expected, as are the
parentheses, and the print statement
should conclude with a semicolon (‘;’)

door_to for handling “>ENTER <object>“,

holds the object number of the object to
which an object enters (where the latter
behaves as a door or portal)

ignore_response for characters, a routine that runs if the

character ignores a player’s question,
request, etc., instead of the default “X
ignores you.”

inv_desc a routine that prints a special

description when the object is listed as
part of the player’s inventory;
inv_desc should conclude with a
semicolon (‘;’)

key_object if lockable, contains the object

number of the key

order_response also for characters, a routine that

processes an imperative command
addressed to the character by the player;
it should return false if no response is
provided

when_open routines; special short descriptions for
when_closed openable objects, where if one exists it

is called in place of short_desc (when
the object is open or not open, as
appropriate) if an initial_desc does
not exist, or if the object has been moved

APPENDIX B: THE HUGO LIBRARY

187

Note: It is recommended for property routines that print a description—such

as short_desc, initial_desc, etc.—that the routine not simply
return true without printing anything as a means of “hiding” the object;
such a method may throw text formatting into disarray. The proper
means of omitting an object from a list is to set the hidden attribute.

For the display object only:

Read-only:

cursor_column horizontal and vertical position of
cursor_row the cursor in the current text window
hasgraphics true if graphics display is available
hasvideo true if video playback is available
linelength width of the current text window
pointer_x fixed-width column of last mouse click
pointer_y fixed-width row of last mouse click
screenwidth width of the display, in characters
screenheight height of the display, in characters
windowlines height of the current text window

Read/writable:

needs_repaint true if the operating system has

requested a repaint (for ports which
support it)

statusline_height the number of lines used to print the

statusline

title_caption dictionary entry giving the full proper
 name of the program (optional)

While screenwidth through title_caption are technically defined by
hugolib.h as constants, they are used as property numbers to reference data on
the display object.

THE HUGO PROGRAMMING MANUAL

188

VERB ROUTINES

The library file verblib.h (included by hugolib.h) contains a fairly
extensive set of basic actions, each of which takes the form Do<verb>, so that the
action for taking an object is DoGet, the action for basic player movement is
DoGo, etc. Each is called by the engine when a grammar syntax line specifying
the particular verb routine is matched. The globals object and xobject are set
up by the engine, and the routine is called with no parameters.

Here is a list of the provided verb routines for action verbs:

DoAsk, DoAskQuestion, DoClose, DoDrink, DoDrop, DoEat,
DoEmpty, DoEnter, DoExit, DoGet, DoGive, DoGo, DoHello, DoHit,
DoInventory, DoListen, DoLock, DoLook, DoLookAround,
DoLookIn, DoLookThrough, DoLookUnder, DoMove, DoOpen,
DoPutIn, DoPutOnGround, DoShow, DoSit, DoSwitchOff,
DoSwitchOn, DoTakeOff, DoTalk, DoTell, DoUnlock, DoVague,
DoWait, DoWaitforChar, DoWaitUntil, DoWear

Here are the non-action verb routines:

DoBrief, DoRecordOnOff, DoRestart, DoRestore, DoSave,
DoScriptOnOff, DoScore, DoSuperbrief, DoUndo, DoVerbose,
DoQuit

Output messages for these verbroutines are handled by the routine VMessage in
verblib.h.

A set of verb stub routines is also available in verbstub.h, including the
actions:

DoBurn, DoClimb, DoClimbOut, DoCut, DoDig, DoFollow, DoHelp,
DoHelpChar, DoJump, DoKiss, DoNo, DoPull, DoPush, DoSearch,
DoSleep, DoSmell, DoSorry, DoSwim, DoThrowAt, DoTie, DoTouch,
DoUntie, DoUse, DoWake, DoWakeCharacter, DoWave, DoWaveHands,
DoYell, DoYes

The default response for each of these stub routines is a more colorful variation
of “Try something else.” Any more meaningful response must be
incorporated into before property routines. To use these verbs, set the
VERBSTUBS flag before compiling hugolib.h.

APPENDIX B: THE HUGO LIBRARY

189

UTILITY ROUTINES, ETC.

First, the junction routines:

EndGame called by the engine via:

EndGame(end_type)

 If end_type = 1, the game is won; if 2, the game is

lost. (Since endflag may be any value, a value
of, for example, 0 will still call EndGame, but with
no additional effects via the default
PrintEndGame routine.) The global endflag is
cleared upon calling. Returning false from
EndGame terminates the Hugo Engine.

 Also calls: PrintEndGame and PrintScore

FindObject called by the engine via:

FindObject(object, location)

 Returns true (1) if the specified object is available

in the specified location, or false (0) if it is not.
Returns 2 if the object is visible but not physically
accessible.

 The location argument is 0 during object

disambiguation performed by the engine.

 Also calls: ObjectisKnown, ExcludeFromAll

Parse called by the engine via:

Parse()

 Performs all library-side parsing of the player

input. Returning true forces the engine to reparse
the modified input line.

 Also calls: PreParse, AssignPronoun and

SetObjWord

THE HUGO PROGRAMMING MANUAL

190

ParseError called by the engine via:

ParseError(errornumber, object)

 Prints the parsing message/error given by

errornumber, where an additional object value
may also be provided. Returning false signals the
engine to print the engine’s default error message.
Return 2 to force the existing line to be reparsed as
is.

 May also call: CustomError

Perform called by the engine via:
 Perform(verbroutine, object, xobject,

queue, isxverb)

 Runs the requested verbroutine, setting up the

object and xobject globals if necessary. The
queue argument is true if more than one call to
Perform is being made for multiple objects, and
the isxverb argument is true for verbroutine
calls associated with xverb grammar.

SpeakTo called by the engine via:

SpeakTo(character)

 Handles character responses to directed actions.

Globals object, xobject, and verbroutine
are set up as in a normal verb routine call.

 Also calls: AssignPronoun

And the routines for grammatically-correct printing:

Art calling form:

Art(object)

APPENDIX B: THE HUGO LIBRARY

191

 Prints the indefinite article form of the object
name, e.g. “an apple”

The calling form:

The(object)

 Prints the definite article form of the object name,

e.g. “the apple”

CArt calling form:

CArt(object)

 Prints the capitalized indefinite article form of the

object name, e.g. “An apple”

CThe calling form:

CThe(object)

 Prints the capitalized definite article form of the

object name, e.g. “The apple”

IsorAre calling form:

IsorAre(object[, formal])
where the parameter formal is optional

 Depending on whether or not the specified object

is plural or singular, prints “‘re” or “‘s”,
respectively (or “ are” or “ is” if a non-false
formal parameter is passed).

MatchPlural calling form:

MatchPlural(object, w1, w2)

 Prints the dictionary entry given by w1 if the

supplied object is not plural, or w2 if it is.

THE HUGO PROGRAMMING MANUAL

192

MatchSubject calling form:
MatchSubject(object)

 Matches a verb to the given subject object. If the

object is plural, nothing is printed; if the object is
singular, an “s” is printed.

Note: None of the above printing routines prints a carriage return, and

all return 0 (the empty string). Therefore, either of the following
uses are valid:

 CThe(apple)
 print " is here."

 or

 print CThe(apple); " is here."

Other library routines:

Acquire calling form:

Acquire(parent, object)

 Checks to see if parent.capacity is greater

than or equal to parent.holding plus
object.size. If so, it moves the object to the
specified parent, and returns true. If the object
cannot be moved, Acquire returns false.

 Also calls: CalculateHolding

AnyVerb calling form:

AnyVerb(value)

 Returns value if the current verbroutine is not an

xverb; otherwise it returns false.

AssignPronoun calling form:

AssignPronoun(object)

APPENDIX B: THE HUGO LIBRARY

193

 Sets the appropriate global it_obj, them_obj,

him_obj, or her_obj to the specified object.

CalculateHolding calling form:

CalculateHolding(object)

 Properly recalculates object.holding based on

the sizes of all child objects.

CenterTitle calling form:

CenterTitle(text[, lines])

 Clears the screen and centers the text given by the

specified dictionary entry in the top window. The
default height of the title (i.e., one line) can be
overridden with a second argument giving the
number of lines.

CheckReach calling form:

CheckReach(object)

 Checks to see if the specified object is within reach
of the player object. Returns true if accessible;
returns false and prints an appropriate message if
not accessible.

Contains calling form:

Contains(parent, object)

 Returns object if the specified object is present

as a possession of the specified parent, even as a
grandchild58, otherwise returns false.

58 A “grandchild” of an object is a child of a child of a given parent object, or a child object thereof,
recursively searched.

THE HUGO PROGRAMMING MANUAL

194

CustomError calling form:
CustomError(errornumber, object)

 Replace if custom error messages are desired. Is

called by ParseError whenever errornumber
is greater than or equal to 100, specifying a user-
provided and user-called parser error. Should
return false if no user message is found.

DarkWarning calling form:

DarkWarning

 Is called by MovePlayer whenever the player

object is moved into a location without a light
source. The default library routine simply prints a
message; for a more sinister response or action,
such as the demise of the player, replace the
default with a new DarkWarning routine.

DeleteWord calling form:

DeleteWord(wordnumber[, number])

 Deletes number words—or only one word if no

second argument is given—starting with
word[wordnumber]. Returns the number of
words deleted.

DescribePlace calling form:

DescribePlace(location[, long])

 Prints the location name and, when appropriate, a

location description (i.e., its long_desc).
Including a non-false long parameter will always
force a location description.

ExcludeFromAll calling form:

ExcludeFromAll(object)

APPENDIX B: THE HUGO LIBRARY

195

 Returns true if, based on the current circumstances
(verbroutine, etc.), the supplied object should be
excluded from actions using “all”—such as
multi, multiheld, and multinotheld
grammar tokens.

FindLight calling form:

FindLight(location)

 Checks to see if a light source is available in

location; if so, it sets the global light_source
to the object number of the source and returns that
value.

 Also calls: ObjectIsLight

Font calling form:

Font(bitmask)

 Sets the current font attributes as specified by

bitmask, where bitmask is one or more font-
style constants (see library constants, above)
combined with ‘|’ or ‘+’.

GetInput calling form:

GetInput([prompt string])

 Receives input from the keyboard, storing

individual words in the word array; unknown
words—i.e., those that are not in the dictionary—
are assigned the empty string, 0 or “”. If an
argument is passed, it is assumed to be a
dictionary address for the prompt string. If no
argument is passed, no prompt is printed.

HoursMinutes calling form:

HoursMinutes(counter[, military])

THE HUGO PROGRAMMING MANUAL

196

 Prints the time in hh:mm format given that
counter represents the time in minutes from
12:00 a.m. If the optional military value is
given as a true value, the time is printed in 24-
hour format.

Indent calling form:

Indent

 If the NOINDENT_F bit is not set in the FORMAT

mask, Indent prints INDENT_SIZE spaces
without printing a newline.

InList calling form:

InList(object, property, value)

 If the value is in the list of values held in

object.property, returns the element number
of the (first) property element equal to value;
otherwise returns 0.

InsertWord calling form:

InsertWord(wordnumber[, number])

 Makes space for either the number of words given

by the number argument—or one word if no
second argument is given—if possible, at
word[wordnumber], shifting upward all words
from that point to the end of the input line.
Returns the number of words inserted.

IsPossibleXobject calling form:

IsPossibleXobject(object)

 Returns true if the object is potentially the xobject

in the current command. Does not, however,
guarantee that the object is an xobject, but is
instead a quick and inexpensive utility routine for
parsing.

APPENDIX B: THE HUGO LIBRARY

197

ListObjects calling form:

ListObjects(object)

 Lists all the possessions of the specified object in

the appropriate form (according to the global
FORMAT). Possessions of possessions are listed
recursively if FORMAT does not contain the
NORECURSE_F bit. Format masks are combined,
as in:

 FORMAT = LIST_F | NORECURSE_F | ...

 Also calls: WhatsIn

Menu calling form:

Menu(number, [width[, selection]])

 Prints a menu, given that the possible number of

choices (up to 10) are contained in the menuitem
array, with menuitem[0] is the title of the menu.
A width (in characters) argument and a starting
selection number are optional. Returns the
number of the item selected, or 0 if none is chosen.

 Also calls: CenterTitle

Message calling form:

Message(&routine, num, a, b)

 Used by most routines in hugolib.h for text

output, so that the bulk of the library text is
centralized in one location. Message number num
for the specified routine is printed; a and b are
optional parameters that may represent objects,
dictionary entries, or any other value.

 (Similar routines are provided in VMessage in

verblib.h and OMessage in objlib.h.)

THE HUGO PROGRAMMING MANUAL

198

MovePlayer calling form:

MovePlayer(loc[, silent[, none]])
MovePlayer(dir[, silent[, none]])

 Moves the player to the new location, properly

setting all relevant variables and attributes. If
silent is passed as a true value, no room
description is printed following the move.

 A direction object (i.e., n_obj, d_obj) may be

specified instead of a location; in that case,
MovePlayer moves in that direction from present
location.

 If none is true, before and after routines are

not run.

 MovePlayer can be checked in a location’s

before or after property as “location
MovePlayer” to catch a player’s exit from or
entrance to a location. In a before property,
“object MovePlayer” can be used to check the
target location.

 Returns the object number of the new location.

 MovePlayer does not check to see if a move is

valid; that must be done before calling the routine.

 May also call: DarkWarning

NumberWord calling form:

NumberWord(number[, true])

 Prints a number in non-numerical word format,

where <number> is between -32768 to 32767.
Always returns 0 (the empty string). If a second
true argument is supplied, the word is capitalized.

APPENDIX B: THE HUGO LIBRARY

199

ObjectIs calling form:
ObjectIs(object)

 Lists certain attributes, such as providing light

or being worn, of the given object in parenthetical
form.

ObjectisKnown calling form:

ObjectisKnown(object)

 Returns true if the object is known to the player.

ObjectisLight calling form:

ObjectisLight(object)

 Returns true if the object or one of its visible

possessions is providing light. If so, it also sets
the global light_source the object number of
the source.

ObjWord calling form:

ObjWord(word, object)

 Returns either adjective or noun (i.e., the

property number) if the given is either an adjective
or noun of the specified object.

PreParse calling form:

PreParse

 Provided so that, if needed, this routine may be

replaced instead of the more extensive library
Parse routine. The default PreParse routine
defined in the library is empty.

PrintEndGame calling form:

PrintEndGame(end_type)

THE HUGO PROGRAMMING MANUAL

200

 Depending on whether end_type is 1 or 2, prints,

respectively:

 “*** YOU’VE WON THE GAME! ***”

 or

 “*** YOU ARE DEAD ***”.

 If end_type is some other value, nothing is

printed.

PrintScore calling form:

PrintScore(end_of_game)

 Prints the score in the appropriate form,

depending on whether or not end_of_game is
true.

PrintStatusLine calling form:

PrintStatusLine

 Prints the statusline in the appropriate format,

according to the global STATUSTYPE.

PropertyList calling form:

PropertyList(object, property)

 Lists the objects held in object.property (if

any), returning the number of objects listed.

PutInScope calling form:

PutInScope(object, actor)

 Makes the given object accessible to the specified

actor, regardless of their respective locations, and
providing that the in_scope property of the

APPENDIX B: THE HUGO LIBRARY

201

object has at least one empty slot—i.e., one that
equals 0. Returns true if successful.

RemoveFromScope calling form:

RemoveFromScope(object, actor)

 Removes the given object from the scope of the

specified actor. Returns true if successful, or false
if the object was never in scope of the actor to
begin with.

SetObjWord calling form:

SetObjWord(position, object)

 Inserts the specified object in the word array in the

format:

 “adjective1 adjective2 ... noun”

ShortDescribe calling form:

ShortDescribe(object)

 Prints the short description (short_desc) of the

given object, first checking to see if it should run
initial_desc, when_open, or when_closed,
as appropriate. Then, if no short_desc property
exists, it prints a default “X is here.”

 Also calls: WhatsIn

SpecialDesc calling form:

SpecialDesc(object)

 Checks each child object of the specified object,

running any appropriate initial_desc or
inv_desc property routines (depending on the
calling situation). Sets the global variable

THE HUGO PROGRAMMING MANUAL

202

list_count to the number of remaining (i.e.,
non-listed) objects.

VerbWord calling form:

VerbWord

 Returns the dictionary word used as the verb in a

typed command.

WhatsIn calling form:

WhatsIn(parent)

 Lists the possessions of the specified parent,

according the form given by the global FORMAT.
Returns the number of objects listed.

