
The Inform Designer’s Manual

by Graham Nelson

Third edition

4 September 1996
as updated 16 May 1997

Detailed contents . 2
Introduction . 7

Book One: Programming

I The Inform Programming Language . 10
II Using the Compiler . 64

Book Two: Designing

III Fundamentals . 83
IV The Model World .98
V Describing and Parsing . 137

VI Testing and Hacking .170

Appendices

Tables and summaries . 182
Answers to all the exercises . 214
Index . 256

1

Contents

Introduction . 7

BOOK ONE: PROGRAMMING

Chapter I: The Inform Programming Language

1 The language of routines . 10
1. First principles
2. Example 1: Hello World
3. Example 2: Elsinore
4. Numbers and variables
5. Arithmetic expressions
6. Arguments and return values
7. Example 3: Cubes
8. Conditions: if, true and false

9. Example 4: Factorials
10. Code blocks, else and switch

11. while, do... until, for, break, continue
12. Example 5: A number puzzle
13. quit and jump; saving the program state
14. Printing output
15. Example 6: Printing in hexadecimal
16. Built-in functions 1: random and indirect

17. Accepting input

2 The language of data . 36
1. Directives and constants
2. Global variables
3. Arrays
4. Example 7: Shuffling a pack of cards
5. Seven special data structures

3 The language of objects . 44
1. Objects and communication
2. Built-in functions 2: the object tree
3. Creating objects 1: setting up the object tree
4. Statements for objects: move, remove, objectloop
5. Creating objects 2: with properties
6. private properties and encapsulation
7. Attributes, give and has

8. Classes and inheritance
9. Messages
10. Access to superclass values
11. Philosophy
12. Sending messages to routines, strings or classes
13. Creating and deleting objects
14. Footnote on common vs. individual properties

2

Contents

Chapter II: Using the Compiler

4 The language of Inform .64
ICL (Inform Control Language); Include; conditional compilation: If..., Ifnot,
Endif; Message; linking in the library; writing new modules to link in.

5 Compiler options and memory settings .70
Switches; memory sizes; typical memory usage; raising memory settings.

6 All the Inform error messages .74
Fatal errors; errors, including linker and assembler errors; warnings, including ob-
solete usage warnings.

BOOK TWO: DESIGNING

Chapter III: Fundamentals

7 Getting started .83
Beginning to lay ‘Ruins’; including the library files; the Initialise routine; some
properties of mushrooms; name, description and initial; edible foodstuffs; in-
troducing before and after rules; the stone steps; self-destructing rules.

8 Introducing messages and classes . 88
Recap of message-sending: a parrot; classes for treasure artifacts: the pygmy stat-
uette, the honeycomb; how clashes are sorted out in class inheritance, additivity.

9 Actions and reactions .92
Actions are attempts; generating them with <, <<; the action, noun and second

variables (and inp1, inp2); the ## notation; the standard actions, in Groups 1
to 3; creating new actions, the Blorple example; fake actions like ThrownAt; how
actions are processed, over ‘Before’, ‘During’ and ‘After’ stages.

Chapter IV: The Model World

10 Places, scenery, directions and the map . 98
Giving ‘Ruins’ a small map; n_to, d_to, etc.; when you cant_go; scenery objects;
default rules; rooms have before and after too; a mist object, present in many
rooms, using found_in; the five senses and reaction rules; direction objects in the
compass.

11 Containers, supporters and sub-objects . 103
Containers: container, supporter, capacity, open, openable; locks and keys:
locked, lockable, with_key; LetGo and Receive to trap use of a container: a
horrifying chasm; the Search action; transparent objects have visible sub-objects;
a television set with buttons.

12 Doors . 105
How to create a door; door_to, door_dir; when_open, when_closed; a stone door
for ‘Ruins’; a two-way door, the ‘Advent’ grate; why door_dir is needed and how
to trap every attempt to go through.

13 Switchable objects . 107
switchable and on: when_on, when_off; the Gotham City searchlight; a sodium
lamp; describe taking precedence.

3

Contents

14 Things to enter, travel in and push around .109
enterable objects: a slab altar; vehicles: KAR 1; special rule about the Go action
when inside something enterable; the PushDir action: a huge pumice-stone ball;
pushing up and down.

15 Reading matter and consultation . 111
The Consult action, “look up”; consult_from and consult_words: a dictionary
of glyphs, Tyndale’s Bible; making “read” and “examine” different.

16 Living creatures and conversation .113
animate objects and the life rule; a mummified priest, Blofeld, a coiled snake;
some people are transparent; orders: actions for other people; talkable objects;
parsing conversation: Zen and Charlotte; untypeable verbs; fake fake actions; sev-
eral voice-activated machines; applications of scope: telepathy and phone calls.

17 The light and the dark . 121
Light and darkness is automatically managed; the definition of ‘when there is
light’; OffersLight and HasLightSource; going from darkness to darkness and the
DarkToDark entry point; modifying the darkness object.

18 Daemons and the passing of time . 123
Daemons and the daemon property; starting and stopping them; background dae-
mons; timers (fuses); time_left and time_out; each_turn events for places and
nearby objects; the time of day; changing it with SetTime; on the status line;
midnight, sunrise, sunset; the exact sequence of events at end-of-turn.

19 Starting, moving, changing and killing the player . 126
What Initialise should do; the location; initial restoration; teleportation and
the PlayerTo routine; what happens when the room changes: NewRoom, initial
for a room, visited; giving the player his own before rule; using ChangePlayer

to transform him into any object; multi-character games; life and deadflag; the
DeathMessage routine; resurrection and the AfterLife routine.

20 Miscellaneous constants and scoring . 130
Story and Headline; MAX_CARRIED; the automatic rucksack SACK_OBJECT; ‘amus-
ing’ rewards for the victorious; two scoring systems: MAX_SCORE, OBJECT_SCORE,
ROOM_SCORE; tasks: TASKS_PROVIDED, NUMBER_TASKS, task_scores, PrintTaskName;
rankings and PrintRank; automatic score notification and notify_mode; “objects”
and “places” verbs, removable with NO_PLACES.

21 Extending and redefining the Library . 132
Enriching the model; amulets and their spells; making a new library file; new
common properties; changing default values of these; the LibraryMessages system
for changing messages like “Dropped.”; changing the prompt; the last resort, using
Replace directives; even on ‘hardware’ functions like random.

4

Contents

Chapter V: Describing and Parsing

22 Describing objects and rooms .137
print (The) obj, ... (the) obj and so on; indefinite and definite article;
proper nouns; the short_name of an object; invent strings and routines; exactly
how inventory lines are printed; a matchbook; describe routines; exactly how
rooms are described; Locale.

23 Listing and grouping objects . 142
The list-maker WriteListFrom; its style bitmap; examples: tall and wide inven-
tories; grouping similar items together in lists: foodstuffs, Scrabble pieces and
denominations of coin.

24 How nouns are parsed . 145
How name is used; a fried green tomato turning red; the parser breaks text into a
stream of words; wn and NextWord; reading words as numbers or from their raw
text; a parse_name routine is much more flexible than name; the ParseNoun entry
point; distinguishing adjectives from nouns.

25 Plural names for duplicated objects .149
Collections of indistinguishable objects; a bag of six coins; the plural property for
printing out plurals; definition of ‘indistinguishable’; writing parse_name routines
to allow plurals to be understood; class of crowns.

26 How verbs are parsed .151
The parser’s fundamental method; BeforeParsing entry point; the actor and verb
word; synonyms for verbs; definitions of grammar, line and token; action_to_be;
Verb directive: a simplified “take” grammar; meta verbs; grammar creates actions;
creating an “xyzzy” verb; how to Extend grammar for an existing verb: pushing
numbered buttons; priority: replace, first, last; splitting synonymous verbs
apart with Extend only; the UnknownVerb and PrintVerb entry points.

27 Tokens of grammar .156
Full list of grammar tokens; prepositions; noun and held; implicit taking; tokens
allowing multiple objects like “all”; filtering out nouns by attribute: “use” verb;
and by general routine: “free” verb; parsing numbers: “type” verb, ParseNumber;
general parsing routines; reading from the parser’s raw text buffer and parse

table; exercises, including French, telephone and floating-point numbers, times of
day, adding a third parameter to a grammar line.

28 Scope and what you can see . 162
The definition of ‘in scope’; touchability is stricter than scope; answering ques-
tions: “what is a grue”; scope=... tokens with programmable scope; scope_stage,
ScopeWithin and PlaceInScope; changing the global definition of ‘in scope’ using
InScope; scope_reason; looping over and testing scope; making the rules more sen-
sitive to darkness; a long room divided by a glass wall; the add_to_scope property
for component parts of containers.

29 Helping the parser out of trouble . 168
Parser error messages and ParserError; ambiguity-resolution and influencing it
with ChooseObjects; making “eat” prefer edible objects; redefining “all”.

5

Contents

Chapter VI: Testing and Hacking

30 Debugging verbs and tracing . 170
Suite of debugging verbs: “purloin”, “abstract”, “tree”, “scope”, “goto”, “gon-
ear”, “actions”, “routines”, “timers”, “trace”, “recording”, “replay”, “random”;
transcriptions; the random-number generator; Infix-format debugging files; how to
crash the game interpreter at run-time; the levels of parser tracing; compiling with
debugging code.

31 Limitations on the run-time format . 173
Formats of the Z-machine; restrictions: memory, vocabulary, dictionary resolution,
attributes, properties, names, special effects, objects, memory management, global
variables, “undo” verb, function arguments; using Abbreviate to save run-time
memory.

32 Boxes, menus and drawings .175
Asking yes/no questions with YesOrNo; the status line; character graphics, escape
characters; proportional- and fixed-pitch fonts, font; epigrams in boxes and box;
menus of text options, DoMenu, pretty_flag, menu_item; an example menu; sub-
menus are allowed; changing the text style to bold-face, underlining, reverse video.

33 Descending into assembly language . 177
Assembly language @; reliability of interpreters; table of opcodes worth knowing
about; upper and lower windows: splitting, setting the window, moving the cur-
sor, clearing the screen, word-breaking; the colour scheme; a bell sound; keyboard
reading in real-time; function and cursor keys; tokenising with dictionaries; encod-
ing dictionary entries; input/output streams; the stack frame: throw and catch;
examples: a title page, drawing status lines, formatting and centering text.

APPENDIX: Tables and summaries

A1 Inform operators .182
A2 Inform statements . 184
A3 Inform directives . 185
A4 Grammar .186
A5 Library attributes . 187
A6 Library properties . 190
A7 Library-defined objects and routines . 196
A8 Library actions . 198
A9 Library message numbers . 199
A10 Entry points and meaningful constants .203
A11 What order the program should be in . 205
A12 A short Inform lexicon .206

Answers to all the exercises .214

Index .256

6

Introduction

I will build myself a copper tower
With four ways out and no way in
But mine the glory, mine the power. . .

– Louis MacNeice (–), Flight of the Heart

Inform is a system for creating adventure games, and this is the book to read about it.
Infocom format ‘story files’ (adventure games, that is) can be played on almost any

computer, from personal organisers to mainframes, with the aid of ‘interpreter’ programs.
The task of the Inform ‘compiler’ is to translate a textual description of a game into a
story file. The result will play identically on any machine of any model.

Inform is a suite of software, called the ‘library’, as well as a compiler. Without the
library, it would be a major undertaking to write a description of even the smallest game.
The library has two ingredients: the parser, a program for translating written English
inputs into a form games can more easily understand, and the “world model”, a complex
web of rules common to all adventure games. Given these, the designer only needs to
describe things and give any exceptional rules that apply. (“There is a bird here, which is
a normal item except that you can’t pick it up.”)