 Also calls: SpecialDesc, ListObjects

YesorNo calling form:

YesorNo

 Checks to see if the just-received input is “yes”,

“y”, “no”, or “n”. If none of the above, it prompts
for a yes or no answer. Once a valid answer is
received, it returns true (if yes) or false (if no).

AUXILIARY MATH ROUTINES:

abs calling form:
abs(a)

 Returns an absolute value given a supplied value.

higher calling form:

higher(a, b)

 Returns the higher number of two supplied

values.

APPENDIX B: THE HUGO LIBRARY

203

lower calling form:

lower(a, b)

 Returns the lower number of two supplied values.

mod calling form:

mod(a, b)

 Returns the remainder of one number divided by

a second number.

pow calling form:

pow(a, b)

 Returns one number to the power of another

number. (The return value is undefined if the
result is outside the boundary of -32768 to 32767.)

STRING ARRAY ROUTINES:

StringCompare calling form:
StringCompare(array1, array2)

 Returns 1 if array1 is lexically greater than

array2, -1 if array1 is lexically less than
array2, and 0 if the strings are identical.

StringCopy calling form:

StringCopy(new, old[, len])

 Copies the contents of the array at the address

given by old to the array at new, to a maximum of
len characters if len is given, or the length of old
if it isn’t.

THE HUGO PROGRAMMING MANUAL

204

StringDictCompare calling form:
StringDictCompare(array, dictentry)

 Performs a StringCompare-like comparison of a

string array given by array and the dictionary
entry dictentry, returning 1, -1, or 0 if array is
lexically greater than, less than, or equal to
dictentry, respectively.

StringEqual calling form:

StringEqual(array1, array2)

 Returns true only if array1 and array2 are

identical.

StringLength calling form:

StringLength(array)

 Returns the length of the string stored as array.

StringPrint calling form:

StringPrint(array[, start, end])

 Prints the string stored as array, beginning with

start and ending with end if given.

FUSE/DAEMON ROUTINES:

Activate calling form:
Activate(object[, setting])

 Activates the specified fuse or daemon object.

The setting value is only specified for fuses, where
it represents the initial value of the timer property.

Deactivate calling form:

Deactivate(object)

 Deactivates the specified fuse or daemon object.

APPENDIX B: THE HUGO LIBRARY

205

CHARACTER SCRIPT ROUTINES:

CancelScript calling form:
CancelScript(character)

 Immediately cancels the character script

associated with the object character. Returns
true if successful, i.e., if a script for character is
found.

PauseScript calling form:

PauseScript(character)

 Temporarily pauses the character script associated

with the given character. Returns true if
successful.

ResumeScript calling form:

ResumeScript(character)

 Resumes execution of a paused script for the given

character. Returns true if successful.

SkipScript calling form:

SkipScript(character)

 Skips execution of the script for a given

character during the next call to RunScripts
only.

Script calling form:

Script(character, steps)

 Initializes space for the requested number of

steps in the setscript array, sets up the data
for the script in the scriptdata array, and
returns the location of the script in setscript.
Returns -1 if MAX_SCRIPTS is exceeded.

THE HUGO PROGRAMMING MANUAL

206

RunScripts calling form:

RunScripts

 Runs all active scripts, calling them in the form:

 CharRoutine(character, object)

CHARACTER ACTION ROUTINES:

As a starting point, the library also provides a limited number of routines
for character scripts to use. They are:

&CharWait, 0

&CharMove, direction_object (requires objlib.h)

&CharGet, object

&CharDrop, object

and

&LoopScript, 0

CONDITIONAL COMPILATION:

A number of compiler flags may be set to exclude certain portions of
hugolib.h from compilation if these functions or objects are not required.

FLAG EXCLUDES
NO_AUX_MATH Auxiliary math routines
NO_FUSES Fuses and daemons
NO_MENUS Use of the Menu function
NO_OBJLIB The contents of objlib.h
NO_RECORDING Command recording functions
NO_SCRIPTS Character scripting routines
NO_STRING_ARRAYS String array functions
NO_VERBS All action verbs
NO_XVERBS All non-action verbs

APPENDIX C: LIMIT SETTINGS

207

APPENDIX C: LIMIT SETTINGS

The default settings for the complete set of limits may be obtained by
invoking the compiler via:

hc $list

The following limits are static and non-modifiable, since they reflect the

internal configuration of the Hugo Engine:

MAXATTRIBUTES The maximum number of definable attributes,

not counting aliases

MAXGLOBALS The maximum number of definable global

variables

MAXLOCALS The maximum number of local variables

allowed in a routine, including arguments
passed to the routine

The following are the modifiable settings, which may be set using:

$<setting>=<new limit>

either in the compiler’s invocation line or in the source code.

MAXALIASES The maximum number of aliases that may be

defined for attributes and/or properties

MAXARRAYS The maximum number of arrays that may be
defined (not the total array space, which is
automatically reserved)

MAXCONSTANTS The maximum number of constants that may

be defined

THE HUGO PROGRAMMING MANUAL

208

MAXDICT The maximum number of entries that the

compiler can enter into the dictionary table

MAXDICTEXTEND The total number of bytes (not the total

number of entries) available for dynamic
dictionary extension during runtime

MAXEVENTS The maximum number of global or object-

linked events

MAXFLAGS The maximum number of compiler flags that

may be set at one time to control conditional
compilation

MAXLABELS The maximum number of labels that may be

defined during compilation

MAXOBJECTS The maximum number of objects and/or

classes that may be created

MAXPROPERTIES The maximum number of properties that may

be defined

MAXROUTINES The maximum number of standalone routines

(not property routines) that may be defined

APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER

209

APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER

The HugoFix Debugging Library

The HugoFix Debugging Library is a suite of routines that can be used via
typed commands in a running Hugo game without the use of any special
debugger program. To use HugoFix, set the compiler flag DEBUG before
including hugolib.h or any other standard Hugo library files59. Then, from the
player input line, type:

>$?

to get a list of all HugoFix debugging commands.

$? – Display help menu

Monitoring:

$fd – Fuse/daemon monitor on/off
Fuse/daemon monitoring prints verbose information about all starting or
stopping fuses or daemons, as well as the value of the tick property for
any running fuses.

$fi – FindObject monitoring on/off
FindObject monitoring traces calls to the library’s FindObject routine
and their results. This can be extremely useful for debugging things like
scope and disambiguation problems.

$on – Toggle object numbers
Toggling object numbers on causes an object’s numerical value to be
displayed after the object name whenever the library functions The, CThe,

59 The HugoFix library should only be included during development. As always, when compiling a version
for public release, the DEBUG flag should be omitted both to keep the filesize of the final Hugo executable
down as well as to ensure that debugging functionality is not included in release builds.

THE HUGO PROGRAMMING MANUAL

210

Art, and CArt are called. Can be turned used in conjunction with any
other HugoFix function that outputs object names.

$pm – Parser monitoring on/off
Parser monitoring provides information during calls to Parse,
ParseError, and Perform (or SpeakTo, as applicable) to trace the
breakdown, parsing, and execution of a given player input line.

$sc – Script monitor on/off
Script monitoring prints verbose information about all starting, stopping,
or otherwise running scripts each turn.

Object manipulation:

$at <obj.> is [not] <attr. #> – Set or clear object attribute
The object will have attribute number <attr. #> set or cleared. (It’s useful
to have generated debugging information by passing the –i switch to the
compiler in order to get attribute numbers and other useful information.)

$mo <obj.> to <obj.> – Move object to new parent
Essentially the same as the Hugo statement: move <object> to
<parent>. The object will become the youngest child of the parent
object.

$mp <obj.> – Move player object to new parent
Essentially the same as the Hugo Library function call:
MovePlayer(<obj.>). The function may fail (and print an appropriate
error message) if the specified parent object is not a valid location (i.e.,
room or room-equivalent object).

Object testing:

$fo [obj.] – Find object (or player, if no object given)
Prints the name of the parent object of a given object (or the player object).

$na <obj. #> – Print name of object number
Prints the name of the object specified by object number.

$nu <obj.> – Print number of named object
Prints the object number of a given object.

APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER

211

Parser testing:

$ca – Check articles for all objects
Useful for preventing forgotten articles in order to avoid something like
“You get apple” when it should be “You get the apple”, etc.

$pc [$all] [obj.] – Check parser conflicts (for object)
Attempts to determine what objects might be confused with <obj> by the
parser. May take quite a while if $all is specified for a large number of
objects.

$pr – parse_rank monitoring
Monitors how various objects’ parse_rank property values are
evaluated during parsing. Particularly useful with $fi and $pm.

Other utilities:

$ac <obj.> [timer] – Activate fuse (with timer) or daemon
Generally <obj.> is an object number, since fuses and daemons are
normally not otherwise referred to.

$de <obj.> – Deactivate fuse or daemon
Generally <obj.> is an object number, since fuses and daemons are
normally not otherwise referred to.

$di [obj.] – Audit directions (for room object)
Attempts to print out all the possible exits from a given location, or from
the present location if none is given.

$kn [<obj. #>] – Make all object(s) known
Sets the known attribute for for an object (or for all objects in the game if
no single object is specified.

$nr – Normalize random numbers
Sets random number generation to predictable values which can be
replicated on subsequent playthroughs. Handy for testing things that
may be affected by use of the built-in random function.

$ot [obj. | $loc] – Print object tree (beginning with object)
Prints all the children (beneath a particular object, if given) in tree format.

THE HUGO PROGRAMMING MANUAL

212

$rr – Restore “random” random numbers
Resets random number generation to produce unpredictable values.

$uk [<obj. #>] – Make object unknown
Again for testing involving the known attribute. (See $kn, above)

$wo <number> – Print dictionary word entry <number>
Where <number> is a value representing a dictionary table address.

$wn <word> – Value/dictionary address of (lowercase) word
Where <word> is a dictionary entry.

$au – Run HugoFixAudit
Runs a number of tests to ensure the validity of certain data, including
necessary related properties on individual objects and proper usage of
object library classes.

The Hugo Debugger

The Hugo Debugger is a valuable part of the Hugo design system. It
allows a programmer to monitor all aspects of program execution, including
watching expressions, modifying values, moving objects, etc.—all things
expected of a modern source-level debugger.60

In order to be used with the debugger, a Hugo program must be compiled
using the -d switch in order to create an .HDX debuggable file with additional
data such as names for objects, variables, properties, etc.

Note: .HDX files can be run by the engine, but .HEX files cannot be run by the

debugger because of the additional data required.

The Unix or MS-DOS convention for running the debugger is:

hd <filename>

from the command line. In Windows, one may just double-click the debugger’s
icon to launch it. In either case, the debugger will begin on the debugging
screen. Switch back-and-forth from the actual game screen by pressing Tab. At

60 The Hugo Debugger is not technically a source-level debugger, however. During its development, its
author has referred to it as a source(ish) level debugger—what the debugger does, in effect, is to
“decompile” compiled code into the tokens and symbols that comprise each line of code. The result is a
very close approximation of the original source code.

APPENDIX D: HUGOFIX AND THE HUGO DEBUGGER

213

this point, it is probably best to select “Shortcut Keys” from the Help menu, since
the actual keystrokes for running the debugger may vary from system to system.
(It is possible to operate the debugger entirely through menus, but this soon
becomes tedious for operations like stepping line-by-line.)

The file hdhelp.hlp should be in the same directory as the debugger
program—this is the online help file for the debugger, containing information on
such things as:

Printing

Windows and Views, including:

Code Window Showing the current program exactly as
executed, in (almost) source-level
format

Watch Window Allowing any variable expression to be

watched/evaluated at any time during
execution

Calls Giving the sequence of nested routine

calls at any given point

Breakpoints Listing all active breakpoints

Local Variables Listing all local variables, as values,

objects, dictionary entries, etc.

Property/Attribute Aliases

Auxiliary Window

Output

Running a program, including:

Finish Routine While stepping, continues execution
without stepping to the end of the
current routine

Stepping Through Code Allows line-by-line execution

THE HUGO PROGRAMMING MANUAL

214

Skipping Over Code Allows the next statement to be passed

over without executing

Stepping Backward Allows retracing of code execution,

possibly after values are changed, etc.

Searching Code Searches the record of executed code for

any given string

Watch Expressions Allows watching multiple variable

values or expressions, and to set a
breakpoint should a desired
value/expression evaluate non-false

Setting or Modifying Values Any variable, property, array value, or

object attribute can be set or reset to a
valid value at any point during
execution

Breakpoints A code address, routine, or property

routine can be given—control is then
passed to the debugger on encountering
a breakpoint

Object Tree At any point, the entire object tree (or

just a branch of it) may be displayed

Moving Objects It is possible to dynamically move

objects around the object tree,
independent of the program itself

Runtime Warnings Optional runtime warnings instruct the

debugger to alert the user to common
causes of problem code which, while
syntactically valid and therefore
acceptable to the compiler, is in context
probably not what was intended.

Setup Allowing changes (where applicable) in

color scheme, printer, etc.

APPENDIX E: PRECOMPILED HEADERS

215

APPENDIX E: PRECOMPILED HEADERS

Note: This section on precompiled headers, while still accurate, becomes less
and less vital as computer (and therefore compilation) speeds increase.
As of this writing, on a relatively fast computer, a game that takes 6
seconds to compile will compile in 4 using a precompiled version of the
library. A game that takes 2 seconds to compile normally will compile
in 1. (In other words, the savings are somewhat negligible.)

It is possible to precompile files that would normally be included using

the #include directive into a precompiled header file that may be linked using
#link, as in:

#link "<filename.hlb>"

instead of:

#include "<filename.h>"

The advantage of doing this is primarily one of faster compilation speed; files
that are used over and over again without alteration (such as the Hugo Library)
may be precompiled so that they are not recompiled every time.

The #link directive must come after any grammar, but before any new
definitions of attributes, properties, globals, objects, synonyms, etc. Grammar is
illegal in a precompiled header.

To create a precompiled header, use the -h directive when invoking the
Hugo Compiler. The file hugolib.hug serves as a good example: it is a small
wrapper which compiles the standard Hugo Library. Compile it via

hc -h hugolib.hug

in order to generate hugolib.hlb. Next, change the use of

#include "hugolib.h"

THE HUGO PROGRAMMING MANUAL

216

in a Hugo program to

#link "hugolib.hlb"

Change the definition for the main routine from

routine main
{...

to

replace main
{...

since hugolib.hug contains a temporary main routine. The program will now
compile (marginally faster) by linking the precompiled library instead of
including each uncompiled library file.

Note that any conditional compilation flags set in the Hugo program will
have no effect on the compiled code in hugolib.hlb, since the routines
included in or excluded from hugolib.hlb are determined by the flags set in
hugolib.hug. It is recommended that a Hugo user using precompiled headers
compile a version of hugolib.hug that includes hugofix.h and/or
verbstub.h as desired.

It is generally not possible to include multiple precompiled headers
compiled in separate passes via subsequent #links in the same source file.
Because of the absolute references assigned to data such as dictionary addresses,
attribute numbers, etc., such an attempt will produce an “incompatible
precompiled headers” error.

However, for games that are composed of separate sections that can be
combined into distinct files, it may make sense to precompile one .hug file
containing all the common elements that will be used by the separate sections—
such as the player object, etc.—and which #includes or #links the library in it.
Then, this new .hlb file can be #linked in each of the separate sections during
development and testing. Of course, each of the separate sections will have to be
#included in a single master file for building the full release version.

Finally, it is advisable that precompiled headers be used only in building
.HEX files during the design/testing stage in order to facilitate faster
development. The reason is that the linker does not selectively include routine
calls: the entire .hlb file is loaded during the link phase. As a result, Hugo files
produced using precompiled headers—especially if existing routines in the .hlb
file are replaced in the source—tend to be larger and therefore less economical in
their memory usage. For this reason, it is recommended that #include be used

APPENDIX E: PRECOMPILED HEADERS

217

for building release versions instead of #linking the corresponding
precompiled header.

THE HUGO PROGRAMMING MANUAL

218

APPENDIX F: HUGO VERSIONS

As of this writing, the latest version of Hugo is 3.1. Most if not all of the
actively developed ports are available in v3.1 distributions.

The general rule of thumb is that sequential releases of the Hugo Engine
are backward compatible, so that the Hugo Engine in v3.1 is able to run games
compiled with v3.0, v2.5, and earlier versions. Earlier versions of the engine,
however, are unable to run games compiled with later versions of the compiler.
For example, a game compiled with v3.1 cannot be run by the v3.0 engine. (The
exceptions to this are v2.5.01 through v2.5.04, which are able to run v3.0-
compiled games as a result of the transititional development period for Hugo
v3.0. Post-v2.5.04, the official baseline for Hugo releases became v3.0.)