The library is rich in detail. The parser recognises over 80 distinct verbs and a
vocabulary of about 300 words even before any rooms or objects are created, and is pro-
grammable and highly flexible. It can handle ambiguities, clarify its input by asking
questions (“Which key do you mean...?”) and can cope properly with plurals, vagueness,
conversation, pronouns and the player becoming someone else in mid-game. It can be con-
figured to languages other than English. The world-model includes rooms, items, vehicles,
duplicates, containers, doors, things on top of other things, light and darkness, switching
things on and off, opening, closing and locking things, looking up information in books,
entering things, scoring and so forth.

Just as Inform has two strands – compiler and library – so this manual has two
parts: Programming and Designing. In Book One, small computer programs are written
to perform simple calculations, never using the library. Subsections listed in slanted text
on the detailed contents page become technical but the rest is pitched at newcomers and
can be skim-read by anyone with prior experience of a programming language such as C
or Pascal. Book Two is entirely about making games.

Newcomers are invited to work through §1 and §7, the “getting started” sections in
Books One and Two, before reading much more of either.

In trying to be both a tutorial and reference work, this book aims itself in style
halfway between the two extremes of manual, Tedium and Gnawfinger’s Elements of Batch
Processing in COBOL-66, third edition, and Mr Blobby’s Blobby Book of Computer Fun.
(This makes some sections both leaden and patronising.) Passages which divert the main
story, usually to tell an unexpurgated truth which may confuse or bore a newcomer, are
marked with a warning triangle4 or two, and set in smaller type. Examples of program are

7

Introduction

set in typewriter font. Mundane or irrelevant passages in longer examples are sometimes
replaced with a line reading just “...”

To keep Book Two from clogging up with examples, many are set as “exercises”,
with “answers” given in full at the back of the book. Harder exercises are marked with
triangles and some are very hard indeed. I emphasize that the exercises are often intended
as a way of presenting answers to deliberately difficult questions, to assist experts: the
curse of Adventure design-languages is the feature which is ideal for the simple but too
inflexible to cope with the complicated. For a list of exercises with page references to
question and answer, see under “exercises” in the Index.

A better tutorial than attempting the exercises, then, is probably to make a simple
game, as demonstrated in Chapter III, and then add an example of each new feature as
you work through Chapters IV and V.

Many sections end with a ‘References’ paragraph referring to yet more examples
which can be found in Inform’s demonstration games. All of these have publically available
source code (see the Inform home page): those most frequently referred to are ‘Advent’ (a
full version of the original mainframe ‘Adventure’, which contains a good deal of “everyday
Inform”), ‘Adventureland’ (a version of Scott Adams’s primitive classic), ‘Alice Through
The Looking-Glass’ (a heavily annotated game, developed in the course of Gareth Rees’s
WWW tutorial for Inform), ‘Balances’ (a short story consisting of puzzles which stretch the
parser’s abilities) and ‘Toyshop’ (hardly a game: more an incoherent collection of unusual
objects). In addition, the little game ‘Ruins’ is developed in the course of Chapters III
and IV of this manual.

Finally, the “game” called ‘Museum of Inform’ simulates a museum whose exhibits
are solutions to the exercises in this manual.

Copyright on Inform, the program and its source code, its example games and
documentation (including this book) is retained by Graham Nelson, who asserts the moral
right to be identified as the author under the Copyrights, Designs and Patents Act 1988.
Having said this, I am happy for it to be freely distributed to anybody who wants a copy,
provided that: (a) distributed copies are not substantially different from those archived by
the author, (b) this and other copyright messages are always retained in full, and (c) no
profit is involved. (Exceptions to these rules must be negotiated directly with the author.)
However, a story file produced with the Inform compiler (and libraries) then belongs to its
author, and may be sold for profit if desired, provided that its game banner contains the
information that it was compiled by Inform, and the Inform version number.

The Internet source for Inform material (executables of the compiler for different
machines, source code, the library files and example games) is the German National Re-
search Centre for Computer Science, where Volker Blasius maintains an archive at the
anonymous FTP site ftp.gmd.de. Inform can be found at:

ftp://ftp.gmd.de/if-archive/infocom/compilers/inform6

Another useful resource is the Inform 6 home page on the ‘World Wide Web’, which
includes Gareth Rees’s ‘Alice’ tutorial, located at:

http://www.gnelson.demon.co.uk/inform.html

8

Introduction

This manual describes Inform release 6.13 (or later), using library release 6/5 (or later).
Earlier Inform 6 compilers and libraries are very similar but Inform 5.5 and 5/12 are very
different.

This manual has evolved from seven earlier publications, once rather makeshift and
sometimes defensive (“Inform is an easel, not a painting”). There were specifications of
the run-time code format and literary critiques of games gone by: like an oven manual
padded out with both a cookery book and a detailed plan of the gas mains. This book
contains just the instructions for the oven.

So there are four ‘companion volumes’. The Craft of Adventure is an essay on
the design of adventure games; The Z-Machine Standards Document minutely covers the
run-time format and Inform assembly language, its lowest level; and The Inform Technical
Manual documents Inform’s internal working in great detail, and includes a formal context-
free grammar for the Inform language. The Inform Translator’s Manual describes how to
write a language definition file for games which speak languages other than English.

Some of the ideas of Inform came from an incremental multi-player game called Tera,
on the Cambridge University mainframe, written by Dilip Sequeira and the author in 1990
(whose compiler was called Teraform); in turn, this stole a little from David Seal and
Jonathan Thackray’s game assembler; which dates back to the close of the 1970s and was
written for ‘Acheton’, perhaps the first worthwhile game written outside America. Still,
much of the Inform kernel derives ultimately from the IEEE Computer article ‘Zork: A
Computerized Fantasy Simulation Game’ by P. David Lebling, Marc S. Blank and Timothy
A. Anderson; and more was suggested by Richard Tucker and Gareth Rees, among others.

The list of those who have helped the project along is legion: I should like to thank
them all, porters, users and critics alike, but especially Volker Blasius, Paul David Doherty,
Mark Howell, the ever avuncular Bob Newell, Robert Pelak, Gareth Rees, Jørund Rian,
Dilip Sequeira, Richard Tucker, Christopher Wichura and John Wood.

One final word. I should like to dedicate this book, impertinently perhaps, to our
illustrious predecessors: Will Crowther, Don Woods and the authors of Infocom, Inc.

Graham Nelson
Oxford

April 1993 – May 1997

And if no piece of chronicle we prove,
We’ll build in sonnets pretty rooms;
As well a well wrought urn becomes
The greatest ashes, as half-acre tombs.

– John Donne (?–), The Canonization

9

Chapter I: The Inform programming language

Language is a cracked kettle on which we beat out tunes for bears
to dance to, while all the time we long to move the stars to pity.

– Gustave Flaubert (–)

1 The language of routines

§1.1 First principles

This chapter aims to introduce beginners to Inform as though it were a general-purpose
programming language (rather than a tool for designing adventure games). The examples
given will be short programs performing simple calculations (rather than games). To begin
with, the Inform language is:

1. Compiled.
That is, the Inform compiler translates text written by the author (called the “source
code”) into a program (called the “object code” since it is the object of the exercise).
This translation is only done once, but the resulting program can be run many times.

2. Procedural.
That is, a program is divided into a number of “routines” (also called “functions”
or “procedures”), each being a list of orders to be obeyed (though these orders
are traditionally called “statements”). When the program is run, only one thing
happens at a time: at any given moment, a single routine is being obeyed.

3. Object-oriented.
That is, the fabric of a typical Inform program will be woven around “objects” being
dealt with, which are regarded as being self-contained. For example, a program to
simulate a warehouse might have objects representing lorries and containers; each
object would have a position and contents at any given time. The program would
have general rules describing “lorry” and “container” as well as actual examples of
each. A lorry would have the ability to receive a message telling it to do something,
such as “load up with a container and leave the warehouse”.

4. Portable.
That is, once Inform has compiled the source code (having found no mistakes), the
resulting program can be run on almost any model of computer. It will exhibit ex-
actly the same behaviour on each of them. It cannot depend on the “environment”:
it cannot suddenly run out of memory and crash, for instance.

10

1 The language of routines

The computer runs an Inform program (which need not be a game) with the aid of an
“interpreter”. There are at least 40 different interpreters available for this format (called
the “Z-machine” or “Infocom format”) and there may be a choice available for your model
of computer: it is a good idea to get the most modern and accurate possible. Look to see
if they support the Z-Machine Standard, and if so, up to what revision number.

§1.2 Example 1: Hello World

Traditionally, all programming language tutorials begin by giving a program which does
nothing but print “Hello world” and stop. Here is such a program in Inform:

! "Hello world" example program

[Main;

print "Hello world^";

];

The text after the exclamation mark is a “comment”, that is, it is text written in the
margin by the author to remind himself of what is going on here. Such text means nothing
to Inform, which ignores anything on the same line and to the right of an exclamation
mark.

Once commentary has been stripped out, Inform regards the source code as a list of
things to look at, divided by semicolons ;. It treats line breaks, tab characters and spaces
all as so-called “white space”: that is, a gap between two things whose size is unimportant.
Thus, exactly the same program would be produced by the source code

[

Main ;

print

"Hello world^" ;

]

;

or, at the other extreme, by

[Main;print"Hello world^";];

Laying out programs legibly is a matter of forming good habits.

4 The exception to the rule about ignoring white space is inside quoted text, where

"Hello world^" and "Hello world^"

are genuinely different pieces of text and are treated as such. Inform treats text inside quotation
marks with much more care than its ordinary program material: for instance, an exclamation
mark inside quotation marks will not cause the rest of its line to be thrown away as a comment.

11

1 The language of routines

Every program must contain a routine called Main, and in this example it is the
only routine. When a program is set running, the first instruction obeyed is the first one
in Main, and it carries on line by line from there. This process is called “execution”. When
the Main routine is finished, the program stops.

The routine has only one statement:

print "Hello world^"

Printing is the process of writing text onto the computer screen. This statement prints
the two words “Hello world” and then skips the rest of the line (or “prints a new-line”):
the ^ character, in quoted text, means “new-line”. For example, the statement

print "Blue^Red^Green^"

prints up:

Blue
Red
Green

print is one of 28 statements in the Inform language. The full list is as follows:

box break continue do font for give

if inversion jump move new_line objectloop print

print_ret quit read remove restore return rfalse

rtrue save spaces string style switch while

(Only about 20 of these are commonly used.) §1 covers all those not concerned with
objects, which are left until §3.

§1.3 Example 2: Elsinore

The following source code has three routines, Main, Rosencrantz and Hamlet:

[Main;

print "Hello from Elsinore.^";

Rosencrantz();

];

[Rosencrantz;

print "Greetings from Rosencrantz.^";

];

[Hamlet;

print "The rest is silence.^";

];

The resulting program prints up

Hello from Elsinore.

12

1 The language of routines

Greetings from Rosencrantz.

but the text “The rest is silence.” is never printed. Execution begins at Main, and “Hello
from Elsinore” is printed; next, the statement Rosencrantz() causes the Rosencrantz
routine to be executed. That continues until it ends with the close-routine marker],
whereupon execution goes back to Main just after the point where it left off: since there
is nothing more to do in Main, the program finishes. Thus, Rosencrantz is executed but
Hamlet is not.

In fact, when the above program is compiled, Inform notices that Hamlet is never
needed and prints out a warning to that effect. The exact text produced by Inform varies
from machine to machine, but will be something like this:

RISC OS Inform 6.03 (May 11th 1996)

line 8: Warning: Routine "Hamlet" declared but not used

Compiled with 0 errors and 1 warning

Errors are mistakes in the program which cause Inform to refuse to compile it, but this is
only a warning. It alerts the programmer that a mistake may have been made (because
presumably the programmer has simply forgotten to put in a statement calling Hamlet)
but it doesn’t prevent the compilation from taking place. Note that the opening line of
the routine Hamlet occurs on the 8th line of the program above.