Version 3.1 is syntactically fully compatible with v3.0, the Hugo version
which introduced features such as video playback, context menus, and mouse
input. 3.1’s most notable changes are internal, relating to data storage and code
organization, and as such will have little effect on the user. Note however that
v2.5 versions of the engine are unable to run v3.1 games.

Here is a quick breakdown of Hugo versions:

VERSION SUMMARY

2.5.0x Basic Hugo Engine implementation; v3.0-specific

language features such as the video and
addcontext keywords unsupported by the v2.5
compiler. Baseline runtime implementation for
almost all ports.

3.0 Introduction of additional multimedia and user

interface functionality. Additional multimedia
including sound, music, and video playback fully
supported on Windows, Macintosh, and BeOS.

3.1 Syntactically identical to v3.0; internal format

changes.

APPENDIX G: ADDITIONAL RESOURCES

219

APPENDIX G: ADDITIONAL RESOURCES

(Please note that while these links were up-to-date as of this writing, the
ephemeral nature of the Internet may result in changes, relocations, old sites
closing and new sites appearing.)

The Interactive Fiction Archive is the world’s number-one repository of
publicly available information and tools relating to interactive fiction
work and play. It can be found at http://www.ifarchive.org, with a mirror
at http://mirror.ifarchive.org.

Two newsgroups serve as the hubs of the interactive fiction community:
rec.arts.int-fiction, where the focus is on writing games, and
rec.games.int-fiction, which talks about playing them.

The Developers Laboratory at the Future Boy! Forum
(http://www.generalcoffee.com/futureboy) provides a place for Hugo
programming discussion.

The Hugonomicon by Cena Mayo at http://hugonomicon.sf.net provides
additional resources for Hugo use and development.

Gilles Duschesne has made available an excellent introduction to Hugo
programming in the form of a tutorial available from
http://www.ifarchive.org/if-archive/programming/hugo/examples/
ScavHuntFull.zip.

A host of general IF-related materials are available at Brass Lantern
(http://www.brasslantern.org) and PARSIFAL
(http://www.firthworks.com/roger/parsifal/index.html).

Graham Nelson’ s Inform (http://www.inform-fiction.org) and TADS, the
Text Adventure Design System by Mike Roberts (http://www.tads.org),
are two other interactive-fiction programming languages.

BOOK 2

TECHNICAL SYSTEM SPECIFICATION

OR

UNDER THE HOOD OF HUGO AND THE .HEX FILE FORMAT

I INTRODUCTION

223

I. INTRODUCTION

Most Hugo programmers will likely never need to bother with the
detailed information in this technical guide, but anyone porting Hugo to a new
platform, writing an interface or tool for the language, or just interested in taking
a closer look at how the Hugo Compiler generates a compiled program (and how
the Hugo Engine interprets it) might find a technical specification useful, even if
only to verify the occasional behavior or detail. What this look under the hood
attempts to do is to outline the configuration of data and code storage used by
Hugo, as well as giving an extensive overview of how the various aspects of the
language are compiled and interpreted.

This technical specification of the language internals is not a complete
programming guide; familiarity with the language and a handy copy of the
Hugo Programming Manual will be helpful, as will access to the Hugo source
code (written in ANSI C and available at the time of this writing at
ftp://ftp.ifarchive.org/if-archive/programming/hugo/source).

The standard Hugo source distribution is hugov31_source.tar.gz.
Operating-system-specific sources (i.e., implementations of non-portable
functions) are typically hugov31_OSname_source.zip.

Please note that while this document does address differences between the
current version of Hugo and previous versions, it is by no means complete in
that respect. For example, a current-version implementation of the Hugo Engine
that conforms to this specification is not guaranteed to run programs compiled
with all previous versions of Hugo. For further elaboration on such differences,
please see the Hugo source itself.

I.a. How Hugo Works

The Hugo system is composed of two parts: the compiler and the engine
(the interpreter). (The debugger is actually a modified build of the engine, with
an additional command layer to facilitate debugging examination and
manipulation of the runtime state.)

The compiler is responsible for reading source files and writing executable
code; it does this by first tokenizing a given line of code—breaking it down into a
series of byte values representing its contents—and then determining how the

TECHNICAL SYSTEM SPECIFICATION

224

line(s) should be written (i.e., identified, optimized, and encoded) in order to fit
properly into the current construct. The compiler is also responsible for
organizing and writing tables representing object data, property data, the
dictionary, etc.

The engine in turn reads the file produced by the compiler (called a .HEX
file, after the default extension), and follows the compiled instructions to execute
low-level functions such as object movement, property assignment, text output,
and expression evaluation. These low-level operations are, for the most part,
transparent to the programmer.

II ORGANIZATION OF THE .HEX FILE

225

II. ORGANIZATION OF THE .HEX FILE

II.a. Memory Map

If all the separate segments of a .HEX file were stacked contiguously on
top of each other, the resulting pile would look something like this:

 DATA STORAGE: MAXIMUM SIZE:
 +-----------------+---------------+
 | (Link data for | |
 | .HLB files) | |
 +-----------------+---------------+
 | Text bank | 16384K |
 +-----------------+---------------+
 | Dictionary | 64K |
 +-----------------+---------------+
 | Special words | 64K |
 +-----------------+---------------+
 | Array space | 64K |
 +-----------------+---------------+
 | Event table | 64K |
 +-----------------+---------------+
 | Property table | 64K |
 +-----------------+---------------+
 | Object table | 64K |
 +-----------------+---------------+
 | Grammar and | |
 | Executable code | 1024K |
 +-----------------+---------------+
 | Header | 64 bytes |
 +-----------------+---------------+
 (Bottom: $000000)

 MAXIMUM SIZE: 17792K bytes61

61 Previously to version 3.1, the size of the grammar and executable code segment was limited to 256K, and
the maximum size was 17024K.

TECHNICAL SYSTEM SPECIFICATION

226

Each new segment begins on a boundary divisible by 16; an end-of-

segment is padded with zeroes until the next boundary. For each segment, data
is general stored in sequential chunks, following two or more bytes giving
information about the size of the table.

Dictionary table: the first two bytes give the total number of entries. The

third byte is always 0, so that dictionary entry 0 is an empty string (“”).
Following the dictionary table, a number of bytes may optionally be written for
runtime dictionary expansion (where $MAXDICTEXTEND is specified at compile-
time).

Special words: the first two bytes give the total number of special words.

Array space: the first 480 bytes give the global variable defaults (2 bytes

each). For each array entry, the first two bytes give the array length.

Event table: the first two bytes give the total number of events.

Property table: the first two bytes give the total number (n) of properties.

The following n*2 bytes give the property defaults.

Object table: the first two bytes give the total number of objects.

II.b. The Header

The header is reserved a total of 64 bytes at the start of the compiled .HEX
file, immediately preceding the grammar table. It contains the bulk of
information regarding table offsets, junction routine addresses, etc.: essentially,
it is a map to where to find things in the file.

Compile with the -u switch to display a map of memory usage in the .HEX
file that reflects the offsets and addresses encoded in the header.

Byte Length Description
$00 1 Version of Hugo Compiler used62
 01 2 ID string (compiler-generated)63

62 The version format was changed between v2.0 and v2.1. Version 2.0 programs contained the value 2;
version 2.1 programs contain the value 21, version 2.2 programs contain 22, etc.
63 Pre-v2.3 allowed the programmer to specify an ID string, an unnecessary convention now—the ID string
used to be used to create the default savefile name. The ID string is now auto-generated by the compiler
and is compared by the engine to the ID of a saved game to see if they match. Precompiled headers have the
ID string “$$”.

II ORGANIZATION OF THE .HEX FILE

227

 03 8 Serial number

 0B 2 Address of start of executable code

 0D 2 Object table offset64
 0F 2 Property table offset
 11 2 Event table offset
 13 2 Array space offset
 15 2 Dictionary offset
 17 2 Special words table offset

 19 2 Init routine indexed address
 1B 2 Main routine indexed address
 1D 2 Parse routine indexed address
 1F 2 ParseError routine indexed address
 21 2 FindObject routine indexed address
 23 2 EndGame routine indexed address
 25 2 SpeakTo routine indexed address
 27 2 Perform routine indexed address65

 29 2 Text bank offset

In .HDX (debuggable) Hugo executables only:

 3A 1 Debuggable flag, set to 1
 3B 3 Absolute start of debugging information
 3E 2 Debug workspace (in array table)

A note on data storage: whenever 16-bit words (i.e., two bytes

representing a single value) are written or read, it is in low-byte/high-byte order,
with the first byte being the remainder of x/256 (or the modulus x%256), and the
second byte being the integer value x/256.66

64 Table offsets are equal to the offset of the beginning of the table from the start of data, divided by 16.
65 Pre-v2.5 had no Perform junction routine; verb routines were called directly by the engine.
66 For another example, see APPENDIX A: CODE PATTERNS. Several of the conditional statements—if,
elseif, etc.—use two bytes to give the absolute skip distance to the next statement if the conditional test
fails. The pair is coded in low-byte/high-byte order.

TECHNICAL SYSTEM SPECIFICATION

228

III. TOKENS AND DATA TYPES

The first two places to start inspecting how the Hugo compiler writes a
.HEX file are: (1) what byte values are written to represent each individual
token (i.e. keywords, built-in functions, etc.), and (2) how different data types
and values are formatted.

III.a. Tokens

00 (not used) 10 # 20 for
01 (11 ~ 21 return
02) 12 >= 22 break
03 . 13 <= 23 and
04 : 14 ~= 24 or
05 = 15 & 25 jump
06 - 16 > 26 run
07 + 17 < 27 is
08 * 18 if 28 not
09 / 19 , 29 true
0A | 1A else 2A false
0B ; 1B elseif 2B local
0C { 1C while 2C verb
0D } 1D do 2D xverb
0E [1E select 2E held
0F] 1F case 2F multi

30 multiheld 40 eldest 50 window
31 newline 41 younger 51 random
32 anything 42 elder 52 word
33 print 43 prop# 53 locate
34 number 44 attr# 54 parse$
35 capital 45 var# 55 children
36 text 46 dictentry# 56 in
37 graphics 47 textdata# 57 pause
38 color 48 routine# 58 runevents
39 remove 49 label# 59 arraydata#
3A move 4A object# 5A call

III TOKENS AND DATA TYPES

229

3B to 4B value# 5B stringdata#
3C parent 4C eol# 5C save
3D sibling 4D system 5D restore
3E child 4E notheld 5E quit
3F youngest 4F multinotheld 5F input

60 serial$ 70 readfile
61 cls 71 writeval
62 scripton 72 readval
63 scriptoff 73 playback
64 restart 75 colour
65 hex 76 picture
66 object 77 sound
67 xobject 78 music
68 string 79 repeat
69 array 7A addcontext67
6A printchar 7B video68
6B undo
6C dict
6D recordon
6E recordoff
6F writefile

Some of these, particularly the early tokens, are as simple as punctuation

marks that are recognized by the engine as delimiting expressions, arguments,
etc. Non-punctuation stand-alone tokens (to, in, is) are used for similar
purposes, to give form to a particular construction. Others, such as save, undo,
recordon, and others are engine functions that, when read, trigger a specific
action.

Note also tokens ending with ‘#’: these primarily represent data types
that are not directly enterable as part of a program—the ‘#’ character is separated
and read as a discrete word in a parsed line of Hugo source. For example, the
occurrence of a variable name in the source will be compiled into var# (token
$45) followed by two bytes giving the number of the variable being referenced.
(See the following section on Data Types for more details.)

III.b. Data Types

Internally, all data is stored as 16-bit integers (that may be treated as
unsigned as appropriate). The valid range is -32768 to 32767.

67 v3.0 and later
68 v3.0 and later

TECHNICAL SYSTEM SPECIFICATION

230

Following are the formats for the various data types used by Hugo; to see
them in practice, it is recommended to consult the Hugo C source code and the
functions CodeLine() in hccode.c—for writing them in the compiler—and
GetValue() and GetVal() in heexpr.c—for reading them via the engine.

ATTRIBUTE:

<attr#> <1 byte>

The single byte represents the number of the attribute, which may range
from $00 to $7F (0 to 127).

Attribute $10, for example, would be written as:

$44 10

DICTIONARY ENTRY:

<dictentry#> <2 bytes>

The 2 bytes (one 16-bit word) represent the address of the word in the
dictionary table. The empty string (“”) is $00.

If the word “apple” was stored at the address $21A0, it would be written
as:

$46 A0 21

OBJECT:

<object#> <2 bytes>

The two bytes (one 16-bit word) give the object number.

Objects $0002 and $01B0 would be written as, respectively:

$4A 02 00
$4A B0 01

III TOKENS AND DATA TYPES

231

PROPERTY:

<prop#> <1 byte>

The single byte gives the number of the property being referenced.

Property $21 would be written as:

$43 21

ROUTINE:

<routine#> <2 bytes>

The two bytes (one 16-bit word) give the indexed address of the routine.
All blocks of executable code begin on an address divisible by 1669; this
allows 1024K of memory to be addressable via the range 0 to 65536. (Code
is padded with empty ($00) values to the next address divisible by the
address scale.)

For example, a routine beginning at $004004 would be divided by 16 and
encoded as the indexed address $0401, in the form:

$48 01 04

This goes for routines, events, property routines, and even conditional
code blocks following if, while, etc.

VALUE (i.e., INTEGER CONSTANT):

<value#> <2 bytes>

A value may range from -32768 to 32767; negative numbers follow signed-
value 16-bit convention by being x + 65536 where x is a negative number.

For example, the values 10 ($0A), 16384 ($4000), and -2 would be written
as:

$4B 0A 00
$4B 00 40

69 Prior to version 3.1, this scaling factor was 4.

TECHNICAL SYSTEM SPECIFICATION

232

$4B FE FF ($FFFE = 65534 = -2 + 65536)

VARIABLE:

<var#> <1 byte>

A program may have up to 240 global variables (numbered 0 to 239), and
16 local variables for the current routine (numbered 240 to 255). Since 240
+ 16 = 256, the number of the variable being specified will fit into a single
byte.

In the compiler, the first global variable (i.e. variable 0) is predefined as
“object”. It would be written as a sequence of two bytes:

$45 00

A routine’s second argument or local would be numbered 241 (since 240
($F0) is the first local variable), and would be written as:

$45 F1

IV ENGINE PARSING

233

IV. ENGINE PARSING

The engine is responsible for all the low-level parsing of an input line (i.e.,
player command). Upon receiving an input, the engine parses the line into
separate words, storing them in the word array. The word array—i.e., that
which is referenced in a Hugo program via word[n]—is an internal structure
coded using the word token instead of array#. A static, read-only parser string
called parse$ is used for storage of important data, such as a parser-error-
causing word/phrase that cannot otherwise be communicated as an existing
dictionary entry.

The first parsing pass also does the following:

1. Allows integer numbers for -32768 to 32767.

2. Time given in “hh:mm” (hours:minutes) format is converted to an

integer number representing the total minutes since midnight, i.e.,
through the formula: hh * 60 + mm. The original “hh:mm” is stored in
parse$.

3. Up to one word (or set of words) in quotation marks is allowed; if

found, it is stored in parse$.

4. Special words are processed, i.e., removals and user-defined

punctuation are removed, compounds are combined, and synonyms
are replaced.70

If a user-defined Parse routine exists (i.e., if bytes $1D-1E in the header

are not $0000), it is called next. If the routine returns true, the engine parsing
routine is called a second time to reconcile any changes to the word set.

If at any point the parser is unable to continue, either because an
unknown word—one not found in the dictionary table—is found, or because
there is a problem later, in grammar matching (described below), a parser error is

70 See XI.b Special Words

TECHNICAL SYSTEM SPECIFICATION

234

generated, and parsing is stopped. (The unknown or otherwise problem-causing
word is stored in parse$.)

The engine has a set of standard parser errors that may be overridden by a
user-provided ParseError (i.e., if bytes $1F-20 in the header are not $0000). If
there is no ParseError routine, or if ParseError returns false, the default
parser error message is printed.

V GRAMMAR

235

V. GRAMMAR

The grammar table starts immediately following the header (at $40, or 64
bytes into the .HEX file). It is used for matching against the player's input line to
determine the verbroutine to be called, and if applicable, the object(s) and xobject
(i.e, the indirect object).