Usually there are mistakes in a newly-written program and one goes through a cycle
of running a first draft through Inform, receiving a batch of error messages, correcting the
draft according to these messages, and trying again. A typical error message would occur
if, on line 3, we had mistyped Rosncrantz() for Rosencrantz(). Inform would then have
produced:

RISC OS Inform 6.03 (May 11th 1996)

line 5: Warning: Routine "Rosencrantz" declared but not used

line 8: Warning: Routine "Hamlet" declared but not used

line 3: Error: No such constant as "Rosncrantz"

Compiled with 1 error and 2 warnings (no output)

The error message means that on line 3 Inform ran into a name which did not correspond
to any known quantity (it isn’t the name of any routine, in particular). Note that Inform
never produces the final story file if errors occur during compilation: this prevents it from
producing damaged story files. Note also that Inform now thinks the routine Rosencrantz
is never used, since it didn’t recognise the mistype in the way that a human reader would
have done. Warnings are sometimes produced by accident this way, so it is generally a
good idea to worry about fixing errors first and warnings afterward.

§1.4 Numbers and variables

Internally – that is, whatever the outward appearance – all programs essentially manipulate
numbers. Inform understands “number” to be a whole number in the range -32768 to

13

1 The language of routines

+32767. (Special programming would be required to represent larger numbers or fractions.)
There are three notations for writing numbers in Inform: here is an example of each.

-4205

$3f08

$$1000111010110

The difference is the radix, or base, in which they are expressed. The first is in decimal
(base 10), the second hexadecimal (base 16, where the digits after 9 are written a to f or
A to F) and the third binary (base 2). Once Inform has read in a number, it forgets which
notation was used: for instance, if the source code is altered so that $$10110 is replaced
by 22, this makes no difference to the program produced.

A print statement can print numbers as well as text, though it always prints them
back in ordinary decimal notation. For example, the program

[Main;

print "Today’s number is ", $3f08, ".^";

];

prints up

Today’s number is 16136.

since 16136 in base 10 is the same number as 3f08 in hexadecimal.
Inform recognises many other notations as “constants”, that is, values which are

literally described in the source code. A full list will appear later, but one other is that a
single character between single quotation marks, for instance

’x’

is a constant. A “character” is a single letter or typewriter-symbol, and all that the
programmer needs to know is that each possible character has its own numerical value.

4 For most characters, this numerical value is the standard ASCII value for the character:
for instance, ’x’ has numerical value 120. (This is true even if Inform is being run on a model of
computer which doesn’t normally use the ASCII character set.) Exotic characters such as ’@ss’

(the Inform notation for German sz) have non-standard codes: see the Z-Machine Standards
Document if you really need to know.

Finally, in this initial batch of constant notations, Inform provides two special
constants:

true

false

which are used to describe the truth or otherwise of possible conditions.

4 true has the numerical value 1; false has the numerical value 0.

14

1 The language of routines

Inform has a concept of “variable” like that used in algebra, where it is easy but
limiting to express facts using only numbers:

34− 34 = 0
11− 11 = 0

694− 694 = 0

Although suggestive this fails to express the general case: that any number subtracted
from itself leaves zero. We express this fact symbolically in algebra by writing

x− x = 0

where x is a variable; the implication being “whatever value x actually is, the statement
is still true”.

Likewise, in Inform what seems to be a word of text may be a variable which rep-
resents a number: when the source code is compiled, Inform cannot know what numerical
value this text represents. When the program is run, it will always have a numerical value
at any given time. If oil_left is a variable, the statement

print "There are ", oil_left, " gallons remaining.^";

is executed as if oil_left were replaced by whatever that value currently is. Later on,
the same statement may be executed again, producing different text because by that time
oil_left has a different value.

Inform can only know that text (such as oil_left) represents a variable if the
source code has “declared” that it does. Each routine can declare its own selection of
variables on its opening line. For example, in the program

[Main alpha b;

alpha = 2200;

b = 201;

print "Alpha is ", alpha, " while b is ", b, "^";

];

the Main routine has two variables, alpha and b. Like most names given in source code
(called “identifiers”), variable names can be at most 32 characters long and may contain
letters of the alphabet, decimal digits or the underscore _ character (often used to imitate
a space). To prevent them looking too much like numbers, though, they may not start
with a decimal digit. (So a44 is legal but 44a is not.) For example:

turns_still_to_play

chart45

X

are all possible variable names. Inform ignores any difference between upper and lower
case letters in such names, for example considering CHArt45 as the same name as chArT45.

15

1 The language of routines

The = sign occurring twice in the above routine is an example of an “operator”: a
notation usually made up of the symbols on the non-alphabetic keys on a typewriter and
which means something is to be done with the items it is written next to. In this context,
= means “set equal to”. When the statement alpha = 2200 is executed at run time, the
current value of the variable alpha becomes 2200 (and it keeps that value until another
such statement changes it).

The variables alpha and b are called “local variables” because they are local to
Main: in effect, they are its private property. The program

[Main alpha;

alpha = 2200;

Rival();

];

[Rival;

print alpha;

];

causes an error on the print statement in Rival, since alpha does not exist there. Indeed,
Rival could even have defined a variable of its own also called alpha and this would have
been a separate variable with a probably different value.

§1.5 Arithmetic expressions

The Inform language is rich with operators, making it concise but not always very readable.
Feeling comfortable with the operators is the main step towards being able to follow Inform
source code. Fortunately, these operators are based on the usual rules for writing arithmetic
formulae, which gives them a headstart in familiarity.

Indeed, the most commonly used operators are “arithmetic”: they combine one
or more numbers to give one resulting number. Whenever a number is expected in a
statement, a general “expression” can be given instead: that is, a calculation giving a
number as a result. For example, the statement

seconds = 60*minutes + 3600*hours

sets the variable seconds equal to 60 times the variable minutes plus 3600 times the
variable hours. White space is not needed between operators and “operands” (the numbers
to be operated on): the spaces on either side of the + sign are only provided for legibility.

Ordinary arithmetic is carried out with the operators + (plus), - (minus), * (times)
and / (divided by).

Usually dividing one integer by another leaves a remainder: for example, 3 goes
into 7 twice, with remainder 1. In Inform notation,

7/3 evaluates to 2
7%3 evaluates to 1

the % operator meaning “remainder after division”, usually called just “remainder”. Di-
viding by zero is impossible and a program which tries to do this will go wrong.

16

1 The language of routines

4 As a brief aside, this gives an example of how Inform can and can’t help the programmer
to spot mistakes. The program

[Main;

print 73/0;

];

produces an error when compiled:

line 2: Error: Division of constant by zero

> print 73/0;

since Inform can see that it definitely involves doing something illegal. However, Inform fails to
notice anything amiss with the equivalent program

[Main x;

x = 0;

print 73/x;

];

and this program compiles correctly. The resulting story file will “crash” when it is run, that is,
catastrophically halt. The moral is that just because Inform compiles a program without errors,
it does not follow that the program does what the programmer intends.

In a complicated expression the order in which the operators work may affect the result.
As most human readers would, Inform works out both of

23 + 2 * 700

2 * 700 + 23

to 1423, because the operator * has “precedence” over + and so is acted on first. Brackets
may be used to overcome this:

(23 + 2) * 700

2 * (700 + 23)

evaluate to 17500 and 1446 respectively. Each operator has such a “precedence level”.
When two operators have the same precedence level (for example, + and - are of equal
precedence) calculation is (almost always) “left associative”, that is, carried out left to
right: the notation

a - b - c

is equivalent to

(a - b) - c

The standard rules for writing mathematics give + and - equal precedence, lower than that
of * and / (which are also equal). Inform agrees and also pegs % equal to * and /.

17

1 The language of routines

The final purely arithmetic operator is “unary minus”. This is written as a minus
sign - but is not the same as ordinary subtraction. The expression:

-credit

means the same thing as:

0 - credit

The operator - is different from all those mentioned so far because it operates only on
one number. It has higher precedence than any of the five “binary” operations above. For
example,

-credit - 5

means (-credit) - 5 and not -(credit - 5).
One way to imagine precedence is to think of it as glue attached to the operator.

A higher level means stronger glue. Thus, in

23 + 2 * 700

the glue around the * is stronger than that around the +, so that 2 and 700 belong bound
to the *.

Some operators do not simply act on values but actually change the current values
of variables: expressions containing these are called “assignments” (because they assign
values as well as working them out). One such operator is ‘set equals’:

alpha = 72

sets the variable alpha equal to 72. Just like + and the others, it also comes up with an
answer: as it happens, this value is also 72.

The other two assignment operators are ++ and --, which will be familiar to any C
programmer. They are unary operators, and can be used in any of the following ways:

variable++

++variable

variable--

--variable

The first of these means “read off the value of variable, and afterwards increase that
value by one”. In ++variable the “increment” (or increase by 1) happens first, and then
the value is read off. -- acts in a similar way but “decrements” (decreases by 1). These
operators are provided as convenient shorthand forms, since their effect could usually be
achieved in other ways (just using + and -).

For example, suppose the variable has value 12. Then the result would be 12, 13,
12 or 11 respectively; the value left in variable afterwards would be 13, 13, 11 or 11.

Note that expressions like

500++ (4*alpha)-- 34 = beta

are meaningless: the values of 500 and 34 cannot be altered, and Inform knows no way to
adjust alpha so as to make 4*alpha decrease by 1. All three will cause errors.

18

1 The language of routines

4 “Bitwise operators” are provided for manipulating binary numbers on a digit-by-digit basis,
something which is often done in programs which are working with low-level data or data which
has to be stored very compactly. Inform provides &, bitwise AND, |, bitwise OR and ~, bitwise
NOT. For each digit, such an operator works out the value in the answer from the values in the
operands. Bitwise NOT acts on a single operand and results in the number whose i-th binary
digit is the opposite of that in the operand (a 1 for a 0, a 0 for a 1). Bitwise AND (and OR) acts
on two numbers and sets the i-th digit to 1 if both operands have (either operand has) i-th digit
set. So, for example,

$$10111100 & $$01010001 == $$00010000

4 The remaining operators will be described as needed: the full table is laid out in §A1.

§1.6 Arguments and Return Values

As has already been said, in Inform jargon the word “function” is synonymous with “rou-
tine”. A function might be defined as a correspondence

(x1, ..., xn) 7→ f(x1, ..., xn)

where a set of input numbers are fed in, and a single value comes out. These input
numbers are called “arguments”. The value coming out is the “return value”, or is said to
be “returned”.

All Inform routines are like this. A number of arguments are fed in when the routine
is “called” (that is, set running) and there is always a single numerical result. This result
is called the “return value” because it is returned to the rest of the program. Some very
simple routines conceal this. For instance, consider Sonnet:

[Main;

Sonnet();

];

[Sonnet;

print "When to the sessions of sweet silent thought^";

print "I summon up remembrance of things past^";

];

Sonnet is a routine which takes as input no arguments at all (it is an example of the n = 0
case), so it is called with nothing in between the round brackets. Although it does return
a value (as it happens, this value is true) the statement Sonnet() simply calls the routine
and throws the return value away. If Main were instead given by

[Main;

print Sonnet();

];

then the output would be

When to the sessions of sweet silent thought

19

1 The language of routines

I summon up remembrance of things past
1

because the print statement in Main has been told to print the number resulting from a
call to Sonnet.

Thus in Inform there is no such thing as a “void function” or “procedure”: every
routine returns a number even though this may immediately be thrown away as unwanted.

When a routine is called,

Routine(arg1, ...)

the arguments given are substituted into the first variables declared for Routine, and
execution begins running through Routine. Usually, there can be any number of arguments
from none up to 7, though a limit of 3 applies if Inform has been told to compile an early-
model story file (see §31 for details).

If execution runs into the] end-of-routine marker, so that the routine is finished
without having specified any definite return value, then this value is true. (This is why
the printed return value of Sonnet is 1: true has the value 1.)

§1.7 Example 3: Cubes

A more typical, though less aesthetic, example than Sonnet:

[Main;

print Cube(1), " ";

print Cube(2), " ";

print Cube(3), " ";

print Cube(4), " ";

print Cube(5), "^";

];

[Cube x;

return x*x*x;

];

which, when executed, prints

1 8 27 64 125

The expression Cube(3) is calculated by substituting the number 3 into the variable x
when Cube is set running: the result of the expression is the number returned by Cube.

Any “missing arguments” in a routine call are set equal to zero, so the call Cube()
is legal and does the same as Cube(0).

§1.8 Conditions: if, true and false

Such routines are too simple, so far, even to express many mathematical functions, and
more flexibility will be needed.

20

1 The language of routines

A “control construct” is a kind of statement which controls whether or not, and if
so how many times or in what order, other statements are executed. The simplest of these
is if:

if (〈condition〉) 〈statement〉

which executes the 〈statement〉 only if the 〈condition〉, when it is tested, turns out to be
true. For example, when the statement

if (alpha == 3) print "Hello";

is executed, the word “Hello” is printed only if the variable alpha currently has value 3.
It is important not to confuse the == operator (test whether or not equal to) with the =
operator (set equal to).

Conditions are always given in (round) brackets. The basic conditions are as follows:
(a == b) Number a equals number b

(a ~= b) Number a doesn’t equal number b

(a >= b) a is greater than or equal to b

(a <= b) a is less than or equal to b

(a > b) a is greater than b

(a < b) a is less than b

(o1 in o2) Object o1 possessed by o2

(o1 notin o2) Object o1 not possessed by o2

(o1 has a) Object o1 has attribute a

(o1 hasnt a) Object o1 hasn’t attribute a

(o1 provides m) Object o1 provides property m

(o1 ofclass c) Object o1 inherits from class c

(The conditions relating to objects will be discussed later.) A useful extension to this set
is provided by the special operator or, which gives alternative possibilities. For example,

if (alpha == 3 or 4) print "Scott";

if (alpha ~= 5 or 7 or 9) print "Amundsen";

where two or more values are given with the word or between. Scott is printed if alpha
has value either 3 or 4, and Amundsen if the value of alpha is not 5, is not 7 and is not 9.
or can be used with any of the conditions, and any number of alternatives can be given.
For example

if (player in Forest or Village or Building) ...

often makes code much clearer than writing three separate conditions out; or

if (x > 100 or y) ...

can be convenient to check whether x is bigger than the minimum of 100 or y.
Conditions can also be built up from simpler ones (just as long expressions are built

up from single operators) using the three logical operators &&, || and ~~ (pronounced
“and”, “or” and “not”). For example,

if (alpha == 1 && (beta > 10 || beta < -10)) print "Lewis";

if (~~(alpha > 6)) print "Clark";

21

1 The language of routines

“Lewis” is printed if alpha equals 1 and beta is outside the range -10 to 10; “Clark” is
printed if alpha is less than or equal to 6.

The discussion above makes it look as if conditions are special kinds of expression
which can only use certain operators (==, &&, or and so on). But this is not true: conditions
are expressions like any other. It’s legal to write

print (beta == 4);

for instance, and this results in 1 being printed if beta equals 4, and 0 otherwise. Thus:

the result of a true condition is 1;
the result of a false condition is 0.

This is why true and false are defined to be 1 and 0 respectively. Thus one might write
code along the lines of

betaisfour = (beta == 4);

...

if (betaisfour == true) ...

though it would be easier to write

betaisfour = (beta == 4);

...

if (betaisfour) ...

because, just as conditions can be used as numbers, so numbers can be used as conditions.
Zero is considered to be “false”, and all other values are considered to be “true”. Thus

if (1) print "Magellan";

if (0) print "da Gama";

always results in “Magellan”, never “da Gama”, being printed.
One common use of variables is as “flags”. A flag can only hold the value 0 or 1,

false or true according to some state of the program. The fact that a number can be used
as a condition allows natural-looking statements like

if (lower_caves_explored) print "You’ve already been that way.";

where lower_caves_explored is a variable being used in the program as a flag.

4 Note that && and || only work out what they absolutely need to in order to decide the
truth. That is,

if (A && B) ...

will work out A first. If this is false, there’s no need to work out B, and it never is worked out.
Only if A is true is B actually tested. This only matters when working out conditions like

if (x==7 && Routine(5)) ...

where it can be important to know that the Routine is never called if x has a value other than 7.

22

1 The language of routines

§1.9 Example 4: Factorials

The factorial of a positive integer n is defined as the product

1× 2× 3× ...× n

so that, for example, the factorial of 4 is 24. Here is an Inform routine to calculate
factorials:

[Main;

print Factorial(7), "^";

];

[Factorial n;

if (n==1) return 1;

return n*Factorial(n-1);

];

This calculates 7 factorial and comes up with 5040. (Factorials grow rapidly and 8 factorial
is already too large to hold in a standard Inform number, so calling Factorial(8) would
give a wrong answer.)

The routine Factorial actually calls itself: this is called “recursion”. Execution
reaches “seven routines deep” before starting to return back up. Each of these copies of
Factorial runs with its own private copy of the variable n.

Recursion is hazardous. If one calls the routine

[Disaster;

return Disaster();

];

then despite the reassuring presence of the word return, execution is tied up forever,
unable to finish evaluating the return value. The first call to Disaster needs to make
a second before it can finish; the second needs to make a third; and so on. This is an
example of a programming error which will prove disastrous when the program is run, yet
will cause no errors when the source code is compiled. (It can be proved that it is impossible
to construct a compiler capable of detecting this general class of mistake. Inform does not
even try.)

§1.10 Code blocks, else and switch

A feature of all control constructs is that instead of just giving a 〈statement〉, one can
give a list of statements grouped together into a unit called a “code block”. Such a group
begins with an open brace { and ends with a close brace }. For example,

if (alpha > 5)

{ print "The square of alpha is ";

print alpha*alpha;

print ".^";

}

23

1 The language of routines

If alpha is 3, nothing is printed; if alpha is 9,

The square of alpha is 81.

is printed. (As usual the layout is a matter of convention: it is usual to write code blocks
on margins indented inwards by some standard number of characters.) In some ways, code
blocks are like routines, and at first it may seem inconsistent to write routines between [
and] brackets and code blocks between braces { and }. However, code blocks cannot have
private variables of their own and do not return values: and it is possible for execution to
break out of code blocks again, or to jump from block to block, which is impossible with
routines.

An if statement can optionally have the form

if (〈condition〉) 〈statement1〉 else 〈statement2〉

in which case 〈statement1〉 is executed if the condition is true, and 〈statement2〉 if it is
false. For example,

if (alpha == 5) print "Five."; else print "Not five.";

Note that the condition is only checked once. The statement

if (alpha == 5)

{ print "Five.";

alpha = 10;

}

else print "Not five.";

cannot ever print both “Five” and then “Not five”.
The else clause has a snag attached: the problem of “hanging elses”.

if (alpha == 1)

if (beta == 2)

print "Clearly if alpha=1 and beta=2.^";

else

print "Ambiguous.^";

is ambiguous as to which if statement the else attaches to. The answer (in Inform 6,
though this has changed since earlier versions of the language) is that an else always pairs
to its nearest if, unless there is bracing to indicate the contrary. Thus the else above
pairs with the beta condition, not the alpha condition.

In any case it is much safer to use braces to express what is meant, as in:

if (alpha == 1)

{ if (beta == 2)

print "Clearly if alpha=1 and beta=2.^";

else

print "Clearly if alpha=1 but beta not 2.^";

}

24

1 The language of routines

The if...else... construct is ideal for switching execution between two possible “tracks”,
like railway signals, but it is a nuisance trying to divide between many different outcomes
this way. To follow the analogy, the construct switch is like a railway turntable.

print "The train on platform 1 is going to ";

switch(DestinationOnPlatform(1))

{ 1: print "Dover Priory.";

2: print "Bristol Parkway.";

3: print "Edinburgh Waverley.";

}

Each possible value must be a constant, so

switch(alpha)

{ beta: print "The variables alpha and beta are equal!";

}

is illegal.
Any number of outcomes can be specified, and values can be grouped together to a

common outcome. For example,

print "The mission STS-", num, " was flown on the Space Shuttle";

switch(num)

{ 1 to 5, 9: print " Columbia.";

6 to 8: print " Challenger.";

10 to 25: if (num == 12) print " Discovery";

print ", but it was given a flight number like 51-B.";

default: print ".";

}

will result in a true statement being printed (as long as num is between 1 and, at time of
writing, 78), if an incomplete one. The default clause is executed if the original expression
matches none of the other values, and it must always come last if given at all. In this case,
it means that if num is 62, then

The mission STS-62 was flown on the Space Shuttle.

is printed.
Note that each clause is automatically a code block and needs no braces { to }

to delimit it from the rest of the routine: this shorthand makes switch statements much
more legible.

§1.11 while, do...until, for, break, continue

The other four Inform control constructs are all “loops”, that is, ways to repeat the execu-
tion of a given statement (or code block). Discussion of one of the four, called objectloop,
is deferred until §3.4.

25

1 The language of routines

The two basic forms of loop are while and do...until:

while (〈condition〉) 〈statement〉
do 〈statement〉 until (〈condition〉)

The first repeatedly tests the condition and, provided it is still true, executes the statement.
(If the condition is not even true the first time, the statement is never executed.) For
example:

[SquareRoot n;

x = n;

while (x*x > n) x=x-1;

return x;

];

a (fairly chronic) method for finding square roots. (If SquareRoot(200) is called, then x
runs down through the values 200, 199, ..., 14, at which point x*x <= n since 14×14 = 196.)

The do...until loop repeats the given statement until the condition is found to
be true. (Even if the condition is already satisfied, like (true), the statement is always
executed the first time through.)

One particular kind of while loop is needed so often that there is an abbreviation
for it, called for. For example,

counter = 1;

while (counter <= 10)

{ print counter, " ";

counter++;

}

which produces the output

1 2 3 4 5 6 7 8 9 10

(Recall that counter++ adds 1 to the variable counter.) Languages like BASIC make
extensive use of this kind of loop. For example, in BBC BASIC, the above loop would be
written

FOR counter = 1 TO 10

PRINT counter;" ";

NEXT

NEXT is a word which (slightly clumsily) means “the code block ends here”, and is therefore
the equivalent of Inform’s }. The whole is used to mean “for values of the counter running
through 1 to 10, do...”, hence the choice of the word FOR.

Inform (like the language C) uses a more flexible construct than this, but which is
still called for. It can produce any loop in the form

〈start〉

26

1 The language of routines

while (〈condition〉)
{ ...

〈update〉
}

where 〈start〉 and 〈update〉 are assignments. The notation to achieve this is
for (〈start〉 : 〈condition〉 : 〈update〉) ...

For example, the loop described above is achieved by
for (counter=1 : counter<=10 : counter++)

print counter, " ";

Note that if the condition is false even the first time, the loop is never executed. For
instance,

for (counter=1 : counter<0 : counter++)

print "Banana";

prints nothing.
4 At this point it is worth mentioning that several assignments can be combined into a single
statement in Inform. For example,

i++, score=50, j++

(three assignments separated by commas) is a single statement. This is never useful in ordinary
code, where the assignments can be divided up by semicolons in the usual way. In for loops it is
useful, though:

for (i=1, j=5: i<=5: i++, j--) print i, " ", j, ", ";

produces the output “1 5, 2 4, 3 3, 4 2, 5 1,”.

Any of the three parts of a for statement can be omitted. If the condition is missed
out, it is assumed to be always true, i.e. there is no check made to see if the loop should
be ended and so the loop continues forever.

On the face of it, the following loops all repeat forever:
while (true) 〈statement〉
do 〈statement〉 until (false)
for (::) 〈statement〉

But there is always an escape. One way is to return from the current routine. Another
is to jump to a label outside the loop (jump will be covered in §1.13 below). It’s neater to
use the statement break, which causes execution to “break out of” the current innermost
loop or switch statement: it can be read as “finish early”. All these ways out are entirely
“safe”, and there is no harm in leaving a loop only half-done.