Note: If the input line begins with an object instead of a verb—i.e., if it is

directed toward a character, as in “Bob, get the object”, then grammar is
matched against the phrase immediately following the initial object.)

The grammar table is comprised of a series of verb or xverb (i.e., non-

action verb) blocks, each beginning with either verb ($2C) or xverb ($2D). A
$FF value instead of either verb or xverb indicates the end of the grammar
table. A grammar table that looks like

000040: FF

has no entries.
Following the verb type indicator is a single byte giving the number of

words (i.e., synonyms) for this particular verb. Following that are the dictionary
addresses of the individual words.

Think of the simple grammar definition:

verb "get", "take"

* object DoGet

If this were the first verb defined, the start of the grammar table would look like:

000040: 2C 02 x2 x1 y2 y1

where $x1x2 is the dictionary address of “get”, and $y1y2 is the dictionary
address of “take”.

With v2.5 was introduced a separate—although rarely used—variation to
the verb header. A verb or xverb definition can contain something like

TECHNICAL SYSTEM SPECIFICATION

236

verb get_object

where get_object is an object or some other value. In this case, the verb word
is get_object.noun instead of an explicitly defined word. The grammar table
in this case would look like”

000040: 2C 01 FF FF 4A x2 x1

where $FFFF is the signal that instead of a dictionary word address, the engine
must read the following discrete value, where $4A is the object# token, and
$x1x2 is the object number of get_object. This extension is provided so that
grammar may be dynamically coded and changed at runtime.

Following the verb header giving the number of verb words and the
dictionary address of each is one or more grammar lines, each beginning with a
‘*’ signifying the matched verb word. (For an elaboration of valid grammar
syntax specification, please see the Hugo Manual.)

Grammar lines are encoded immediately following the verb header, so
that in the first example given above,

verb "get", "take"

* object DoGet

becomes:

000040: 2C 02 x2 x1 y2 y1
000046: 08 66 48 r2 r1
00004B: FF

where $r1r2 is the indexed routine address of DoGet.
The $FF byte marks the end of the current verb definition. Immediately

following this is either another verb or xverb token, or a second $FF to indicate
the end of the verb table.

VI EXECUTABLE CODE

237

VI. EXECUTABLE CODE

VI.a. A Simple Program

The following is a simple Hugo program:

routine main
{

print "Hello, Sailor!"
pause
return

}

It will print “Hello, Sailor!”, wait for a keypress, and exit. When compiled, the
grammar table and executable code look like this:

000040: FF 00 00 00 33 6B 0E 00 5C 79 80 80 83 40 34 67
000050: 75 7D 80 83 86 35 4C 57 21 4C 0D 21 4C 00 00 00

Here is what those 32 bytes represent:

000040: FF

The grammar table is empty; no grammar has been defined. The first
entry in the grammar table is $FF, signifying end-of-table.

000041: 00 00 00

Padding to the next address boundary.

000044: 33

A print token.

000045: 5B 0E 00 5C 79 80 80 83 40 34 67 75 7D 80 83 86 35
 H e l l o , S a i l o r !

TECHNICAL SYSTEM SPECIFICATION

238

A stringdata# ($5B) token of 14 characters ($000E), followed by the
encoded string “Hello, Sailor!” (Since this is a print statement, the text is
written directly into the code instead of in the text bank.)

000056: 4C

An eol# token, to signal end-of-line for the current print statement.

000057: 57

A pause token.

000058: 21 4C

A return token, followed by eol#. (If there is a value being returned,
that expression comes between $21 and $4C. Since in this case the
expression is blank—since there is no value being explicitly returned—the
$4C comes immediately.)

00005A: 0D 21 4C

The closing brace symbol $0D marks the end of the routine. All routines
are automatically followed by a default $21 and $4C—the equivalent of
“return false”.

VI.b. Expressions

Expressions are encoded as the tokenized representation of the
expression. Consider the following code excerpts, assuming that global
initializations have included:

global glob
array arr[10]

and, within the current routine:

local loc

(Assume also that glob and loc are the first global variable and first local
variable defined.)

VI EXECUTABLE CODE

239

1. loc = 10

This is coded using the pattern

<var#> <1 byte> = <value#> <2 bytes> <eol#>

so that the resulting code looks like:

45 F0 05 4B 0A 00 4C
loc = 10

The variable number $F0 specifies the first local variable (i.e., local variable 0,
where the variable number of local variable n is 240+n).

2. glob = 5 * (2 + 1)

Again, this is coded as a variable assignment:

<var#> <1 byte> = <expression> <eol#>

45 0C 05 4B 05 00 08 01 4B 02 00 07 4B 01 00 02 4C
glob = 5 * (2 + 1)

Since the compiler always defines a number of global variables itself, the first-
defined global is never 0. If there are 12 pre-defined globals, the first user-
defined global has variable number $0C.

3. arr[loc] = word[2]

The pattern for this array element assignment is:

 <arraydata#> [<expr>] = <word> [<expr>] <eol#>

 59 F0 00 0E 45 F0 0F 05 52 0E 4B 02 00 0F 4C
 arr [loc] = word [2]

 (Note that word[n] is not handled the same as array[n].)

4. array[1] = random(obj.prop #2)

 (Assuming that obj and prop are the first-defined object and property,

respectively.)

TECHNICAL SYSTEM SPECIFICATION

240

<arraydata#> [<expr>] = random (<expr>) <eol#>

59 F0 00 0E 4B 01 00 0F 05 51
arr [1] = random

01 4A 00 00 03 43 06 10 4B 02 00 02 4C
(obj . prop # 2)

5. glob += (loc++ * arr[7])

45 0C 07 05 01 45 F0 07 07 08
glob + = (loc + + *

59 F0 00 0E 4B 07 00 0F 02 4C
arr [7])

6. if loc = glob + 11

(See APPENDIX A: CODE PATTERNS for details on how if statements

and other conditionals are coded.)

18 21 00 45 F0 05 45 0C 07 4B 0B 00 4C
if loc = glob + 11

2 bytes give the skip distance (i.e., $0021 bytes) to the next-executed instruction if
the current expression evaluates false.

VII ENCODING TEXT

241

VII. ENCODING TEXT

Text is written uncompressed into the .HEX file (since there is not really
any need for nor any great memory savings from whatever minor compression
might be practical). All text, however—including text in print statements,
dictionary entries, and the text bank—is encoded by adding $14 (decimal 20) to
each 8-bit ASCII value in order to prevent casual browsing of game data.

Text in print statements is written directly into the code in the form:

<stringdata#> <2 bytes> ...encoded string...

where the length of the string is given by the first two bytes following
<stringdata#>.

Text in dictionary entries is encoded in the dictionary table. A dictionary
entry with a given address (addr) appears in the dictionary at addr+2 (since the
first two bytes in the dictionary table are reserved for the number of entries) as:

<1 byte> ...encoded dictionary entry...

where the maximum allowable length of a dictionary entry is 255 characters.
Text written to the text bank is encoded at a given address in the text bank

as:

<2 bytes> ...encoded text...

where the length of the encoded text is given by the first two bytes. (Note that an
address in the text bank requires 3 bytes in the game code, however, since the
length of the text bank can exceed 64K.)

TECHNICAL SYSTEM SPECIFICATION

242

VIII. THE OBJECT TABLE

VIII.a. Objects

The object table begins with two bytes giving the total number of objects.
The objects then follow in sequential order. Each object requires 24 bytes:71

Bytes
0 - 15 Attributes (128 bits in total, 1 bit/attribute)
16 - 17 Parent
18 - 19 Sibling
20 - 21 Child
22 - 23 Property table position

The offset of any given object n from the start of the object table can therefore be
found using:

offset = n * 24 + 2

If a parent has no parent, sibling, and/or child, the appropriate two-byte

word is set to $0000.
The property table position represents the offset of the beginning of the

given object’s property data from the start of the property table, as described
below.

VIII.b. Attributes

The 16 bytes of the attribute array contain 8 bits each, giving a total of 128
possible attributes.72 Essentially, if the bits are thought of sequentially in that the

71 Pre-v2.1 objects had only 32 possible attributes, and the object size was only 12 bytes, with only 4 bytes
given to the attribute array.
72 In v2.1 and later; there were only 32 attributes in earlier versions

VIII THE OBJECT TABLE

243

first byte represents attributes 0 to 7, the second byte represents attributes 8 to 15,
the third 16 to 23, and the fourth and final byte 24 to 31.

TECHNICAL SYSTEM SPECIFICATION

244

IX. THE PROPERTY TABLE

The property table begins with two bytes giving the total number of
properties. This is followed by a list of default property values, each of one 16-
bit (2 byte) word each. After this, the properties themselves begin, starting with
object 0.

The property values are entered sequentially, with no explicit
identification of what object a particular value belongs to. It is the object’s object-
table entry that gives the location of a given object’s property data in the
property table.

Each property requires at least 2 bytes:

Byte
0 Property number
1 Number of data words
2 - Data in 16-bit word form (2 bytes each)

Property routines are given a “length” of 255 ($FF), which indicates that

one word of data follows, representing the (indexed) address of the routine.
At the end of each object in the property table comes the property number

255 ($FF)—not to be confused with the “length” 255, which denotes a routine
address. “Property” number 255 is an exception to the two-byte minimum; it
does not have any attached length byte or data words. Each object has a place in
the object table, even if it has no properties per se. A propertyless object simply
has the value 255 at its position in the property table.

(Property data being written for an .HLB linkable file is slightly altered.
For example, property routines are marked by $FE instead of $FF. See XIII.b The
Linker.)

IX.a. Before, After, and Other Complex Properties

Consider the following complex property for an unspecified object:

after
{

IX THE PROPERTY TABLE

245

object DoGet
 {
 "You pick up the object."

}
object
{

"You can't do that with the object."
}

}

(A simple explanation of the above is that <object>.after is called following
a call to a verbroutine with which <object> was involved. If <object> was
the object of the verbroutine (i.e., the object global), and the verbroutine
global was DoGet, the first block runs. The second block will run if no previous
block has run. For a full description of complex properties, see the Hugo
Manual.)

First of all, the entry in the property table for <object>.after will point
to the first line of code in the property routine. Arbitrarily, let’s assume this is
$000044: the earliest possible code address following a blank grammar table.

000040: FF 00 00 00 45 00 48 1A 00 25 15 00 47 00 00 00
000050: 0D 00 00 00 45 00 25 18 00 47 00 16 00 0D 00 00
000060: 0D 21 29

That can be compared to the original source code as:

000044: 45 00 48 1A 00

The initial “object DoGet” block header, assuming that the engine-
defined global object is global variable number 0, and that the address
of DoGet is $000068 (represented as an indexed address as $001A).

000049: 25 15 00

Following the jump token ($25) is the indexed address to jump to if
“object DoGet” isn’t matched. In this case, it is $0015, which translates
to the absolute address $000054 (i.e., the address of the next header).

00004C: 47 00 00 00

The <textdata#> label is followed by three bytes giving the address in the
text bank of the printed string “You pick up the object.”

TECHNICAL SYSTEM SPECIFICATION

246

000050: 0D 00 00 00

$0D signals the end of this block of executable code, followed by zeroes
padding to the next address boundary.

000054: 45 00

This block header is simply “object”.

000056: 25 18 00

As above, following the jump token ($25) is the indexed address to jump
to if the block header isn’t matched. In this case, it is $0018, which
translates to $000060 (i.e., the closing $0D of the after routine).

000059: 47 00 19 00 0D 00 00

The second line of text is printed here, followed by $0D to signal the end
of this block of code and zero-padding to the next address boundary.

000060: 0D 21 29 4C

A $0D signals the end of the after routine. Property routines are
followed by an automatic $21, $29, and $4C (i.e., “return true”).

X THE EVENT TABLE

247

X. THE EVENT TABLE

The event table begins with two bytes giving the total number of events.
Each event requires 2 bytes:

Bytes
0 - 1 Associated object (0 for a global event)
2 - 3 Address of event routine

TECHNICAL SYSTEM SPECIFICATION

248

XI. THE DICTIONARY AND SPECIAL WORDS

XI.a. Dictionary

The dictionary begins with two bytes giving the total number of entries.
Each dictionary entry is composed of 1 or more bytes:

Byte
0 Length of entry (number of characters)
1 - Entry as an encrypted string

XI.b. Special Words

The special words table begins with two bytes giving the total number of
entries. Each entry requires 5 bytes:

Byte
0 Type (0 = synonym, 1 = removal, 2 = compound,
 3 = user-defined punctuation)
1 - 2 First dictionary address
3 - 4 Second address (for synonyms and compounds)

XII RESOURCEFILES

249

XII. RESOURCEFILES

A resourcefile is used to store multiple images, sounds, music tracks, etc.
in one manageable file format. The format of a Hugo resourcefile is fairly
straightforward.

Every resourcefile starts with a header of 6 bytes:

00 ‘r’ [Note: old 24-bit resourcefiles used ‘R’]
01 Version number (i.e., 31 for version 3.1)
02 - 03 Number of resources
04 - 05 Length of index, in bytes

Following the header is the index itself. Each resource entry in the index looks
like:

00 Length of entry name (i.e., n bytes)
01 - n Entry name
4 bytes Offset in resourcefile from end of index
4 bytes Length of resource, in bytes

Note: Older resourcefiles (designated by ‘R’ in the header) had a limit of 17
MB on resourcefile size (or of any contained resource) and used the following
for offset and length:

3 bytes Offset in resourcefile from end of index
3 bytes Length of resource, in bytes

These are still supported by the Hugo Engine, but the compiler now writes 32-
bit resourcefiles.

Resources are then appended sequentially immediately following the index.

TECHNICAL SYSTEM SPECIFICATION

250

XIII. THE HUGO COMPILER AND HOW IT WORKS

For reference, here is a simplified map of the compiler’s function calls,
along with the source files in which they are located. The leftmost functions are
all called from main() in hc.c:

+----------------+
| ParseCommand() | - Parse command line, including filenames,
| hcmisc.c | switches, and other settings
+----------------+
 |
+----------------+
| OpenFiles() | - Open initial source file, objectfile,
| hcfile.c | listing, and temporary files
+----------------+
 |
+----------------+ +----------------------------------+
| Pass1() | | GetLine() - hcfile.c |
| hcpass.c |--| |
| | | CompilerDirective() - hccomp.c | [1.1]
| (Definitions) | | CompilerMem() - hccomp.c |
+----------------+ | AddDirectory() - hcmisc.c |
 | | |
 | | Def...() - hcdef.c | [1.2]
 | | |
 | | PrinttoAll() - hcmisc.c |
 | | |
 | | (LinkerPass1() - hclink.c) | [1.3]
 | +----------------------------------+
 |
 |
+----------------+ +----------------------------+
| Pass2() | | GetWords() - hcfile.c |
| hcpass.c |--| |
| | | Build...() - hcbuild.c | [2.1]
| (Build) | | |
+----------------+ | (LinkerPass2() - hclink.c) | [2.2]
 | +----------------------------+
 | |

XIII THE HUGO COMPILER AND HOW IT WORKS

251

 | |
+----------------+ +--------------------------+
| Pass3() | | BuildCode() - hcbuild.c | [2.3]
| hcpass.c |--+ +--------------------------+
| | | |
| (Resolve/Link) | | +-----------------------+
+----------------+ | | Code...() - hccode.c | [2.4]
 | | Codeline() - hccode.c |
 | +-----------------------+
 | | [2.5]
 | \+------------------------+
 +--------------| Write...() - hcfile.c |
 /| WriteCode() - hcfile.c |
 +------------------------+

In Pass 1, the initial source file and any included files are read into one

contiguous temporary file (called allfile in the source). Any compiler
directives (i.e., lines beginning with ‘#’, ‘$’ or ‘@’) are processed here [1.1], as are
definitions of objects, attributes, properties, global variables, constants, and
routines [1.2]. Once a line of source has been parsed and split into discrete
words, it is written to allfile using PrinttoAll().

Pass 2 is where the bulk of compilation takes place. Lines of pre-parsed
source are read from allfile. After Pass 1, all symbols (except local variables)
are known. Individual constructs such as verbs, objects, routines, and events are
processed via Build...() functions (i.e., BuildVerb(), BuildObject(),
etc.) [2.1].

At any point in Pass2(), the tokenized line currently being processed is
held in the global word[] array, with the number of tokens in the current line in
words.