The other simple statement used inside loops is continue. This causes the current
iteration to end immediately, but does not end the whole loop. For example,

for (i=1: i<=5: i++)

{ if (i==3) continue;

print i, " ";

}

will output “1 2 4 5”.

27

1 The language of routines

§1.12 Example 5: A number puzzle

The routine RunPuzzle is an interesting example of a loop which, though apparently simple
enough, contains a trap for the unwary.

[RunPuzzle n count;

do

{ print n, " ";

n = NextNumber(n);

count++;

}

until (n==1);

print "1^(taking ", count, " steps to reach 1)^";

];

[NextNumber n;

if (n%2 == 0) return n/2; ! If n is even, halve it

return 3*n + 1; ! If n is odd, triple and add 1

];

The call RunPuzzle(10), for example, results in the output

10 5 16 8 4 2 1
(taking 6 steps to reach 1)

The source code assumes that, no matter what the initial value of n, enough iteration will
end up back at 1. If this did not happen, the program would lock up into an infinite loop,
printing numbers forever.

The routine is apparently very simple, so it would seem reasonable that by thinking
carefully enough about it, we ought to be able to decide whether or not it is “safe” to use
(i.e., whether it can be guaranteed to finish or not).

And yet nobody knows whether this routine is “safe”. The conjecture that all n
eventually step down to 1 is at least fifty years old but has never been proved, having
resisted all mathematical attack. (Alarmingly, RunPuzzle(27) takes 111 iterations to fall
back down to 1.)

§1.13 quit, jump and the program state

There are four statements left which control the flow of execution. quit ends the program
immediately (as if a return had taken place from the Main routine). This drastic measure
is best reserved for points in the program which have detected some error condition so
awful that there is no point carrying on. Better yet, do not use it at all.

The jump statement transfers execution to some other named place in the same
routine. (Some programming languages call this goto. Since it can be and has been put
to ugly uses, the construct itself was at one time frowned on as a vulgar construct leading
programmers into sin. Good use of control constructs will almost always avoid the need
for jump and result in more legible programs. But sin is universal.)

28

1 The language of routines

To use jump a notation is needed to mark particular places in the source code. Such
markers are called “labels”. For example:

[Main i;

i=1;

.Marker;

print "I have now printed this ", i++, " times.^";

jump Marker;

];

This program has one label, Marker. A statement consisting only of a full stop and then
an identifier means “put a label here and call it this”.

44 An Inform program has the ability to save a snapshot of its entire state and to restore
back to that previous state. This snapshot includes values of variables, the point where code is
currently being executed, and so on. Just as we cannot know if the universe is only six thousand
years old, as creationists claim, having been endowed by God with a carefully faked fossil record;
so an Inform program cannot know if it has been executing all along or if it was only recently
restarted. The statements required are save and restore:

save 〈label〉
restore 〈label〉

This is a rare example of an Inform feature which may depend on the host machine’s state of
health: for example, if all disc storage is full, then save will fail. It should always be assumed
that these statements may well fail. A jump to the label provided occurs if the operation has been
a success. (This is irrelevant in the case of a restore since, if all has gone well, execution is now
resuming from the successful branch of the save statement: because that is where execution was
when the state was saved.)

§1.14 Printing output

When text is printed, normally each character is printed exactly as specified in the source
code. Four characters, however, have special meanings. As explained above ^ means “print
a new-line”. The character ~, meaning “print a quotation mark”, is needed since quotation
marks otherwise finish strings. Thus,

"~Look,~ says Peter. ~Socks can jump.~^Jane agrees."

is printed as

“Look,” says Peter. “Socks can jump.”
Jane agrees.

The third remaining special character is @, which is used for accented characters and other
unusual effects, as described below. Finally, \ is reserved for “folding lines”, and used to
be needed in Inform 5 when text spilled over more than one line. (It’s no longer needed

29

1 The language of routines

but kept so that old programs still work.) If you really want to print a ~, a ^, an @ or a \,
see below.

Text still spills over more than one line, even in the present golden age of Inform 6.
When a statement like

print "Here in her hairs

the painter plays the spider, and hath woven

a golden mesh t’untrap the hearts of men

faster than gnats in cobwebs";

is read in by Inform, the line breaks are replaced with a single space each. Thus the
text printed is: “Here in her hairs the painter plays the spider, and hath woven a golden
mesh...” and so on. (There is one exception: if a line finishes with a ^ (new-line) character,
then no space is added before the next line begins.)

So far, only the print statement has been used for printing, to print both numbers
and strings (that is, double-quoted pieces of text). Since Inform is primarily a language
for writing Adventure games, its business is text, and it provides many other facilities for
printing.

new_line

is a statement which simply prints a new-line (otherwise known as a carriage return, as
if the lever on the carriage of an old manual typewriter had been pulled to move it right
back to the left margin and turn it forward one line). This is equivalent to

print "^"

but is a convenient abbreviation. Similarly,

spaces 〈number〉

prints a sequence of that many spaces.

inversion

prints the version number of Inform which was used to compile the program (it might, for
instance, print “6.01”).

box 〈string1〉 ... 〈stringn〉

displays a reverse-video box in the centre of the screen, containing

string1
string2
...
stringn

30

1 The language of routines

and is usually used for popping up quotations: for example,

box "Passio domini nostri" "Jesu Christi Secundum" "Joannem"

displays

Passio domini nostri
Jesu Christi Secundum
Joannem

(the opening line of the libretto to Arvo Pärt’s ‘St John Passion’).

Text is normally displayed in ordinary (or “Roman”) type. Its actual appearance will vary
from machine to machine running the program. On many machines, it will be displayed
using a “font” which is variably-pitched, so that for example a “w” will be wider on-screen
than an “i”. Such text is much easier to read, but makes it very difficult to print out
diagrams. The statement

print "+------------+

^+ Hello +

^+------------+^";

will print something quite irregular if the characters “-”, “+” and “ ” (space) do not
all have the same width. Because one sometimes does want to print such a diagram (to
represent a sketch-map, say, or to print out a table), the statement font is provided:

font on

font off

font off switches into a fixed-pitch display style (in which all characters definitely have
the same width); font on goes back to the original.

In addition to this, a few textual effects can be achieved.

style roman

switches to ordinary Roman text (the default), and there are also

style bold

style underline

style reverse

(reverse meaning “reverse colour”: e.g. yellow on blue if the normal text appearance is
blue on yellow). An attempt will be made to approximate these effects on any machine,
but it may be that underline comes out as italicised text, for example, or that bold is
rendered by printing ordinary Roman text but in a different colour.

Inform programs are starting to be written which communicate in languages other than
English: Italian, Dutch, German, French and Spanish games have all been attempted. A

31

1 The language of routines

comprehensive range of accented characters is available: these are reached with the aid of
the escape character, @.

Most accented characters are written as @, followed by an accent marker, then the letter
on which the accent appears:

@^ put a circumflex on the next letter: a,e,i,o,u,A,E,I,O or U
@’ put an acute on the next letter: a,e,i,o,u,y,A,E,I,O,U or Y
@‘ put a grave on the next letter: a,e,i,o,u,A,E,I,O or U
@: put a diaeresis on the next letter: a,e,i,o,u,A,E,I,O or U
@c put a cedilla on the next letter: c or C
@~ put a tilde on the next letter: a,n,o,A,N or O
@\ put a slash on the next letter: o or O
@o put a ring on the next letter: a or A

In addition, there are a few others:
@ss German sz
@<< continental European quotation marks
@>>

@ae ligatures
@AE

@oe

@OE

@th Icelandic accents
@et

@Th

@Et

@LL pound sign
@!! Spanish (upside-down) exclamation mark
@?? Spanish (upside-down) question mark

For instance,
print "Les @oeuvres d’@Aesop en fran@ccais, mon @’el@‘eve!";

print "Na@:ive readers of the New Yorker will re@:elect Mr Clinton.";

print "Carl Gau@ss first proved the Fundamental Theorem of Algebra.";

Accented characters can also be referred to as constants, like other characters. Just as ’x’
represents the character lower-case-X, so ’@^A’ represents capital-A-circumflex.

4 The @ escape character has two other uses. One gets around the problem that, so far, it
is impossible to print an “@”. A double @ sign, followed by a number, prints the character with
this numerical code. The most useful cases are:

@@92 comes out as “\”
@@64 comes out as “@”
@@94 comes out as “^”
@@126 comes out as “~”

enabling us to print the four characters which can’t be typed directly because they have other

meanings.

44 The second use is more obscure. Inform keeps a stock of 32 pseudo-variables to hold text,
numbered from 0 to 31.

32

1 The language of routines

@00 prints out as the current contents of string 0
... ...
@31 prints out as the current contents of string 31

and these variables are set with the string statement:

string 0 "toadstool";

sets string 0 to the text of the word “toadstool”. (There is a technical reason why these strings

cannot be set equal to any text: only to literal text, as in the above example, or to strings

previously declared using the Low_string directive.)

Finally, it is time to discuss print. There are two forms, print and print_ret.
The only difference is that the second prints out an extra new-line character and returns
from the current routine with the value true. Thus, print_ret should be read as “print
and then return”, and

print_ret "That’s enough of that.";

is equivalent to

print "That’s enough of that.^"; rtrue;

In fact, as an abbreviation, it can even be shortened to:

"That’s enough of that.";

Although Inform newcomers are often confused by the fact that this apparently innocent
statement actually causes a return from the current routine, it’s an abbreviation which
very much pays off in adventure-writing situations. Note that if the program:

[Main;

"Hello, and now for a number...";

print 45*764;

];

is compiled, Inform will produce the warning message:

line 3: Warning: This statement can never be reached.

> print 45*764;

because the bare string on line 2 is printed using print_ret: so the text is printed, then a
new-line is printed, and then a return takes place immediately. As the warning message
indicates, there is no way the statement on line 3 can ever be executed.

So what can be printed? The answer is a list of terms, separated by commas. For
example,

print "The value is ", value, ".";

33

1 The language of routines

contains three terms. A term can take the following forms:
〈a numerical quantity〉 printed as a (signed, decimal) number
〈text in double-quotes〉 printed as text
(〈rule〉) 〈quantity〉 printed according to some special rule

Inform provides a stock of special printing rules built-in, and also allows the programmer
to create new ones. The most important rules are:

(char) print out the character which this is the numerical code for
(string) print this string out
(address) print out the text at this array address

(this is seldom used, and then mainly to print the
text of a word entry in a game’s dictionary)

4 print (string) ... requires a little explanation.

x = "Hello!";

print (string) x;

prints out “Hello!”, whereas

x = "Hello!";

print x;

prints a mysterious number. This is because strings are internally represented by numbers (just
as everything else is).

The remaining stock of rules is provided for use in conjunction with the Library
and is documented in Chapter V: briefly,

(the) print definite article then name of this object
(The) ditto, but capitalised
(name) ditto, but with no article
(a) ditto, but with the indefinite article
(number) print this number out in English
(property) (for debugging) print the name of this property
(object) (ditto) print the hardware-name of this object

Note that (the) in lower case does something different from (The) with an upper case T.
This is very unusual! (Directive names, which will turn up in §2, variable names and so
on are allowed to use upper case and the case is simply ignored, so that fRoG means the
same as frog. But statement keywords, like print or (name), have to be in lower case –
except for (The).)

To create a new rule, provide a routine with this name, and use the rule-name in
brackets.

§1.15 Example 6: Printing in hexadecimal

The following pair of routines provides for printing out a number as a four-digit, unsigned
hexadecimal number. For example, so that

print (hex) 16339;

34

1 The language of routines

prints “3fd3”.
[hex x y;

y = (x & $ff00) / $100;

x = x & $ff;

print (hdigit) y/$10, (hdigit) y, (hdigit) x/$10, (hdigit) x;

];

[hdigit x;

x = x % $10;

if (x<10) print x; else print (char) ’a’+x-10;

];

Once these routines have been defined, hex and hdigit are available anywhere in the same
program for use as new printing rules.

§1.16 Built-in functions 1: random and indirect

Inform provides a small stock of functions ready-defined, but which are used much as other
functions are. All but two of these concern objects and will be left until chapter 3.

random has two forms:

random(N)

returns a uniformly random number in the range 1, 2, ..., N . N should always be a positive
number (between 1 and 32767) for this to work properly.

random(two or more constant quantities, separated by commas)

returns a uniformly random choice from this selection. Thus,

print (string) random("red", "blue", "green", "purple", "orange");

randomly prints the name of one of these five colours (each being equally likely to appear).
Likewise,

print random(13, 17);

has a 50% chance of printing 13, and a 50% chance of printing 17.

44 The other built-in function discussed here is indirect.

indirect(function, arg1, arg2, ...)

calls the given function with given arguments. Thus, this is equivalent to

function(arg1, arg2, ...)

but has the additional virtue that the function can be given, not just as a literal function name,
but as some calculated value:

indirect(random(OneRoutine, OtherRoutine), 45);

has a 50% chance of calling OneRoutine(45), and a 50% chance of calling OtherRoutine(45).
indirect should be used with caution: if supplied with a numerical first argument which doesn’t
correspond to any function in the program, the program may resoundingly crash. In any event,
it is often best to achieve such effects using messages to objects.

35

1 The language of routines

§1.17 Accepting input

44 Inform programmers seldom need to take input from the keyboard, in practice, since in
all game situations the Library’s parser routines take care of all that. However, for completeness
this section covers the read statement which is the main route by which keyboard input is taken.
It will not make much sense to readers who have not yet read the rest of this book.

The syntax is

read 〈text array〉 〈parse buffer〉 〈routine〉

where the 〈routine〉 is optional: if provided, it is called just before the input takes place so that
the screen’s top line or lines of data (the “status line” present in many games) can be renewed.

What the statement does is to read in a single line of text (waiting until the user has
finished typing a line and then pressed RETURN), copy this text into the text array and then try
to comprehend it, writing the results of this comprehension exercise (“parsing”) into the parse
buffer.

Before the statement is reached, the program should have entered the maximum number
of characters which can be accepted (say, 60) into the 0th entry of the text array; the statement
will then write the actual number typed into the 1st entry, and the characters themselves into
entries 2 and onward. Thus,

text_array -> 0 = 60;

read text_array 0;

for (n = 0: n< text_array->1: n++) print (char) text_array->(n+2);

new_line;

will read in a line of up to 60 characters, and then print it back again. (The array text_array

must have been created first, and so must the local variable n, of course.)

Note that in this case, no “parse buffer” has been given (0 was given in its place). If,

instead of 0, an array is given here, then the read statement makes an attempt to divide up the

input text into individual words, and to match these words against the game’s dictionary. See

§2.5 for details.

2 The language of data structures

§2.1 Directives and constants

Every example program so far has consisted only of a sequence of routines, each within
beginning and end markers [and]. Such routines have no way of communicating with each
other, and therefore of sharing information with each other, except by making function

36

2 The language of data structures

calls back and forth. This arrangement is not really suited to a large program whose task
may be to simulate something complicated (such as the world of an adventure game): it
would be useful to have some kind of central registry of information which all routines
have access to, as and when needed.

Information available to all routines in this way is said to be “global”, rather than
“local” to any one routine. (As will appear in §3, there is also an intermediate possibility
where information is available only to a cluster of routines working on roughly the same
part of a program.)

This global information can be organised in a variety of ways. Such organised groups
are called “data structures”. For example, a typical data structure might be a list of 10
values. The term “data structure” did not appear in §1 because information was only ever
held in variables, the simplest possible kind of structure (one value on its own).

Data structures are added to Inform programs using commands called “directives”
in between definitions of routines. It’s important to distinguish between these, which direct
Inform to do something now (usually, to create something) and the statements which occur
inside routines, which are merely translated in some way but not acted on until the program
has finished being compiled and is run.

In fact, one directive has already appeared: the one written [, which means “trans-
late the following routine up to the next]”. In all there are 38 Inform directives, as
follows:

Abbreviate Array Attribute Class Constant Default

Dictionary End Endif Extend Fake_action Global

Ifdef Ifndef Ifnot Ifv3 Ifv5 Iftrue

Iffalse Import Include Link Lowstring Message

Nearby Object Property Release Replace Serial

Switches Statusline Stub System_file Trace Verb

Version [

Several of these are rather technical and will not be used by many programmers (such
as Trace, Stub, Default, System_file, Abbreviate, Dictionary). Others control fine
points of what is compiled and what isn’t (Ifdef, Ifnot, and so on; Message, Replace).
These not-very important directives are covered in Chapter II.

This leaves 9 central directives for creating data structures, and these are the ones
which it is important to know about:

Array Attribute Class Constant Extend Global

Object Property Verb

It is conventional to write these with the initial letter capitalised: this makes directives
look unlike statements. Attribute, Class, Object and Property are the subject of §3.

The simplest directive with a “global” effect on the program – an effect all over the program,
that is, not just in one routine – is Constant. The following program, an unsatisfying game

37

2 The language of data structures

of chance, shows a typical use of Constant.

Constant MAXIMUM_SCORE = 100;

[Main;

print "You have scored ", random(MAXIMUM_SCORE),

" points out of ", MAXIMUM_SCORE, ".^";

];

The maximum score value is used twice in the routine Main. Of course the program is the
same as it would have been if the constant definition were not present, and MAXIMUM_SCORE
were replaced by 100 in both places where it occurs. The advantage of using Constant
is that it makes it possible to change this value from 100 to, say, 50 with only a single
change, and it makes the source code more legible to the reader by explaining what the
significance of the number 100 is supposed to be.

If no value is specified for a constant, as in the line

Constant DEBUG;

then the constant is created with value 0.

§2.2 Global variables

As commented above, so far the only variables allowed have been “local variables”, each
private to their own routines. A “global variable” is a variable which is accessible to all
code in every routine. Once a global variable has been declared, it is used in just the same
way as a local variable. The directive for declaring a global variable is Global:

Global score = 36;

This creates a variable called score, which at the start of the program has the value 36.
score can be altered or used anywhere in the program after the line on which it is defined.

§2.3 Arrays

An “array” is an indexed collection of (global) variables, holding a set of numbers organised
into a sequence. It allows general rules to be given for how a group of variables should be
treated. For instance, the directive

Array pack_of_cards --> 52;

creates a stock of 52 variables, referred to in the program as

pack_of_cards-->0 pack_of_cards-->1 ... pack_of_cards-->51

There are two basic kinds of array: “word arrays” (written using --> as above) and “byte
arrays” (written using -> similarly). Whereas the entries of a word array can hold any
number, the entries of a byte array can only be numbers in the range 0 to 255 inclusive.

38

2 The language of data structures

(The only advantage of this is that it is more economical on memory, and beginners are
advised to use word arrays instead.)

In addition to this, Inform provides arrays which have a little extra structure: they
are created with the 0th entry holding the number of entries. A word array with this
property is called a table; a byte array with this property is a string.

For example, the array defined by

Array continents table 5;

has six entries: continents-->0, which holds the number 5, and five more entries, indexed
1 to 5. (The program is free to change continents-->0 later but this will not change the
size: the size of an array can never change.) As an example of using string arrays:

Array password string "DANGER";

Array phone_number string "1978-345-2160";

...

PrintString(password);

...

PrintString(phone_number);

...

[PrintString the_array i;

for (i=1: i<=the_array->0: i++)

print (char) the_array->i;

];

The advantage of string arrays, then, is that one can write a general routine like PrintString
which works for arrays of any size.

To recapitulate, Inform provides four kinds of array in all:

--> -> table string

There are also four different ways to set up an array with its initial contents (so the directive
can take 16 forms in all). In all of the examples above, the array entries will all contain 0
when the program begins.

Instead, we can give a list of constant values. For example,

Array primes --> 2 3 5 7 11 13;

is a word array created with six entries, primes-->0 to primes-->5, initially holding the
values 2 to 13.

The third way to create an array gives some text as an initial value (because one
common use for arrays is as “strings of characters” or “text buffers”). The two string
arrays above were set up this way. As another example,

Array players_name -> "Frank Booth";

sets up the byte array players_name as if the directive had been

Array players_name -> ’F’ ’r’ ’a’ ’n’ ’k’ ’ ’ ’B’ ’o’ ’o’ ’t’ ’h’;

44 The fourth way to create an array is obsolete and is kept only so that old programs still
work. This is to give a list of values in between end-markers [and], separated by commas or
semi-colons. Please don’t use this any longer.

39

2 The language of data structures

•WARNING

It is up to the programmer to see that no attempt is made to read or write non-existent
entries of an array. (For instance, pack_of_cards-->1000.) Such mistakes are notorious
for causing programs to fail in unpredictable ways, difficult to diagnose. Here for example
is an erroneous program:

Array ten --> 10;

Array fives --> 5 10 15 20 25;

[Main n;

for (n=1: n<=10: n++) ten-->n = -1;

print fives-->0, "^";

];

This program ought to print 5 (since that’s the 0-th entry in the array fives), but in fact
it prints −1. The problem is that the entries of ten are ten-->0 up to ten-->9, not (as
the program implicitly assumes) ten-->1 to ten-->10. So the value −1 was written to
ten-->10, an entry which does not exist. At this point anything could have happened.
As it turned out, the value was written into the initial entry of the next array along,
“corrupting” the data there.

§2.4 Example 7: Shuffling a pack of cards

This program simulates the shuffling of a pack of playing cards. The cards are represented
by numbers in the range 0 (the Ace of Hearts) to 51 (the King of Spades). The pack
itself has 52 positions, from position 0 (on the top) to position 51 (on the bottom). It is
therefore represented by the array

pack_of_cards-->i

whose i-th entry is the card number at position i. A new pack as produced by the factory,
still in order, would therefore be represented with card i in position i: the pack would
have the Ace of Hearts on top and the King of Spades on the bottom.

4 The example code shuffles the pack in a simple way, but there are more efficient methods.
Here’s one supplied by Dylan Thurston, giving perfect randomness in 51 exchanges.

pack_of_cards-->0 = 0;

for (i=1:i<52:i++)

{ j = random(i+1) - 1;

pack_of_cards-->i = pack_of_cards-->j; pack_of_cards-->j = i;

}

§2.5 Seven special data structures

4 All Inform programs automatically contain seven special data structures, each being one of
a kind: the object tree, the grammar, the table of actions, the release number, the serial code, the
“statusline flag” and the dictionary. These data structures are tailor-made for adventure games
and (except for the object tree) can be ignored for every other kind of program. So they are
mostly covered in Book Two.

40

2 The language of data structures

Example 7: Shuffling a pack of cards

Constant SHUFFLES = 100;

Array pack_of_cards --> 52;

[ExchangeTwo x y z;

! Initially x and y are both zero

while (x==y)

{ x = random(52) - 1; y = random(52) - 1;

}

! x and y are now randomly selected, different numbers

! in the range 0 to 51

z = pack_of_cards-->x;

pack_of_cards-->x = pack_of_cards-->y;

pack_of_cards-->y = z;

];

[Card n;

switch(n%13)

{ 0: print "Ace";

1 to 9: print n%13 + 1;

10: print "Jack";

11: print "Queen";

12: print "King";

}

print " of ";

switch(n/13)

{ 0: print "Hearts";

1: print "Clubs";

2: print "Diamonds";

3: print "Spades";

}

];

[Main i;

! Create the pack in "factory order":

for (i=0:i<52:i++) pack_of_cards-->i = i;

! Exchange random pairs of cards for a while:

for (i=0:i<SHUFFLES:i++) ExchangeTwo();

print "The pack has been shuffled to contain:^";

for (i=0:i<52:i++)

print (Card) pack_of_cards-->i, "^";

];

Note the use of a “printing rule” called Card to describe card number i. Note also that
100 exchanges of pairs of cards is only just enough to make the pack appear well shuffled.
Redefining SHUFFLES as 10000 makes the program take longer; redefining it as 10 makes
the result very suspect.