Sections of executable code, such as routines, events, or property routines,
are generated by calling BuildCode() [2.3], which in turn calls appropriate
Code...() functions as necessary (i.e., CodeDo(), CodeIf(), CodeWhile(),
etc.), or simply CodeLine() for any line that doesn’t require special treatment
[2.4]. Compiled byte-code is emitted to the objectfile via WriteCode() [2.5].

(In a departure from the normal order of defining symbols, synonyms,
compounds words, removals, and user-defined punctuation are defined in
Pass2(). Local variables are defined in BuildCode().)

By Pass 3, all executable code has been written to the objectfile, structures
exist in memory representing to-be-constructed tables, and the text bank (long
sections of printed text) exists in a temporary file. First, ResolveAddr() (from
hcmisc.c) patches all references that were unknown at the time they were
compiled. Pass3() then writes the object table, the property table, the event
table, the array table, synonyms/removals/compounds/user-defined
punctuation, the dictionary, and the text bank.

TECHNICAL SYSTEM SPECIFICATION

252

If a debuggable executable (called an .HDX file) is being generated, the
last thing Pass3() does is to write the symbolic names of all objects, properties,
attributes, aliases, globals, routines, events, and arrays to the end of the file.

XIII.a. Compile-Time Symbol Data

Here are the various structures, arrays, and variables used by
the compiler to keep track of symbols at compile-time:

Objects:
objctr total number of objects
object[n] symbolic name of object n
object_hash[n] hash value of symbol name
objattr[n][s] attribute set s (32 attributes/set)
oprop[n] location in propdata[] array
objpropaddr[n] location in property table
parent[n] physical parent
sibling[n] physical sibling
child[n] physical child
oreplace[n] number of times replaced using the
 replace directive

Attributes:
attrctr total number of attributes
attribute[n] symbolic name of attribute n
attribute_hash[n] hash value of symbol name

Properties:
propctr total number of properties
property[n] symbolic name of property n
property_hash[n] hash value of symbol name
propset[p] true if property p has been defined
 for current object
propadd[p] ADDITIVE_FLAG bit is true if
 property p is additive;
 COMPLEX_FLAG bit is true if property
 p is a complex property
propdata[a][b] array of all property data
propheap size of property table

XIII THE HUGO COMPILER AND HOW IT WORKS

253

Labels:
labelctr total number of labels
label[n] symbolic name of label n
label_hash[n] hash value of symbol name
laddr[n] indexed address of label

Routines:
routinectr total number of routines
routine[n] symbolic name of routine n
routine_hash[n] hash value of symbol name
raddr[n] indexed address of routine
rreplace[n] number of times replaced using the
 replace directive

Events (although not really symbols):
eventctr total number of events
eventin[n] object to which event n is attached
eventaddr[n] indexed address of event code

Aliases:
aliasctr total number of aliases
alias[n] symbolic name of alias n
alias_hash[n] hash value of symbol name
aliasof[n] attribute or property aliased
 (either the attribute number, or
 the property number plus
 MAXATTRIBUTES)

Global variables:
globalctr total number of global variables
global[n] symbolic name of global n
global_hash[n] hash value of symbol name
globaldef[n] initial value of global at startup

Local variables:
localctr total number of locals defined in the
 current code block
local[n] symbolic name of local n
local_hash[n] hash value of symbol name
unused[n] true until local n is used

TECHNICAL SYSTEM SPECIFICATION

254

Constants:
constctr total number of constants
constant[n] symbolic name of constant n
constant_hash[n] hash value of symbol name
constantval[n] defined value of constant

Array:
arrayctr total number of arrays
array[n] symbolic name of array n
array_hash[n] hash value of symbol name
arrayaddr[n] location in array table
arraylen[n] length of array n
arraysize current size of array table

Dictionary:
dictcount total number of dictionary entries
dicttable current size of dictionary
lexentry[n] dictionary entry n
lexaddr[n] location of entry n in dictionary
 table
lexnext[n] location of word following n in the
 lexentry[] array
lexstart[c] location of first word beginning with
 character c in lexentry[]
lexlast[c] location of last word beginning with
 character c in lexentry[]

Special words:
syncount total number of synonyms, compounds,
 removals, and user-defined
 punctuation
syndata[n] synstruct structure of n

The use of ..._hash[n] is a rough form of hash-table coding. The

compiler, in FindHash() in hcdef.c, produces an almost unique value for a
given symbol based on the characters in it. Only if ..._hash[n] matches an
expected value does a more expensive strcmp() string comparison have to be
performed to validate the “match” (or reject it).

XIII THE HUGO COMPILER AND HOW IT WORKS

255

XIII.b. The Linker

The compiler has to be able to both create a linkable file (called an .HLB
file, as it is usually a precompiled version of the library) and read it back when a
#link directive is encountered.

In the first case, the compiler writes an .HLB file whenever the -h switch is
set at invocation. In order to do that, it does the following things:

1. Property routines, normally marked by a “length” of 255, are changed
to a “length” of 254.

2. All addresses are appended to the end of the file instead of being

resolved in Pass3(). (Labels, being local and therefore not visible
outside the .HLB file, are an exception; they are resolved as usual.)

3. Additional data (such as symbolic names) of objects and properties are

written in Pass3(). Immediately following the object table, the
compiler, in Pass3(), writes all the relevant data for attributes,
aliases, globals, constants, routines.

4. The value “$$” is written into the ID string in the header.

Reading back (i.e., linking) an .HLB file is done in two steps:

LinkerPass1() [1.3], called from Pass1(), and LinkerPass2()[2.2], called
from Pass2(). (The linker routines are found in the source file hclink.c.)

LinkerPass1() simply skims the .HLB file for symbols and defines
them accordingly, along with any relevant data. It also reads the .HLB file’s text
bank and writes it to the current file’s temporary file containing the current text
bank. Note that since linking must be done before any other definitions, there is
no need to calculate offsets here for things like object numbers, addresses in the
text bank, etc.

LinkerPass2() is responsible for reading the actual executable code. It
does this mainly with a simple read/write (in blocks of 16K or smaller). It then
reads the resolve table appended to the end of the .HLB file and writes it to the
current resolve table so that Pass3() can properly resolve the offset code
addresses at the end of compilation. (Since the actual start of executable code
will vary depending on the length of the grammar table, it is not known at the
.HLB file’s compile-time what a given address may ultimately be. It is only
known that, for example, routine R is called from position P in the source. Both
R and P must be adjusted for the offset.)

In Pass3(), ResolveAddr() is now able to resolve addresses from the
linked file. Additionally, those properties with a “length” of 254 are adjusted so

TECHNICAL SYSTEM SPECIFICATION

256

that their values—which are really addresses of property routines—are adjusted
as per the offset; the “length” of these properties is then written as 255.

XIV THE HUGO ENGINE AND HOW IT WORKS

257

XIV. THE HUGO ENGINE AND HOW IT WORKS

Here is a simple map of the main engine loop and the associated
functions:

+-------------+ +----------------------------+
| RunGame() |----| RunRoutine("init" routine) |
| herun.c | | herun.c |
+-------------+ +----------------------------+
 /|\ \|/
 | |
 | | \+----------------------------+
 | +----| RunRoutine("main" routine) | MAIN EXECUTION
 | | /| herun.c | LOOP [1.1]
 | | +----------------------------+
 | | |
 | | \ |
 | +-------Player input [1.2]
 | | / |
 | | \|/
 | | +----------------+
 | | | Parse() | [2.1]
 | | | heparse.c |
 | | +----------------+
 /|\ /|\ |
 | | +----------------+ +---------------------------+
 | | | MatchCommand() |--| MatchWord() - heparse.c |
 | | | heparse.c | | MatchObject() - heparse.c |
 | | +----------------+ +---------------------------+
 | | | [2.2] [2.3]
 | If input |
 | is not-------+
 | valid |
 | |
 | If input
 | is valid
 | |
 | \|/
 | +-------------------------+
 | | RunRoutine(performaddr) | [3.1]
 | | herun.c |
 | +-------------------------+
 |/ | .
 +-----------------+ .
 \ .

TECHNICAL SYSTEM SPECIFICATION

258

 .
 .
 .
 +-----------------------+
 | Expression evaluator: | [4.1]
 | heexpr.c |
 | |
 | SetupExpr() |
 | | |
 | GetValue()--GetVal() |
 | | |
 | EvalExpr() |
 +-----------------------+

The functions in herun.c comprise most of the core game loop and

calling points. RunGame() manages the game loop itself [1.1], which can be
thought of as being:

Main routine ð Player input ð Parsing ð Action (if valid)

Player input [1.2] is the point at which the engine requests a new input

line (usually from the keyboard, but possibly from another source such as a file
during command playback).

The Parsing section [2.1] refers to the in-engine breakdown and analysis
of the input line. The input line is matched against the grammar table in
MatchCommand() [2.2]—using MatchWord() and MatchObject() [2.3] to
identify either individual words as specified in the grammar, or groups of words
that may represent an object name.

If a match is made, the appropriate globals (object, xobject,
verbroutine) are set, and Perform() is called [3.1] (or, if Perform() has not
been defined, the built-in substitute). (Note that if the command is directed to an
object—i.e., another character—SpeakTo() is called instead of Perform().)

RunRoutine() is the method by which any function calls are executed.
At any point in RunRoutine() (or in functions called by it), the value
mem[codeptr] is the byte value (i.e., the token number) of the current
instruction. The value of codeptr advances as execution progresses.

Whenever it is necessary for the engine to evaluate an expression, the
expression evaluator subsystem in heexpr.c is invoked [4.1]. Here, the eval[]
array is initialized with the expression to be evaluated by calling SetupExpr()
(which will in turn call GetValue() to sequentially retrieve the elements of the
expression). The expression currently in eval[] is solved by calling
EvalExpr().

XIV THE HUGO ENGINE AND HOW IT WORKS

259

XIV.a. Runtime Symbol Data

Code execution:
mem[] loaded .HEX file image
defseg current memory segment
codeseg code segment (i.e., 0)
codeptr current code position
stack_depth current calling depth

Display:
pbuffer[] print buffer for line-wrapping
currentpos current position (pixel or character)
currentline current row (line)
full counter for PromptMore() page-ending
fcolor, bgcolor, colors for foreground, background,
icolor, input, and default background
default_bgcolor
currentfont current font bitmask
textto if non-zero, text is printed to this
 array
SCREENWIDTH, maximum possible screen dimensions
SCREENHEIGHT
inwindow true if in a window

physical_windowwidth, “physical” window dimensions,
physical_windowheight, in pixels or characters
physical_windowleft,
physical_windowtop,
physical_windowright,
physical_windowbottom

charwidth, lineheight, for font output management
FIXEDCHARWIDTH,
FIXEDLINEHEIGHT,
current_text_x,
current_text_y

Parsing:
words number of parsed words in input
word[] breakdown of input into words
wd[] breakdown of input into dictionary
 entries

TECHNICAL SYSTEM SPECIFICATION

260

Arguments and expressions:
var[] global and local variables
passlocal[] locals passed to a routine
arguments_passed number of arguments passed
ret return value (from a routine)
incdec amount a value is being incremented
 or decremented

Undo management:
undostack[] for saving undo information
undoptr number of operations undoable
undoturn number of operations for this turn
undoinvalid when undo is invalid
undorecord true when recording undo info

XIV.b. Non-Portable Functionality

The Hugo Engine requires a number of non-portable functions which
provide the interface layer between the engine and the operating system on
which it is running. These functions are:

hugo_blockalloc Large-block malloc()
hugo_blockfree Large-block free()

hugo_splitpath For splitting/combining filename/path
hugo_makepath elements as per OS naming conventions

hugo_getfilename Asks the user for a filename
hugo_overwrite Verifies overwrite of a filename
hugo_closefiles fcloseall() or equivalent

hugo_getkey getch() or equivalent
hugo_getline Keyboard line input
hugo_waitforkey Cycles while waiting for a keypress
hugo_iskeywaiting Reports if a keypress is waiting
hugo_timewait Waits for 1/n seconds

hugo_init_screen Performs necessary display setup
hugo_hasgraphics Returns graphics availability
hugo_setgametitle Sets title of window/screen

XIV THE HUGO ENGINE AND HOW IT WORKS

261

hugo_cleanup_screen Performs necessary screen cleanup
hugo_clearfullscreen Clears entire display area
hugo_clearwindow Clears currently defined window
hugo_settextmode Performs necessary text setup
hugo_settextwindow Defines window in display area
hugo_settextpos Sets cursor/text-output position
hugo_scrollwindowup Scrolls currently defined window
hugo_font Sets font for text output
hugo_settextcolor Sets foreground color for text
hugo_setbackcolor Sets background color for text
hugo_color Returns a valid color reference

hugo_print Outputs formatted text
hugo_charwidth Returns width of a given character
hugo_textwidth Returns width of a given string
hugo_strlen strlen() for embedded codes
hugo_specialchar Translation for special characters

hugo_hasvideo Returns video availability73

For elaboration of the intent and implementation of these functions, see

heblank.c in the standard source distribution (hugov31_source.tar.gz), or
one of the implementations such as hemsvc.c (in
hugov31_win32_source.zip, the Windows source package), hegcc.c (in
hugov31_unix_source.tar.gz, the gcc/Unix package), etc.

XIV.c. Savefile Format

Hugo saves the game state by (among other things) saving the dynamic
memory from start of the object table to the start of the text bank (i.e., including
objects, properties, array data, and the dictionary). It does this, however, in a
format that only notes if the data has changed from its initial state.

The structure of a Hugo savefile looks like this:

0000 - 0001 ID (assigned by compiler at compile-time)
0002 - 0009 Serial number

000A - 0209 All variables (global and local, 256*2 bytes)

73 v3.0 and later

TECHNICAL SYSTEM SPECIFICATION

262

020A - Object table to text bank (see below)

n bytes Undo data (where n = MAXUNDO*5*2 bytes)
2 bytes undoptr
2 bytes undoturn
1 byte undoinvalid
1 byte undorecord

In saving from the object table up to the start of the text bank, the engine

performs a comparison of the original gamefile against in-memory dynamic data
(which may have changed).

If a given byte n in a savefile is non-zero, it represents that the next n
sequential bytes are identical between the gamefile and the saved data. If n is 0,
the byte n+1 gives the value from the memory image. (Although it takes 2 bytes
to represent a single changed byte, the position within both the gamefile and the
memory image only increases by 1.)

The practical implementation of the Hugo savefile format is found in
RunSave() and RunRestore() in herun.c.

XV DARK SECRETS OF THE HUGO DEBUGGER

263

XV. DARK SECRETS OF THE HUGO DEBUGGER

The Hugo Debugger is basically a modified build of the Hugo Engine; the
two share the same core code for program execution, but the debugger wraps it
in a calling framework that allows the user (or the debugger itself) to control—
i.e., start, stop, or step through—execution.

The key difference with the debugger build of the engine is in
RunRoutine(), which in the debugger looks more like this:

 ...
 |
 |
 +--------------+ +------------+
 | RunRoutine() |---->| Debugger() | (if debugger_interrupt
 | herun.c | | hd.c | is non-false)
 +--------------+ +------------+
 |
 |
 ...

The debugger build contains a global flag called debugger_interrupt;

if this flag is non-false, RunRoutine() is interrupted before executing the next
instruction.

The Debugger() function is responsible for switching to and updating
the debugger display. Debugger() is also the hub for any debugger functions
initiated by the user, such as setting breakpoints, setting watch expressions,
changing values, moving objects, etc.

The debugger controls program execution by returning from
Debugger()to RunRoutine(). If debugger_interrupt is true, only the
current instruction will execute, then control will pass back to Debugger() (i.e.,
stepping). In order to resume free execution, Debugger() returns with
debugger_interrupt set to false.

A number of other variables in the debugger influence program execution
in addition to debugger_interrupt:

debugger_run true when engine is running freely
debugger_collapsing true when collapsing the call

TECHNICAL SYSTEM SPECIFICATION

264

debugger_step_over true if stepping over (i.e., same-
 level stepping)
debugger_skip true if skipping next instruction
debugger_finish true if finishing current routine
debugger_step_back true if stepping backward
step_nest for stepping over nested calls (i.e.,
 with debugger_step_over)

XV.a. Debugger Expression Evaluation

The debugger must evaluate expressions in several contexts, including
when solving watch expressions and when changing an existing value. (In-
debugger expression management is contained primarily in hdval.c.)

In order to do this, the debugger includes a minimal version of the
compiler’s expression parser. It parses a user-supplied expression in the function
ParseExpression(). What ParseExpression() does is to essentially
compile that expression, storing the result in the debug workspace in the array
table. (Remember that the address of the debug workspace—256 bytes after any
user-defined array storage—is found in the header in .HDX files.)

After writing the expression, the debugger can then set codeptr to the
start of the debug workspace, then call the engine’s SetupExpr() and
EvalExpr() functions as it would to evaluate any other expression.

XV.b. The .HDX File Format

The .HDX file format for Hugo debuggable executables, as well as having
some additional information in the header (see II.b The Header) and a 256 byte
workspace reserved at the end of the array table, appends symbolic debugging
data as follows:

Object names For each object: 1 byte giving the
 length, followed by the name as a
 string

of properties 2 bytes
Property names For each property: 1 byte (length),
 then the name

of attributes 2 bytes
Attribute names For each attribute: 1 byte
 (length), then the name

XV DARK SECRETS OF THE HUGO DEBUGGER

265

of aliases 2 bytes
Alias names For each alias: 1 byte (length),
 then the name, then two bytes for
 the association

of routines 2 bytes
Routine names For each routine: 1 byte (length),
 then the name

of events 2 bytes
Event data 4 bytes for each—2 bytes for the
 parent; 2 bytes for the address

of arrays 2 bytes
Array data For each array: 1 byte for the name
 length, followed by the name,
 followed by 2 bytes for the address

(Note that it isn’t necessary to store the total number of objects, since that

is already available at the start of the normal object table.)

TECHNICAL SYSTEM SPECIFICATION

266

APPENDIX A: CODE PATTERNS

What follows is a detailed breakdown of how the set of valid tokens in
Hugo is encoded and read within compiled code.

Tokens simply marked TOKEN are coded just as the byte value of the token
in question; no other formatting or necessary token/value is required to follow.
These are typically used for delimitation, signaling the end of a structure or
structure component, etc.

STATEMENTS are those tokens that are read by the engine as some sort of
operation—typically, these are “start of line” tokens, with some exceptions.

VALUES return an integer value to the engine within the context of an
expression. See III.b Data Types, which describes all the valid types of values.

INTERNAL tokens never appear in source code. These are added by the
compiler for use by the engine.

A “code block” is any executable statement or statements followed by a
terminating $0D (‘}’).

Constructions may include expressions or values; the difference between the
two is that values are expected to be discrete data types. Note also that
GetVal() in heexpr.c allows a solvable expression bracketed by $01 (‘(’) and
$02 (‘)’) to be treated as a discrete value.

Source references point to places in the Hugo C source code that may help
to clarify how a particular construction is coded/interpreted. While not
specifically mentioned, the compiling of many tokens is localized in
CodeLine() in hccode.c, and the execution of many simple statements is
localized in RunRoutine() in herun.c. The reading of values from data types
or expressions begins with GetValue() in heexpr.c, with the basic
identification of values in GetVal().

01 (TOKEN

02) TOKEN

03 . TOKEN

04 : reserved (not coded)

APPENDIX A: CODE PATTERNS

267

05 = TOKEN

06 - TOKEN

07 + TOKEN

08 * TOKEN

09 / TOKEN

0A | TOKEN

0B ; TOKEN

0C { TOKEN

0D } TOKEN

 (Signifies the end of a code block)

0E [TOKEN

0F] TOKEN

10 # TOKEN

11 ~ TOKEN

12 >= TOKEN

13 <= TOKEN

14 ~= TOKEN

15 & TOKEN

16 > TOKEN

17 < TOKEN

TECHNICAL SYSTEM SPECIFICATION

268

18 if STATEMENT

 18 <skip distance> <expression> 4C
 <conditional block>

 <next statement>

 As in: if <expression>

 {...}

 Where the two bytes of <skip distance> are the absolute

distance—in low-byte/high-byte order—from the first byte
of the pair to the next line of code that will execute if
<expression> evaluates to false, i.e., the distance to <next
statement>. If <expression> evaluates to a non-false
value, <conditional block> is run. Note that $4C
indicates end-of-line.

 <expression> is simply a tokenized representation of the

expression as it appears in the source line.

 Source: hccode.c – CodeIf()
 herun.c – RunIf()

19 , TOKEN

1A else STATEMENT

1A <skip distance>
<conditional block>

<next statement>

 As in: else
 {...}

 Where <conditional block> runs only if no

immediately preceding if or elseif condition has been
met. If a previous condition has been met, control passes
ahead to <next statment>, i.e., forward the number of
bytes given by the two bytes of <skip distance>.

 Source: hccode.c – CodeLine()

APPENDIX A: CODE PATTERNS

269

 herun.c – RunIf()

1B elseif STATEMENT

 1B <skip distance> <expression> 4C
<conditional block>

<next statement>

 As in: elseif <expression>
 {...}

 See if.

 Source: hccode.c – CodeIf()
 herun.c – RunIf()

1C while STATEMENT

 :<starting point>
 1C <skip distance> <expression> 4C

 <conditional block>
25 <starting point>
<next statement>

 As in: while <expression>
 {...}

 As long as <expression> evaluates to a non-false value,

<conditional block> is run. Note the implicit jump
($25) coded by the compiler to maintain the loop—
<starting point> is only an address; only the two-byte
address following $25 is written as a jump-back point. See
if.

 Note that because the <starting point> is written as a

two-byte indexed address, it must begin on an address
boundary, padded with empty ($00) values, if necessary.

 Source: hccode.c – CodeWhile()
 herun.c – RunIf()

TECHNICAL SYSTEM SPECIFICATION

270

1D do STATEMENT

1D <skip distance>
:<starting point>

<block>
1C <two bytes> <expression> 4C
<next statement>

 As in: do
 {...}
 while <expression>

 If, after <block> executes, <expression> evaluates to a

non-false value, the engine returns to <starting point>
(which must begin on an address boundary). The two bytes
following while ($1C) match the syntax of the normal
while loop, but are undefined for this usage. Instead, the
distance to the next statement is given after the do token
($1D) in the two bytes of <skip distance>.

 Source: hccode.c – CodeDo()
 herun.c – RunDo()

1E select STATEMENT

 1E

 When encountered by the engine, resets the conditional-

statement evaluator, i.e., so that the next case conditional is
treated as an if instead of an elseif. Note that the
variable that follows select in a line of source code is not
coded here (but it is needed by the compiler to construct
subsequent case statements).

 See case.

 Source: hccode.c – CodeSelect()
 herun.c – RunIf()

APPENDIX A: CODE PATTERNS

271

1F case STATEMENT

 Treated identically by the engine to elseif once a select
token ($1E) has reset the conditional-statement evaluator to
no previous matches.

 In other words, what the compiler does is take:

select <expression>
case <test1>

<first conditional block>
case <test2>

<second conditional block>
...
case else

<default conditional block>

 and restructure it into:

 1F <skip distance> <expression> 05 <test1> 4C
 <first conditional block>

1F <skip distance> <expression> 05 <test2> 4C
<second conditional block>

1A <skip distance>
<default conditional block>

 Note that $1A is the else token, $05 is the ‘=’ token, and

that the two bytes of <skip distance> give the distance
to the next case.

 Source: hccode.c – CodeSelect()
 herun.c – RunIf()

20 for STATEMENT

<assignment>
:<starting point>
20 <skip distance> <expression> 4C

<conditional block>
<modifying expression>
25 <starting point>

<next statement>

 As in: for (<assign>; <expr>; <modifying>)

TECHNICAL SYSTEM SPECIFICATION

272

 {...}

 The <assignment>, if given in the source code, is coded as

a regular executable assignment of some data type. Again,
nothing is explicitly coded at <starting point>—it is
simply a reference point for the jump ($25) to return to. The
for ($20) line operates as a regular conditional test (see if).
The <modifying expression> is appended after the
conditional block is coded. This, like the <assignment> is
simply a regular executable assignment.

 Source: hccode.c – CodeFor()
 herun.c – RunIf()

21 return STATEMENT

 21 <expression> 4C

 As in: return <expression>

 Where <expression> is optional, so that a standalone

return order can be coded as:

 21 4C

22 break STATEMENT

22

23 and TOKEN

24 or TOKEN

25 jump STATEMENT

25 <address>

 As in: jump <label>

APPENDIX A: CODE PATTERNS

273

 Where <address> is two bytes giving the indexed address

of the next statement to be executed. (The <label> is coded
as <address>.)

26 run STATEMENT

 26 <value> 4C74

Where <value> is simply read and forgotten, as in running
an object.property property routine and throwing away
the value.

27 is TOKEN

 As in: <object> is <attribute> (statement form)
 <object> is <attribute> (value form).

28 not TOKEN

29 true VALUE

 29

 Hard-coded Boolean constant meaning 1.

2A false VALUE

 2A

 Hard-coded Boolean constant meaning 0.

2B local reserved (not coded)

2C verb STATEMENT

2C <n> <dict_1> <dict_2>...<dict_n>

74 Pre-v2.3 omitted the eol# marker ($4C).

TECHNICAL SYSTEM SPECIFICATION

274

 Occurs in the grammar table and explicitly denotes the

beginning of a new verb, where the single byte <n> gives the
number of dictionary words coded immediately following
representing synonyms for this verb.

2D xverb STATEMENT

 2D <n> <dict_1> <dict_2>...<dict_n>

 Coded and handled identically to verb, except that it is

flagged differently so the engine knows it is a “non-action”.

2E held GRAMMAR TOKEN

2F multi GRAMMAR TOKEN

30 multiheld GRAMMAR TOKEN

31 newline PRINT TOKEN

 Signals a print statement to issue a newline only if one is
needed.

32 anything GRAMMAR TOKEN

33 print STATEMENT

 33 <print data> 4C

 33 <print data> 0B <print data> ... 4C

 Where <print data> is one of the following:

 stringdata#

APPENDIX A: CODE PATTERNS

275

 any value, treated as a dictionary entry

 parse$
 serial$

 newline
 capital
 number
 hex

 Multiple <print data> sequences are separated by a

semicolon (‘;’) token ($0B).

 Source: herun.c – RunPrint()

34 number GRAMMAR TOKEN or PRINT TOKEN

 In a print statement, signals that the following value
should be printed as a number, not as the corresponding
dictionary entry.

 In a grammar line, represents any integer number.

35 capital PRINT TOKEN

 Signals that the following dictionary entry should have its
first letter capitalized.

36 text STATEMENT

 36 3B <value> 4C75

 As in: text to n

 Where <value> is either an address in the array table, or

constant 0 (to restore text output to the standard display).

75 Pre-v2.3 omitted the eol# marker ($4C).

TECHNICAL SYSTEM SPECIFICATION

276

37 graphics STATEMENT

 (Not implemented.)

38 color STATEMENT

38 <value> 4C
38 <value> 19 <value> 4C
38 <value> 19 <value> 19 <value> 4C

 As in: color foreground
 color foreground, background
 color foreground, background, inputcolor

 Where <value> is a Hugo color value from 0 to 17 giving

the foreground text color. If a second value is given,
separated by a comma ($19), it represents the background
color. If a third value is given, separated by a comma ($19),
it represents the input color.

39 remove STATEMENT

39 <value> 4C76

 As in: remove <object>

 Source: herun.c – RunMove()

3A move STATEMENT

3A <value> 3B <value> 4C77

 As in: move <object1> to <object2>

 Source: herun.c – RunMove()

3B to TOKEN

 Followed by a value, as in:

76 Pre-v2.3 omitted the eol# marker ($4C).
77 Pre-v2.3 omitted the eol# marker ($4C).

APPENDIX A: CODE PATTERNS

277

 3B <value>

 Typically found in “print to n”, “text to n”, etc., in

which case the line will finish with eol#:

...3B <value> 4C

3C parent VALUE

3C 01 <expression> 02

 As in: parent(...)

 Returns the parent object of the object resulting from

<expression>.

 (Alternate usage is as a grammar token, coded simply as $3C

with no following parenthetical expression.)

3D sibling VALUE

 3D 01 <expression> 02

 As in: sibling(...)

 Returns the sibling of the object resulting from

<expression>.

3E child VALUE

 3E 01 <expression> 02

 As in: child(...)

 Returns the child object of the object resulting from

<expression>.

3F youngest VALUE

 3F 01 <expression> 02

TECHNICAL SYSTEM SPECIFICATION

278

 As in: youngest(...)

 Returns the youngest (most recently added) child object of

the object resulting from <expression>.

40 eldest VALUE

 40 01 <expression> 02

 As in: eldest(...)

 Iinterpreted identically to “child(...)”.

41 younger VALUE

41 01 <expression> 02

 As in: younger(...)

 Interpreted identically to “sibling(...)”.

42 elder VALUE

42 01 <expression> 02

 As in: elder(...)

 Returns the object number of the object more recently added

to the parent of the object resulting from <expression>.

43 prop# INTERNAL VALUE

43 <property>

 Where <property> is a single byte giving the property

number.

APPENDIX A: CODE PATTERNS

279

44 attr# INTERNAL VALUE

44 <attribute>

 Where <attribute> is a single byte giving the attribute

number.

45 var# INTERNAL VALUE

45 <variable>

 Where <variable> is a single byte giving the variable

number. 0-239 are global variables, and 240-255 are local to
this routine/event/etc.

46 dictentry# INTERNAL VALUE

46 <dictionary entry>

 Where <dictionary entry> is two bytes (in low-

byte/high-byte order) giving the address of the entry in the
dictionary table.

47 text# INTERNAL STATEMENT

47 <text address>

 Where <text address> is three bytes (in lowest-to-

highest byte order) giving the address of the entry in the text
bank.

48 routine# INTERNAL STATEMENT or VALUE

48 <routine address>

 Where <routine address> is two bytes giving the

indexed address of the specified routine.

TECHNICAL SYSTEM SPECIFICATION

280

49 debugdata# INTERNAL DATA

 Is followed by data that is helpful to the engine at runtime—
not visible in, for example, the debugger’s code window.

 E.g., local variable name:

49 45 <byte> <data>

 Where <byte> is a single byte giving the number of

following <data> bytes, which give the name of the next
local variable as an ASCII string. Read by the debugger;
ignored by the engine.

4A object# INTERNAL VALUE

 4A <object number>

 Where <object number> is two bytes giving the number

of the specified object.

4B value# INTERNAL VALUE

4B <number>

 Where <number> is two bytes giving the specified constant

value.

4C eol# INTERNAL TOKEN

 End-of-line marker.

4D system INTERNAL STATEMENT or VALUE

 4D 01 <value> 02 4C78

 As in: system(<value>)

78 Pre-v2.3 omitted the eol# marker ($4C).

APPENDIX A: CODE PATTERNS

281

 Calls the system-level function designated by <value>.
(See The Hugo Programming Manual for further elaboration
on the system statement.)

 Obsolete usage:79

 4D <value>

 Where <value> is some Hugo data type giving the number

of the system function to call.

 Source: herun.c – RunSystem()

4E notheld GRAMMAR TOKEN

4F multinotheld GRAMMAR TOKEN

50 window STATEMENT

window n

50 <value> 4C

window left, top, right, bottom

50 <v1> 19 <v2> 19 <v3> 19 <v4> 4C

window

50 4C

 window 0

50 4B 00 00 4C

 Where <value> or <vn>, if present, gives a number of lines

or screen coordinate. All instances of the window statement
are followed by a code block except for “window 0”. (See

79 Not implemented post-v2.2.

TECHNICAL SYSTEM SPECIFICATION

282

The Hugo Programming Manual for further elaboration on the
window statement.)

 (Prior to v2.4, the third syntax, i.e., “window” alone,

complied as “50 4C” in v2.3 or simply “50” in early
versions, followed by a code block, was the only usage. The
result was a window beginning at the top of the screen,
reaching down to the current cursor row at the termination
of the block, and protected then from scrolling of the
bottom/main window.)

 Source: herun.c – RunWindow()

51 random VALUE

51 01 <expression> 02

 As in: random(...)

 Returns a random value between 1 and <expression>.

52 word VALUE

52 0E <expression> 0F

 As in: word[...]

 Returns the dictionary address of word[<expression>].

53 locate STATEMENT

53 <value> 4C
53 <value> 19 <value> 4C

 As in: locate x
 locate x, y

 Where <value> is the column position to reposition the

cursor to within the currently defined window. If a second
value is given, it represents the new row position.

APPENDIX A: CODE PATTERNS

283

54 parse$ TOKEN

 Read-only engine variable representing the engine parser’s
internal parse$ string.

 Source: herun.c – RunPrint()
 hemisc.c – Dict(), GetWord()

55 children VALUE

55 01 <expression> 02

 As in: children(...)