41

2 The language of data structures

1. For the object tree (and the directives Object and Class), see §3.

2. For grammar (and the directives Verb and Extend), see Chapter V, §§26 and 27.

3. For actions (and the <...> and <<...>> statements and the ## constant notation), see
Chapter III, §9.

4. The release number (which is printed automatically by the library in an Inform-written
adventure game) is 1 unless otherwise specified. The directive

Release <number>;

does this. Conventionally release 1 would be the first published copy, and releases 2, 3, ...
would be amended re-releases. See Chapter III, §7, for an example.

5. The serial number is set automatically to the date of compilation in the form 960822
(“22nd August 1996”). This can be overridden if desired with the directive

Serial "dddddd";

where the text must be a string of 6 digits.

6. The “status line flag” chooses between styles of “status line” at the top of an adventure
game’s screen display. See Chapter IV, §18, for use of the Statusline directive.

7. The dictionary is automatically built by Inform. It is a stock of all the English words
which the game might want to recognise from what the player has typed: it includes any
words written in constants like ’duckling’, as well as any words given in name values or
in grammar. For example

if (first_word == ’herring’) print "You typed the word herring!";

is a legal statement. Inform notices that herring – because it is in single quotes – is
a word the program may one day need to be able to recognise, so it adds the word to
the dictionary. Note that the constant ’herring’ is a dictionary word but the constant
’h’ is the ASCII value of lower-case H. (Single-letter dictionary words are seldom needed,
but can be written using an ugly syntax if need be: #n$h is the constant meaning “the
dictionary word consisting only of the letter H”.)

44 From this description, the dictionary appears to be something into which words are poured,
never to re-emerge. The benefit is felt when the read statement comes to try to parse some input
text:

read text_array parse_buffer;

It must be emphasized that the read statement performs only the simplest possible form of
parsing, and should not be confused with the very much more elaborate parser included in the
Inform library.

42

2 The language of data structures

What it does is to break down the line of input text into a sequence of words, in which
commas and full stops count as separate words in their own right. (An example is given in Chapter
V, §24.) Before using read, the entry

parse_buffer->0

should be set to the maximum number of words which parsing is wanted for. (Any further words
will be ignored.) The number of words actually parsed from the text is written in

parse_buffer->1

and a block of data is written into the array for each of these words:

parse_buffer-->(n*2 - 1)

holds the dictionary value of the n-th word (if n counts 1, 2, 3, ...). If the word isn’t in the
dictionary, this value is zero.

(In addition,

parse_buffer->(n*4)

parse_buffer->(n*4 + 1)

are set to the number of letters in word n, and the offset of word n in the text array.)
For example,

[PleaseTypeYesOrNo i;

for (::)

{ buffer->0 = 60;

parse->0 = 1;

print "Please type ~yes~ or ~no~> ";

read buffer parse;

if (parse-->1 == ’yes’) rtrue;

if (parse-->1 == ’no’) rfalse;

}

];

43

3 The language of objects

Objects make up the substance of the world. That is why they
cannot be composite.

– Ludwig Wittgenstein (–), Tractatus

§3.1 Objects and communication

The objects in a program are its constituent parts: little lumps of code and data. The
starting point of an “object-oriented language” is that it’s good design to tie up pieces of
information in bundles with the pieces of program which deal with them. But the idea
goes further:

1. An object is something you can communicate with. (It’s like a company where
many people work in the same building, sharing the same address: to the outside
world it behaves like a single person.)

2. Information inside the object can be kept concealed from the outside world (like a
company’s confidential files). This is sometimes called “encapsulation”.

3. The outside world can only ask the object to do something, and has no business
knowing how it will be done. (The company might decide to change its stock-
control system one day, but the outside world should never even notice that this
has happened, even though internally it’s a dramatic shift.)

All three principles have been seen already for routines: (1) you can call a routine, but
you can’t call “only this part of a routine”; (2) the local variables of a routine are its own
private property, and the rest of the program can’t find out or alter their values; (3) as
long as the routine still accomplishes the same task, it can be rewritten entirely and the
rest of the program will carry on working as if no change had been made.

Why bother with all this? There are two answers. First and foremost, Inform was
designed to make adventure games, where objects are the right idea for representing items
and places in the game. Secondly, the ‘object’ approach makes sense as a way of organising
any large, complicated program.

The other key idea is communication. One can visualise the program as being a
large group of companies, constantly writing letters to each other to request information or
ask for things to be done. In a typical “message”, one object A sends a detailed question
or instruction to another object B, which replies with a simple answer. (Again, we’ve seen
this already for routines: one routine calls another, and the other sends back a return
value.)

Routines are only one of the four basic kinds of Inform object, which are:

routines, declared using [...];
strings in double-quotes "like so";
collections of routines and global variables, declared using Object;
prototypes for such collections, called “classes” and declared using Class.

44

3 The language of objects

These four kinds are called “metaclasses”. If O is an object, then the function

metaclass(O)

will always tell you what kind it is, which will be one of the four values

Routine String Object Class

For example,

metaclass("Violin Concerto no. 1")

evaluates to String, whereas

metaclass(Main)

should always be Routine (since Main should always be the name of the routine where an
Inform program begins to run). From §1 we already know about metaclasses Routine and
String, so it’s the other two cases which this section will concentrate on.

44 Why only these four kinds? Why are strings objects, and not (say) variables or dictionary
words? Object-oriented languages vary greatly in to what extreme they take the notion of object:
in the dogmatic Smalltalk-80, every ingredient of any kind in a program is called an object: the
program itself, the number 17, each variable and so on. Inform is much more moderate. Routines,
Objects and classes are genuinely object-like, and it just so happens that it’s convenient to treat
strings as objects (as we shall see). But Inform stops there.

§3.2 Built-in functions 2: the object tree

Routines, strings and (as we shall see) classes are scattered about in an Inform program,
in no particular order, and nothing links them together. Object objects are special in that
they are joined up in the “object tree” which grows through every Inform program.

In this tree, objects have a kind of family relationship to each other: each one has
a parent, a child and a sibling. (The analogy here is with family trees.) Normally such a
relation is another object in the tree, but instead it can be

nothing

which means “no object at all”. For example, consider the tree:

Meadow

!

Mailbox -> Player

! !

Note Sceptre -> Cucumber -> Torch -> Magic Rod

!

Battery

45

3 The language of objects

The Mailbox and Player are both children of the Meadow, which is their parent, but only
the Mailbox is the child of the Meadow. The Magic Rod is the sibling of the Torch, which
is the sibling of the Cucumber, and so on.

Inform provides special functions for reading off positions in the tree: parent, sibling
and child all do the obvious things, and in addition there’s a function called children
which counts up how many children an object has (where grandchildren don’t count as
children). For instance,

parent (Mailbox) == Meadow

children (Player) == 4

child (Player) == Sceptre

child (Sceptre) == nothing

sibling (Torch) == Magic Rod

It is a bad idea to apply these functions to the value nothing (since it is not an object, but
a value representing the absence of one). One can detect whether a quantity is a genuine
object or not using metaclass, for

metaclass(X)

is nothing for any value X which isn’t an object: in particular,

metaclass(nothing) == nothing

4 Hopefully it’s clear why the tree is useful for writing adventure games: it provides a way
to simulate the vital idea of one thing being contained inside another. But even in non-adventure
game programs it can be a convenience. For instance, it is an efficient way to hold tree structures
and linked lists of information.

§3.3 Creating objects 1: setting up the tree

The object tree’s initial state is created with the directive Object. For example,

Object "bucket" ...

Object -> "starfish" ...

Object -> "oyster" ...

Object -> -> "pearl" ...

Object -> "sand" ...

(where the bulk of the definitions are here abbreviated to “...”), sets up the tree structure

"bucket"

!

"starfish" --> "oyster" --> "sand"

!

"pearl"

46

3 The language of objects

The idea is that if no arrows -> are given in the Object definition, then the object has no
parent: if one -> is given, then the object is a child of the last object to be defined with
no arrows; if two are given, then it’s a child of the last object defined with only one arrow;
and so on. (The list of definitions looks a little like the tree picture turned on its side.)

An object definition consists of a “head” followed by a “body”, which is itself divided
into “segments” (though there the similarity with caterpillars ends). The head takes the
form:

Object 〈arrows〉 〈name〉 "textual name" 〈parent〉

but all of these four entries are optional.
1. The 〈arrows〉 are as described above. Note that if one or more arrows are given,

that automatically specifies what object this is the child of, so a 〈parent〉 cannot be
given as well.

2. The 〈name〉 is what the object can be called inside the program; it’s analogous to
a variable name.

3. The "textual name" can be given if the object’s name ever needs to be printed by
the program when it is running.

4. The 〈parent〉 is an object which this new object is to be a child of. (This is an
alternative to supplying arrows.)

So much is optional that even the bare directive

Object;

is allowed, though it makes a nameless and featureless object which is unlikely to be useful.

§3.4 Statements for objects: move, remove, objectloop

The positions of objects in the tree are by no means fixed: they are created in a particular
formation but are often shuffled around extensively during the program’s execution. (In
an adventure game, where the objects represent items and rooms, objects are moved in
the tree whenever the player picks something up or moves around.) The statement

move 〈object〉 to 〈object〉

moves the first-named object to become a child of the second-named one. All of the first
object’s own children “move along with it”, i.e., remain its own children. For instance,
following the example in §3.2 above,

move Cucumber to Mailbox;

results in the tree
Meadow

!

Mailbox -----------> Player

! !

Cucumber -> Note Sceptre -> Torch -> Magic Rod

!

Battery

47

3 The language of objects

It must be emphasized that move prints nothing on the screen, and indeed does nothing at
all except to rearrange the tree. When an object becomes the child of another in this way,
it always becomes the “eldest” child in the family-tree sense; that is, it is the new child()
of its parent, pushing the previous children over into being its siblings. It is, however,
illegal to move an object out of such a structure using

move Torch to nothing;

because nothing is not an object as such. The effect is instead achieved with

remove Torch;

which would now result in
Meadow Torch

! !

Mailbox -----------> Player Battery

! !

Cucumber -> Note Sceptre -> Magic Rod

So the “object tree” is often fragmented into many little trees.

Since objects move around a good deal, it’s useful to be able to test where an object
currently is; the condition in is provided for this. For example,

Cucumber in Mailbox

is true if and only if the Cucumber is one of the direct children of the Mailbox. (Cucumber
in Mailbox is true, but Cucumber in Meadow is false.) Note that

X in Y

is only an abbreviation for

parent(X) == Y

but it’s worth having since it occurs so often.

The one loop statement missed out in §1 was objectloop.

objectloop(〈variable-name〉) 〈statement〉

runs through the 〈statement〉 once for each object in the tree, putting each object in turn
into the variable. For example,

objectloop(x) print (name) x, "^";

prints out a list of the textual names of every object in the tree. (Objects which aren’t
given any textual names in their descriptions come out as “?”.) More powerfully, any
condition can be written in the brackets, as long as it begins with a variable name.

objectloop(x in Mailbox) print (name) x, "^";

prints the names only of those objects which are direct children of the Mailbox object.

48

3 The language of objects

§3.5 Creating objects 2: with properties

So far Objects are just tokens with names attached which can be shuffled around in a tree.
They become interesting when data and routines are attached to them, and this is what
the body of an object definition is for.