 Returns the number of children owned by the object

resulting from <expression>.

56 in TOKEN

 As in: for <object> in <parent>

 or

 if <object> [not] in <parent>

57 pause STATEMENT

57

 Waits for a keypress. Stores the resulting key value in

word[0].

58 runevents STATEMENT

58

 Runs all events in scope.

TECHNICAL SYSTEM SPECIFICATION

284

59 arraydata# VALUE

 array[<expression>] – element <expression> of
array <array>

 59 <array> 0E <value> 0F

 array[]– length of array <array>

 59 <array> 0E 0F

 array – address of array <array>

 59 <array>

 Where <array> is two bytes giving the address of the array

in the array table.

5A call STATEMENT or VALUE

 5A <value> 4C80

 As in: call <routine address>

 Where <value> gives the indexed address of the routine to

be called.

5B stringdata# PRINT TOKEN

 5B <n> <char1> <char2> <char3> ... <charn>

 Valid only in a print statement. <n> gives the number of

characters contained in the print string.

 Source: herun.c – RunPrint()

5C save VALUE

 As in: x = save

80 Pre-v2.3 omitted the eol# marker ($4C) when used as a statement.

APPENDIX A: CODE PATTERNS

285

 Calls the engine’s save-game procedure (which includes
filename input); returns a true value on success, or false on
failure.

 Source: herun.c – RunSave()

5D restore VALUE

 As in: x = restore

 Calls the engine’s restore-game procedure (which includes

filename input); returns a true value on success, or false on
failure.

 Source: herun.c – RunRestore()

5E quit STATEMENT

 5E

 Terminates program execution and exits the engine.

5F input STATEMENT

 5F

 Prompts for user input, storing the resulting word(s) in the

word[] array. Unknown (i.e., non-dictionary) words
become 0, or “”; the last unknown word is stored in parse$.

 Source: herun.c – RunInput()

60 serial$ PRINT TOKEN

 Read-only engine variable representing the compiler-
determined serial number.

 Source: hemisc.c – GetWord()

TECHNICAL SYSTEM SPECIFICATION

286

61 cls STATEMENT

 61

 Clears the currently defined text window.

62 scripton VALUE

 As in: x = scripton

 Calls the engine’s begin-scripting procedure (which includes

filename input); returns a true value on success, or false on
failure.

 Source: herun.c – RunScript()

63 scriptoff VALUE

 As in: x = scriptoff

 Calls the engine’s end-scripting procedure; returns a true

value on success, or false on failure.

 Source: herun.c – RunScript()

64 restart VALUE

 As in: x = restart

 Attempts to reload the dynamic game data and restart the

game loop; returns a true value on success or false on failure.

65 hex PRINT TOKEN

 Signals that the following value should be printed as a
hexadecimal number, not as the corresponding dictionary
entry.

APPENDIX A: CODE PATTERNS

287

66 object GRAMMAR TOKEN

 (Removed as a token after grammar table is compiled so that
“object” can refer to the object global variable.)

67 xobject GRAMMAR TOKEN

 (Removed as a token after grammar table is compiled so that
“xobject” can refer to the xobject global variable.)

68 string VALUE

 68 01 <expr1> 19 <expr2> 19 <expr3> 02

 As in: x = string(a, "apple", 8)

 Calls the engine string-writing function to write the

dictionary entry <expr2> into the array table at the array
address given by <expr1>, to a maximum of <expr3>
characters. <expr1> is any data type or expression;
<expr2> is either a value or the parse$ token ($54);
<expr3> is optional, and if it is not given, the $02 token
comes in place of the second $19.

 Source: herun.c – RunString()

69 array VALUE

69 <value>

 Forces <value> to be used as an address in the array table,

so that “array <value>” can be used as arraydata#.

 Source: heexpr.c – GetVal()

6A printchar STATEMENT

6A <value1> 19 <value2> 19 ... 4C

 As in: printchar 'A', 'B',...

TECHNICAL SYSTEM SPECIFICATION

288

 Outputs a single ASCII character value at the current screen
position. Multiple values are separated by $19; the sequence
is terminated by $4C.

6B undo VALUE

 As in: x = undo

 Attempts to restore all data changes made since the last

typed input; returns a true value on success or false on
failure.

 Source: hemisc.c – SaveUndo(),Undo()

6C dict VALUE

6C 01 <expr1> 19 <expr2> 02

 As in: x = dict(<array>, <len>)

 Calls the engine dictionary-writing function to write the

given string into the dictionary, to a maximum of <len>
characters. If <expr1> is parse$ ($54), then the value of
parse$ is used; otherwise <expr1> is an array address in
the array table. If the string is already a dictionary entry, its
location is returned. Otherwise, it is appended to the end of
the table, and the new location is returned.

 Source: hemisc.c – Dict()

6D recordon VALUE

 As in: x = recordon

 Calls the engine’s begin-command-recording procedure

(which includes filename input); returns a true value on
success, or false on failure.

 Source: hemisc.c – RecordCommands()

APPENDIX A: CODE PATTERNS

289

6E recordoff VALUE

 As in: x = recordoff

 Calls the engine’s end-command-recording procedure;

returns a true value on success, or false on failure.

 Source: hemisc.c – RecordCommands()

6F writefile STATEMENT

 6F <value> 4C81
 ...file i/o code block...

 As in: writefile <file>
 {...}

 Opens the file named by the dictionary entry <value>,

erasing it if it previously exists, and runs the following code
block. Upon any error, jumps to the end of the file i/o code
block and closes <file>.

 Source: hemisc.c – FileIO()

70 readfile STATEMENT

70 <value> 4C82
...file i/o code block...

 As in: readfile <file>
 {...}

 Opens the file named by the dictionary entry <value> and

runs the following code block. Upon any error, jumps to the
end of the file i/o code block and closes <file>.

71 writeval STATEMENT

71 <value> 19 <value> 19 ... 4C83

81 Pre-v2.3 omitted the eol# marker ($4C).
82 Pre-v2.3 omitted the eol# marker ($4C).

TECHNICAL SYSTEM SPECIFICATION

290

 Valid only in a writefile block. Writes <value> as a 16-

bit integer to the currently open file. Multiple values are
separated by $19.

72 readval VALUE

 As in: x = readval

 Valid only in a readfile block. Reads a 16-bit integer from

the currently open file.

73 playback VALUE

 As in: x = playback

 Calls the engines command-playback procedure (including

filename input) and attempts to begin command playback
from the requested file. If found, player input in
RunGame() is overridden by commands in the file until
end-of-file. Returns true on success, false on failure.

74 colour STATEMENT

 Treated identically to $38: color.

75 picture STATEMENT

75 <value1> 19 <value2> 4C
 75 <value1> 4C

 Attempts to load and display a JPEG-format picture either as

resource <value2> in resourcefile <value1>, or, if
<value2> is not given, simply as filename <value1>. (All
<values> are dictionary entries.) If there is an error, the
system_status global variable is set.

76 label# INTERNAL DATA

83 Pre-v2.3 omitted the eol# marker ($4C).

APPENDIX A: CODE PATTERNS

291

77 sound STATEMENT

77 [79] <value1> 19 <value2> [19 <value3>] 4C
77 <value1> 4C

 Attempts to load and play a WAV-format sample as

resource <value2> in resourcefile <value1>. (<value1>
and <value2> are dictionary entries.) If <value3> is
given, the sample output volume is set to <value3> (as a
percentage of normal output). If <value1> is 0, the current
sound is stopped. If there is an error, the system_status
global variable is set.

78 music STATEMENT

 78 [79] <value1> 19 <value2> [19 <value3>] 4C
 78 <value1> 4C

 Attempts to load and play a music resource84 as resource

<value2> in resourcefile <value1>. (<value1> and
<value2> are dictionary entries.) If <value3> is given, the
music output volume is set to <value3> (as a percentage of
normal output). If <value1> is 0, the current music is
stopped. If there is an error, the system_status global
variable is set.

79 repeat TOKEN

 Used by sound and music statements.

84 Version 2.5 supports MOD, S3M, and XM-format music modules. Version 3.0 and later additionally
support MIDI and MP3 files.

INDEX

293

INDEX

.HDX file format, 264
.HEX file format, 225
abs (library routine), 202
accented characters, 62, 63, 95, 261
Acquire (library routine), 42, 43, 192
Activate (library routine), 100, 101, 105, 106,

204, 212
adjective (property, compiler-defined), 45,

48, 49, 51, 97, 113, 118, 135, 138, 140, 183
AFTER_PERIOD (library global variable),

180
aliases, 45, 118, 208, 252, 253, 255, 265
already_listed (library attribute), 40, 180
AND_WORD (library constant), 182
AnyVerb (library routine), 92, 192
ARE_WORD (library constant), 182
arguments of routines, 82, 158
Arnold, Julian, 3
array space, 69, 208
arrays, 20, 66, 68, 69, 70, 93, 102, 149, 159,

173, 208, 239, 252, 254, 265, 284
definition, 68

ASCII characters, 19, 62, 63, 151, 241, 280,
288

assignments, 24
AssignPronoun (library routine), 189, 190,

192
attachable objects, 142
attributes, 20, 39, 40, 41, 42, 45, 48, 49, 50, 51,

53, 117, 121, 122, 132, 149, 195, 198, 199,
208, 216, 242, 251, 252, 255, 264
aliases, 40
definition, 39

BANNER (library constant), 20, 93, 181
Baranov, Dmitry, 3
before and after routines, 88, 89, 91, 104, 124,

126, 129, 198, 246
BeOS, 3, 13, 219
BGCOLOR (library global variable), 93, 180
Bijster, Mark, 3
bitwise operators, 65
Blasius, Volker, 3
Blask, Jonathan, 3
BOLD_OFF (font style mask constant), 62,

93, 182
BOLD_ON (font style mask constant), 62, 93,

182
Bostock, Gerald, 3

Bowes, Cam, 3
Brown, Jason, 3
CalculateHolding (library routine), 94, 192,

193
CancelScript (library routine), 103, 205
cant_go (library property), 44, 185
capacity (library property), 42, 44, 46, 97,

132, 183, 192
Cardenas, Daniel, 3
CArt (library routine), 191, 211
Cebrian, Jose Luis, 3
CenterTitle (library routine), 193, 197
character class, 132
character scripts, 102, 103, 181, 205

routines, 94, 95, 102, 103, 104, 126, 205, 206, 211
CheckReach (library routine), 193
classes

definition, 48
clothing (library attribute), 39, 179
command-line, 7, 9, 13, 15, 16, 28, 213, 250
comments, 3, 25, 31, 32

multiple-line, 25
compiler

directives, 27, 31, 251
errors, 25, 32
invocation, 9, 13, 14, 28
limit settings, 12, 13, 16, 28, 30
precompiled headers, 6, 11, 28, 216, 217

compiler internal data structures, 252
compiling, 9, 13, 14, 28
component class, 136
compounds, 113
conditional compilation, 28, 209, 217
constants, 19, 20, 22, 23, 43, 52, 54, 55, 56, 59,

62, 65, 66, 68, 93, 94, 150, 155, 160, 162,
170, 175, 176, 182, 187, 195, 208, 251, 254,
255, 273, 275, 280
enumerating, 55

container (library attribute), 39, 40, 98, 110,
121, 136, 179, 183, 184

Contains (library routine), 105, 193
contains_desc (library property), 45, 97, 98,

185
counter (library global variable), 93, 94, 98,

105, 126, 181, 195, 196, 259
CThe (library routine), 129, 191, 192, 210
cursor_column (display object property), 45,

146, 147, 187

INDEX

294

cursor_row (display object property), 45,
146, 187

CustomError (library routine), 121, 181, 190,
194

customerror_flag (library global variable),
181

d_to (library property), 44, 185
daemons (see also fuses), 100
DarkWarning (library routine), 194, 198
data types, 19, 21, 30, 31, 43, 52, 55, 57, 58,

59, 65, 157, 158, 228, 229, 230, 266, 272,
281, 287

Deactivate (library routine), 101, 105, 106,
204, 212

debugger, 2, 3, 5, 11, 213, 263
debugging, 10, 11, 16, 28, 33, 58, 118, 122,

123, 125, 210, 211, 213, 223, 227, 264
DEF_FOREGROUND (color constant), 60,

93, 182
DEF_SL_FOREGROUND (color constant),

60, 93, 182
DEFAULT_FONT (library global variable),

93, 180
DeleteWord (library routine), 194
desc_detail (library property), 45, 186
DESCFORM_F (printing format mask

constant), 182
DescribePlace (library routine), 17, 94, 194
dictionary entries, 11, 12, 13, 55, 56, 70, 72,

160, 197, 214, 241, 254, 290, 291
dictionary table, 20, 72, 80, 112, 167, 209, 213,

226, 230, 233, 241, 279
direction class, 131
disambiguation, 122, 189, 210
display object, 34, 45, 146, 147, 151, 187

properties, 187
door class, 136, 137
door_to (library property), 44, 98, 137, 186
DOS, 3, 7, 9, 11, 61, 63, 79, 213
do-while loops, 75, 77, 161, 176
DOWN_ARROW (library constant), 182
Duchesne, Gilles, 3
Dyer, Jason, 3
e_to (library property), 44, 131, 185
endflag (global variable, compiler-defined),

127, 189
EndGame (junction routine), 54, 121, 128,

227
engine globals (compiler-defined), 180
engine internal data structures, 259

engine properties (compiler-defined), 183
ENTER_KEY (library constant), 182
enterable (library attribute), 39, 98, 179, 184,

229
ESCAPE_KEY (library constant), 182
event table, 247, 251
event_flag (library global variable), 104, 181
events, 247

global, 95, 247
exclude_from_all (library property), 44, 183
ExcludeFromAll (library routine), 189, 194
expressions, 24, 56, 65, 68, 74, 213, 215, 229,

260, 263, 264, 266
conditional, 77, 163

female (library attribute), 39, 120, 132, 179
FILE_CHECK (library constant), 150, 170,

183
files

reading, 149, 150, 170, 171, 177, 183, 229, 289,
290

writing, 149, 150, 170, 177, 178, 183, 229, 289,
290

FindLight (library routine), 20, 65, 68, 94, 195
FindObject (junction routine), 95, 118, 121,

122, 210, 227
Font (library routine), 62, 93, 182, 195
font style mask constants, 182
for loops, 76
FORMAT (library global variable), 180, 182,

196, 197, 202, 221
found_in (library property), 20, 42, 43, 44,

47, 88, 122, 183, 184
fuses (see also daemons), 101
Future Boy! (Hugo game), 16, 220
game loop, 54, 126, 127, 128, 129, 170, 171,

257, 258, 286
Garza, Miguel, 3
GetInput (library routine), 195
GMD, 3
grammar definition, 5, 107, 108, 113, 235
grammar table, 113, 126, 226, 235, 236, 237,

245, 255, 258, 274, 287
GROUPPLURALS_F (printing format mask

constant), 182
hasgraphics (display object property), 45,

146, 154, 187, 260
hasvideo (display object property), 146, 187,

261
Hello, Sailor!, 18, 237, 238
her_obj (library global variable), 181, 193
HERE_WORD (library constant), 182

INDEX

295

hexadecimal numbers, 58, 163, 286
hidden (library attribute), 40, 179, 187
higher (library routine), 22, 202
him_obj (library global variable), 181, 193
holding (library property), 42, 44, 97, 132,

158, 167, 178, 184, 192, 193
hours:minutes, 233
HoursMinutes (library routine), 195
Hugo Library, 2, 36, 210
Hugo License, 2
hugofix.g (library file), 6, 28
hugofix.h (library file), 6, 28, 217
hugolib.h (library file), 5, 6, 28, 34, 39, 42, 43,

59, 60, 62, 79, 85, 93, 95, 97, 99, 102, 103,
104, 114, 118, 120, 121, 122, 123, 126, 127,
128, 130, 146, 150, 151, 160, 170, 187, 188,
197, 206, 210, 216, 217

identical objects, 94, 122, 139, 141, 142
IF Archive, 3
if-elseif, 74, 161
ignore_response (library property), 45, 186
in_scope (library property), 44, 101, 122, 184,

200
in_to (library property), 44, 131, 185
IN_WORD (library constant), 182
Indent (library routine), 196
INDENT_SIZE (library global variable), 180,

196
Inform, 2, 4, 220
Init (junction routine), 18, 93, 126, 139, 171,

227
initial_desc (library property), 44, 184, 186,

187, 201
InList (library routine), 196
InsertWord (library routine), 196
inv_desc (library property), 45, 186, 201
IS_WORD (library constant), 182
IsorAre (library routine), 191
IsPossibleXobject (library routine), 196
it_obj (library global variable), 181, 193
ITALIC_OFF (font style mask constant), 182
ITALIC_ON (font style mask constant), 182
Jenness, Jeff, 3
Jones, Doug, 3
junction routines, 117, 127, 128, 189, 226, 227
key_object (library property), 45, 97, 124,

125, 186
Kinder, David, 3
known (library attribute), 39, 122, 179, 199,

212, 213

Lash, Bill, 3
last_object (library global variable), 181
LEFT_ARROW (library constant), 182
legal information, 2
library files, 3, 10, 16, 20, 27, 28, 50, 82, 111,

148, 188, 217
light (library attribute), 20, 39, 60, 66, 94, 130,

135, 179, 181, 194, 195, 199
light_source (library global variable), 181,

195, 199
limit settings (compiler), 12, 13, 16, 28, 30
linelength (display object property), 45, 60,

146, 187
Linux, 3, 7
list_contents (library property), 44, 184
LIST_F (printing format mask constant), 182,

197
list_nest (library global variable), 181
ListObjects (library routine), 181, 197, 202
living (library attribute), 39, 179
location (global variable, compiler-defined),

92
lockable (library attribute), 39, 45, 98, 108,

179, 186
locked (library attribute), 39, 42, 77, 78, 86,

87, 145, 179
long_desc (library property), 42, 44, 48, 49,

97, 130, 131, 135, 184, 194
lower (library routine), 203
MacDonald, Alan, 3
Macintosh, 3, 5, 6, 7, 63, 219
Main (junction routine), 18, 19, 94, 100, 108,

126, 127, 137, 227, 258
MATCH_FOREGROUND (color constant),

60, 182
MatchPlural (library routine), 129, 191
MatchSubject (library routine), 192
mathematical operators, 64
MAX_RANK (library global variable), 180
MAX_SCORE (library global variable), 180
MAX_SCRIPTS (library constant), 182, 205
MAX_WORDS (library constant), 182
MAXALIASES (compiler limit setting), 12,

208
MAXARRAYS (compiler limit setting), 12,

208
MAXATTRIBUTES (compiler limit setting),

12, 208, 253
MAXCONSTANTS (compiler limit setting),

12, 208

INDEX

296

MAXDICT (compiler limit setting), 12, 13,
209

MAXDICTEXTEND (compiler limit setting),
13, 72, 73, 160, 209, 226

MAXEVENTS (compiler limit setting), 13,
209

MAXFLAGS (compiler limit setting), 13, 209
MAXGLOBALS (compiler limit setting), 12,

208
MAXLABELS (compiler limit setting), 13,

209
MAXLOCALS (compiler limit setting), 12,

208
MAXOBJECTS (compiler limit setting), 13,

16, 30, 31, 209
MAXPROPERTIES (compiler limit setting),

13, 209
MAXROUTINES (compiler limit setting), 13,

209
Mayo, Cena, 3, 220
McGrew, Jesse, 3
Menichelli, John, 3
Menu (library routine), 181, 197, 206
MENU_BGCOLOR (library constant), 183
MENU_SELECTBGCOLOR (library

constant), 183
MENU_SELECTCOLOR (library constant),

183
MENU_TEXTCOLOR (library constant), 183
menuitem (library array), 181
Merrick, Iain, 3
Message (library routine), 197
misc (library property), 45, 184
mobile (library attribute), 39, 144, 179
mod (library routine), 162, 203
mouse input, 151, 219
MOUSE_CLICK (library constant), 151, 182
moved (library attribute), 39, 40, 179
MovePlayer (library routine), 143, 194, 198,

211
multiple lines, 24, 31
music resources, 155, 166

MIDI, 152, 291
MOD/S3M/XM, 152, 166, 291
MP3, 152, 291

n_to (library property), 44, 47, 48, 86, 131,
137, 185

name (property, compiler-defined), 33, 48,
85, 158

ne_to (library property), 44, 185

need_newline (library global variable), 181
needs_repaint (display object property), 147,

187
Nelson, Graham, 2, 4, 220
Newland, Jim, 3
newsgroups

rec.arts.int-fiction, 3, 220
rec.games.int-fiction, 3, 220

Nichols, Jerome, 3
NO_AUX_MATH (library compilation flag),

206
NO_FUSES (library compilation flag), 206
NO_MENUS (library compilation flag), 206
NO_OBJLIB (library compilation flag), 206
NO_RECORDING (library compilation

flag), 206
NO_SCRIPTS (library compilation flag), 206
NO_STRING_ARRAYS (library compilation

flag), 206
NO_VERBS (library compilation flag), 206
NO_XVERBS (library compilation flag), 206
NOINDENT_F (printing format mask

constant), 182, 196
NORECURSE_F (printing format mask

constant), 182, 197
noun (property, compiler-defined), 20, 24,

42, 43, 45, 46, 51, 97, 108, 113, 118, 138, 183
number_scripts (library global variable), 181
NumberWord (library routine), 99, 198
nw_to (library property), 44, 185
object (global variable, compiler-defined),

34, 43, 53, 89, 109, 110, 117, 167, 168, 180,
245, 287

object library (objlib.h), 130, 131, 136, 137,
138, 139, 141, 142, 145, 213

object specifications (grammar), 109, 110
object table, 12, 37, 242, 244, 251, 255, 261,

262, 265
object tree, 16, 34, 35, 36, 37, 38, 44, 49, 51,

122, 130, 143, 157, 161, 163, 166, 171, 174,
184, 212, 215

ObjectIs (library routine), 199
ObjectisKnown (library routine), 122, 189,

199
ObjectisLight (library routine), 64, 199
objects

definition, 33, 37, 40
objects (global variable, compiler-defined),

34, 54, 117, 180, 226, 242, 252, 265

INDEX

297

objlib.h (library file), 5, 50, 93, 94, 111, 130,
185, 197, 206

ObjWord (library routine), 199
obstacle (library global variable), 181
old_location (library global variable), 94,

181
oldword (library array), 181
ON_WORD (library constant), 182
open (library attribute), 39, 41, 42, 46, 48, 49,

65, 77, 78, 97, 122, 170, 177, 179, 186
openable (library attribute), 39, 49, 98, 179,

186
order of operations, 64
order_response (library property), 45, 123,

128, 186
out_to (library property), 44, 185
override_indent (library global variable),

181
packing list, 4, 9
Palm, 3
Parse (junction routine), 115, 118, 119, 126,

199, 227, 233
parse$, 71, 72, 110, 112, 119, 120, 129, 160,

168, 174, 175, 228, 233, 234, 275, 283, 285,
287, 288

parse_rank (library array), 181
parse_rank (library property), 44, 181, 184,

212
ParseError (junction routine), 119, 120, 128,

227, 234
parser

engine parser, 118, 283
parser errors, 128, 194, 233, 234
parsing, 13, 14, 111, 115, 119, 121, 189, 190,

196, 211, 212, 233, 234
PauseScript (library routine), 103, 205
Penney, Jason C., 3
Perform (junction routine), 124, 125, 127, 227
picture resources (graphics, images), 153,

154, 169
JPEG, 152, 290

Pini, Giacomo, 3
platform (library attribute), 39, 40, 121, 136,

179, 183, 184
player_person (library global variable), 133,

180
Plotkin, Andrew, 3
plural (library attribute), 133, 191, 192
plural objects, 39, 139, 140, 141, 145, 179
Pocket PC (WinCE), 3

pointer_x (display object property), 146, 151,
187

pointer_y (display object property), 146, 151,
187

Pontious, Andrew, 3
postfix operators, 66, 67
pow (library routine), 203
prefix operators, 66, 67
PreParse (library routine), 119, 189, 199
preposition (property, compiler-defined),

138
PrintEndGame (library routine), 121, 189,

199
printing format mask constants, 182
printing text, 22, 56, 57, 58, 59, 60, 61, 63, 76,

167, 175, 180, 186, 238, 241, 245, 251, 274,
275, 284
formatting, 56, 61, 62, 83
printing numbers, 58, 66, 67, 68, 80, 84, 167
special characters, 62, 63, 95, 261

printing to an array, 175, 275, 277
PrintScore (library routine), 189, 200
PrintStatusLine (library routine), 94, 126, 200
prompt (global variable, compiler-defined),

54, 93
pronoun (library property), 44, 45, 132, 184
PROP_OFF (font style mask constant), 62,

182
PROP_ON (font style mask constant), 180,

182
properties, 20, 42, 43, 51, 83, 86, 87, 90, 91,

127, 148, 187, 188, 201, 209, 212, 231, 244,
251, 252, 256
additive, 91
aliases, 45
compiler-defined (engine properties), 33, 43,

48, 85, 108, 138, 140, 158
complex, 43, 244, 245, 252
definition, 43, 88, 91
routines, 43, 83, 86, 90, 91, 127, 148, 187, 188,

201, 209, 231, 244, 251, 256
property table, 12, 47, 242, 244, 245, 251, 252
PropertyList (library routine), 200
punctuation (parser), 112
PutInScope (library routine), 184, 200
quiet (library attribute), 40, 179
random numbers, 170, 175, 212, 213, 228,

239, 240, 282
ranking (library array), 181
Ravindran, Vikram, 3
reach (library property), 12, 44, 75, 184, 193

INDEX

298

react_after (library property), 44, 127, 185
react_before (library property), 44, 127, 185
readable (library attribute), 39, 179
removals, 112
RemoveFromScope (library routine), 184,

201
replace_pronoun (library array), 181
replacement (of routines, classes, objects),

50, 82
resource.h (library file), 6, 153, 154, 155
resources, 152, 153, 154, 155, 166, 169, 174,

249, 290, 291
ResumeScript (library routine), 103, 205
return values, 18, 20, 54

default, 86
RIGHT_ARROW (library constant), 182
Roberts, Mike, 2, 220
room class, 50, 130
routines

addresses, 21, 22, 43, 52, 88, 158, 236, 244, 279,
284

definition, 82
RunScripts (library routine), 94, 95, 103, 104,

126, 205, 206
s_to (library property), 44, 131, 137, 185
savefile format, 262
scenery class, 135
Schmidl, Gunther, 3
score (library global variable), 19, 93, 180,

181, 200
screenheight (display object property), 45,

146, 147, 154, 187
screenwidth (display object property), 45,

146, 148, 154, 187
Script (library routine), 102, 103, 205, 211
scriptdata (library array), 181
se_to (library property), 44, 185
self (global variable, compiler-defined), 54,

95, 99
serial$, 71, 174, 229, 275, 285
SetObjWord (library routine), 189, 201
setscript (library array), 181
shell game (shell.hug), 6, 37, 51, 60, 93, 94
Sherwin, Robb, 4
short_desc (library property), 20, 42, 44, 45,

97, 184, 185, 186, 187, 201
ShortDescribe (library routine), 201
size (library property), 42, 43, 44, 46, 85, 185
SkipScript (library routine), 104, 205

SL_BGCOLOR (library global variable), 93,
180

SL_TEXTCOLOR (library global variable),
93, 180

sound resources, 155, 174
wave files, 152, 174

speaking (library global variable), 95, 112,
181

SpeakTo (junction routine), 122, 123, 227
special words, 126, 226, 248
special words table, 248
SpecialDesc (library routine), 201, 202
static (library attribute), 13, 20, 39, 98, 108,

129, 130, 135, 145, 155, 179, 208, 233
statusline_height (display object property),

45, 147, 187
STATUSTYPE (library global variable), 93,

180, 200
string arrays, 70, 71, 72, 110, 174, 204

routines, 71, 72, 80, 81, 203, 204
StringCompare (library routine), 71, 72, 80,

81, 203, 204
StringCopy (library routine), 71, 72, 203
StringDictCompare (library routine), 72, 204
StringEqual (library routine), 71, 204
StringLength (library routine), 71, 204
StringPrint (library routine), 71, 72, 80, 204
sw_to (library property), 44, 185
switchable (library attribute), 39, 179
switchedon (library attribute), 39, 179
synonyms, 113
system.h (library file), 6, 175
system_status (global variable, compiler-

defined), 54, 117, 153, 175, 180, 290, 291
TADS, 2, 220
Tate, Christopher, 4
Tessman, Dean, 4
text

color, 59, 159
formatting, 56, 61, 62
Latin-1 encoding, 62, 63
special characters, 63, 95, 261

TEXTCOLOR (library global variable), 19,
93, 180

them_obj (library global variable), 181, 193
Tilford, Mark J., 4
title_caption (display object property), 45,

146, 187
transparent (library attribute), 20, 40, 179,

224
Turnbull, Colin, 3

INDEX

299

type (library property), 44, 131, 185
u_to (library property), 44, 185
UNDERLINE_OFF (font style mask

constant), 62, 182
UNDERLINE_ON (font style mask

constant), 62, 182
unfriendly (library attribute), 39, 179
Unix, 3, 5, 7, 9, 11, 13, 14, 16, 61, 63, 79, 213,

261
UP_ARROW (library constant), 182
variables

global, 53
compiler-defined (engine globals), 53, 54,

60, 92, 95, 99, 109, 127, 141, 190, 245, 287
enumerating, 56

local, 53
Vece, Paolo, 4
vehicle class, 137, 138
verb stub routines, 6, 188, 217
verblib.g (library file), 5, 28, 107, 111
verblib.h (library file), 5, 28, 43, 188, 197
verbosity (library global variable), 181
verbroutine (global variable, compiler-

defined), 54, 89, 127, 141, 245
verbroutines, 5, 6, 43, 44, 89, 104, 110, 117,

123, 127, 176, 178, 180, 183, 188, 190, 227
DoAsk, 133, 134, 188
DoAskQuestion, 188
DoBrief, 188
DoClose, 188
DoDrink, 188
DoDrop, 123, 140, 188
DoEat, 89, 90, 188
DoEmpty, 188
DoEnter, 107, 188
DoExit, 107, 188
DoGet, 43, 90, 91, 98, 107, 108, 110, 111, 116,

123, 124, 125, 129, 140, 188, 235, 236, 245
DoGive, 133, 134, 188
DoGo, 87, 188
DoHello, 188
DoHit, 188
DoInventory, 124, 188
DoListen, 188
DoLock, 98, 188
DoLook, 140, 188
DoLookAround, 188
DoLookIn, 188
DoLookThrough, 188
DoLookUnder, 97, 188
DoMove, 188
DoOpen, 137, 188
DoPutIn, 90, 140, 188

DoPutOnGround, 188
DoQuit, 188
DoRecordOnOff, 188
DoRestart, 188
DoRestore, 188
DoSave, 108, 188
DoScore, 188
DoScriptOnOff, 188
DoShow, 133, 134, 188
DoSit, 188
DoSuperbrief, 188
DoSwitchOff, 188
DoSwitchOn, 188
DoTakeOff, 107, 188
DoTalk, 188
DoTell, 133, 134, 188
DoUndo, 188
DoUnlock, 188
DoVague, 107, 108, 143, 188
DoVerbose, 188
DoWait, 104, 181, 188
DoWaitforChar, 188
DoWaitUntil, 188
DoWear, 188

verbs, 92
verbstub.g (library file), 6
verbstub.h (library file), 6, 188, 217
VerbWord (library routine), 202
video resources (movies), 155

AVI, 152
MPEG, 152

visited (library attribute), 39, 40, 94, 179
w_to (library property), 44, 131, 185
WhatsIn (library routine), 40, 180, 197, 201,

202
when_closed (library property), 45, 186, 201
when_open (library property), 45, 97, 98,

186, 201
while loops, 75, 269, 270
window.h (library file), 6, 148
windowlines (display object property), 45,

146, 187
windows, 45, 61, 146, 147, 148, 154, 159, 165,

187, 281, 286
Windows (Microsoft Windows), 3, 5, 6, 7, 9,

11, 14, 147, 152, 153, 213, 214, 219, 261
word array, 70, 77, 78, 114, 115, 151, 164, 168,

194, 195, 196, 201, 233, 239, 251, 259, 282,
283, 285

workflag (library attribute), 40, 180
worn (library attribute), 39, 179, 199
xobject (global variable, compiler-defined),

190, 287

INDEX

300

xverbs, 92 YesorNo (library routine), 202

ABOUT THE AUTHOR

Kent Tessman is a filmmaker and accidental
game designer.

THE GENERAL COFFEE COMPANY PRESS
Toronto, Canada