The body contains up to four segments, which can occur in any order; each of the
four is optional. The segments are called

with has class private

class will be left until later. The most important segment is with, which specifies things
to be attached to the object. For example,

Object magpie "black-striped bird"

with wingspan, worms_eaten;

attaches two variables to the bird, one called wingspan, the other called worms_eaten.
Notice that when more than one variable is given, commas are used to separate them: and
the object definition as a whole is ended by a semicolon, as always. The values of the
magpie’s variables are referred to in the rest of the program as

magpie.wingspan

magpie.worms_eaten

which can be used exactly the way normal (global) variables are used. Note that the object
has to be named along with the variable, since

crested_glebe.wingspan

magpie.wingspan

are different variables.
Variables which are attached to objects in this way are called “properties”. More

precisely, the name wingspan is said to be a property, and is said to be “provided” by
both the magpie and crested_glebe objects.

The presence of a property can be tested using the provides condition. For exam-
ple,

objectloop (x provides wingspan) ...

executes the code ... for each object x in the game which is defined with a wingspan
property.

4 Although the provision of a property can be tested, it cannot be changed while the program
is running. The value of magpie.wingspan may change, but not the fact that the magpie has a
wingspan.

49

3 The language of objects

When the above magpie definition is made, the initial values of

magpie.wingspan

magpie.worms_eaten

are both 0. To create the magpie with a given wingspan, we have to specify an initial
value: we do this by giving it after the name, e.g.

Object magpie "black-striped bird"

with wingspan 5, worms_eaten;

and now the program begins with magpie.wingspan equal to 5, and magpie.worms_eaten
still equal to 0. (For consistency perhaps there should be an equals sign before the 5, but
if this were the syntax then Inform programs would be horribly full of equals signs.)

4 Properties can be arrays instead of global variables. If two or more consecutive values are
given for the same property, it becomes an array. Thus,

Object magpie "black-striped bird"

with name "magpie" "bird" "black-striped" "black" "striped",

wingspan 5, worms_eaten;

magpie.name is not a global variable (and cannot be treated as such: it doesn’t make sense to add
1 to it), it is an --> array. This must be accessed using two special operators, .& and .#.

magpie.&name

means “the array which is held in magpie’s name property”, so that the actual name values are in
the entries

magpie.&name-->0

magpie.&name-->1

...

magpie.&name-->4

The size of this array can be discovered with

magpie.#name

which evaluates to the twice the number of entries, in this case, to 10. (Twice the number of
entries because it is actually the number of byte array, ->, entries: byte arrays take only half as
much storage as word arrays.)

4 name is actually a special property created by Inform. It has the unique distinction that
textual values in double-quotes (like the five words given in magpie.name above) are entered into
the game’s dictionary, and not treated as ordinary strings. (Normally one would use single-quotes
for this. The rule here is anomalous and goes back to the misty origins of Inform 1.) If you prefer
a consistent style, using single quotes:

Object magpie "black-striped bird"

with name ’magpie’ ’bird’ ’black-striped’ ’black’ ’striped’,

wingspan 5, worms_eaten;

works equally well (except that single-character names like “X” then have to be written #n$X).

50

3 The language of objects

Finally, properties can also be routines. In the definition

Object magpie "black-striped bird"

with name "magpie" "bird" "black-striped" "black" "striped",

wingspan 5,

flying_strength

[; return magpie.wingspan + magpie.worms_eaten;

],

worms_eaten;

magpie.flying_strength is neither a variable nor an array, but a routine, given in square
brackets as usual. (Note that the Object directive continues where it left off after the
routine-end marker,].) Routines which are written in as property values are called “em-
bedded” and are mainly used to receive messages (as we shall see).

44 Embedded routines are unlike ordinary ones in two ways:

1. An embedded routine has no name of its own, since it is referred to as a property such as
magpie.flying_strength instead.

2. If execution reaches the] end-marker of an embedded routine, then it returns false, not
true (as a non-embedded routine would). The reason for this will only become clear in
Chapter III when before and after rules are discussed.

§3.6 private properties and encapsulation

4 An optional system is provided for “encapsulating” certain properties so that only the
object itself has access to them. These are defined by giving them in a segment of the object
declaration called private. For instance,

Object sentry "sentry"

private pass_number 16339,

with challenge

[attempt;

if (attempt == sentry.pass_number)

"Approach, friend!";

"Stand off, stranger.";

];

makes the sentry provide two properties: challenge, which is public, and pass_number, which
can be used only by the sentry’s own embedded routines.

44 This makes the provides condition slightly more interesting than it appeared in the pre-
vious section. The answer to the question of whether or not

sentry provides pass_number

depends on who’s asking: this condition is true if it is tested in one of the sentry’s own routines,
and otherwise false. A private property is so well hidden that nobody else can even know whether
or not it exists.

51

3 The language of objects

§3.7 Attributes, give and has

In addition to properties, objects have flag variables attached. (Recall that flags are
variables which are either true or false: the flag is either flying, or not.) However, these
are provided in a way which is quite different. Unlike property names, attribute names
have to be declared before use with a directive like:

Attribute tedious;

Once this declaration is made, every object in the tree has a tedious flag attached, which
is either true or false at any given time. The state can be tested by the has condition:

if (magpie has tedious) ...

tests whether the magpie’s tedious flag is currently set, or not.
The magpie can be created already having attributes using the has segment in its

declaration:

Object magpie "black-striped bird"

with wingspan, worms_eaten

has tedious;

The has segment contains a list of attributes (with no commas in between) which should
be initially set. In addition, an attribute can have a tilde ~ in front, indicating “this
is definitely not held”. This is usually what would have happened anyway, but class
inheritance (see below) disturbs this.

Finally, the state of such a flag is changed in the running of the program using the
give statement:

give magpie tedious;

sets the magpie’s tedious attribute, and

give magpie ~tedious;

clears it again. The give statement can take a list of attributes, too:

give door ~locked open;

for example, meaning “take away locked and add on open”.

§3.8 Classes and inheritance

Having covered routines and strings in §1, and Objects above, the fourth and final meta-
class to discuss is that of “classes”. A class is a kind of prototype object from which other
objects are copied. These other objects are sometimes called “instances” or “members” of
the class, and are said to “inherit from” it.

52

3 The language of objects

For example, clearly all birds ought to have wingspans, and the property
flying_strength

[; return magpie.wingspan + magpie.worms_eaten;

],

(attached to the magpie in the example above) is using a formula which should work for
any bird. We might achieve this by using directives as follows:

Class Bird

with wingspan 7,

flying_strength

[; return self.wingspan + self.worms_eaten;

],

worms_eaten;

Bird "magpie"

with wingspan 5;

Bird "crested glebe";

Bird "Great Auk"

with wingspan 15;

Bird "early bird"

with worms_eaten 1;

The first definition sets up a new class called Bird. Every example of a Bird now auto-
matically provides wingspan, a flying_strength routine and a count of worms_eaten.
Note that the four actual birds are created using the Bird class-name instead of the usual
plain Object directive, but this is only a convenient short form for definitions such as:

Object "magpie"

with wingspan 5

class Bird;

where class is the last of the four object definition segments. It’s just a list of classes
which the object has to inherit from.

The Bird routine for working out flying_strength has to be written in such a
way that it can apply to any bird. It has to say “the flying strength of any bird is equal to
its wingspan plus the number of worms it has eaten”. To do this, it has used the special
value self, which means “whatever object is being considered at the moment”. More of
this in the next section.

Note also that the Bird with specifies a wingspan of 7. This is the value which its
members will inherit, unless their own definitions over-ride this, as the magpie and great
Auk objects do. Thus the initial position is:

Bird Value of wingspan Value of worms_eaten

magpie 5 0

crested glebe 7 0

Great Auk 15 0

early bird 7 1

44 In rare cases, clashes between what a class says and what the object says are resolved
differently: see §8.

53

3 The language of objects

Inform has “multiple inheritance”, which means that any object can inherit from any
number of classes. Thus, an object has no single class; rather, it can be a member of
several classes at once.

Every object is a member of at least one class, because the four “metaclasses”
Routine, String, Object and Class are themselves classes. (Uniquely, Class is a member
of itself.) The magpie above is a member of both Bird and Object.

To complicate things further, classes can themselves inherit from other classes:

Class BirdOfPrey

class Bird

with wingspan 15,

people_eaten;

BirdOfPrey kestrel;

makes kestrel a member of both BirdOfPrey and of Bird. Informally, BirdOfPrey is
called a “subclass” of Bird.

Given all this, it’s impossible to have a function called class, analogous to meta-
class, to say what class something belongs to. Instead, there is a condition called ofclass:

kestrel ofclass Class

is false, while

kestrel ofclass BirdOfPrey

kestrel ofclass Bird

kestrel ofclass Object

"Canterbury" ofclass String

are all true. This condition is especially handy for use with objectloop:

objectloop (x ofclass Bird) move x to Aviary;

moves all the birds to the Aviary.

§3.9 Messages

That completes the story of how to create objects, and it’s time to begin communicating
with them by means of messages. Every message has a sender, a receiver and some pa-
rameter values attached, and it always produces a reply (which is just a single value). For
instance,

x = lamp.addoil(5, 80);

sends the message addoil with parameters 5 and 80 to the object lamp, and puts the reply
value into x. Just as properties like magpie.wingspan are variables attached to objects,
so messages are received by routines attached to objects, and message-sending is very like
making an ordinary Inform function call. The “reply” is what was called the return value

54

3 The language of objects

in §1, and the “parameters” used to be called function call arguments. But slightly more
is involved, as will become apparent.

What does the lamp object do to respond to this message? First of all, it must do some-
thing. If the programmer hasn’t specified an addoil routine for the lamp, then an error
message will be printed out when the program is run, along the lines of

*** The object "lamp" does not provide the property "addoil" ***

Not only does lamp.addoil have to exist, but it has to hold one of the four kinds of object,
or else nothing. What happens next depends on the metaclass of lamp.addoil:

metaclass What happens: The reply is:

Routine the routine is called with the the routine’s return value
the given parameters

String the string is printed, followed true

by a new-line
Object nothing the object
Class nothing the class
nothing nothing false, or 0, or nothing

(all different ways of writing 0)

4 If lamp.addoil is a list rather than a single value then the first entry is the one looked at,
and the rest are ignored.

For example,

print kestrel.flying_strength();

will print out 15, by calling the flying_strength routine provided by the kestrel (the
same one it inherited from Bird), which adds its wingspan of 15 to the number of worms
it has so far eaten (none), and then returns 15. (You can see all the messages being sent
in a game as it runs with the debugging verb “messages”: see §30 for details.)

4 For examples of all the other kinds of receiving property, here is roughly what happens
when the Inform library tries to move the player northeast from the current room (the location)
in an adventure game:

x = location.ne_to();

if (x == nothing) "You can’t go that way.";

if (x ofclass Object) move player to x;

55

3 The language of objects

This allows directions to be given with some flexibility in properties like ne_to and so on:

Object Octagonal_Room "Octagonal Room"

with ...

ne_to "The north-east doorway is barred by an invisible wall!",

w_to Courtyard,

e_to

[; if (Amulet has worn)

{ print "A section of the eastern wall suddenly parts before

you, allowing you into...^";

return HiddenShrine;

}

],

s_to

[; if (random(5) ~= 1) return Gateway;

print "The floor unexpectedly gives way, dropping you through

an open hole in the plaster...^";

return random(Maze1, Maze2, Maze3, Maze4);

];

Two special variables help with the writing of message routines: self and sender.
self always has as value the Object which is receiving the message, while sender has as
value the Object which sent it, or nothing if it wasn’t sent from Object (but from some
free-standing routine). For example,

pass_number

[; if (~~(sender ofclass CIA_Operative))

"Sorry, you aren’t entitled to know that.";

return 16339;

];

§3.10 Access to superclass values

4 A fairly common situation in Inform coding is that one has a general class of objects, say
Treasure, and wants to create an instance of this class which behaves slightly differently. For
example, we might have

Class Treasure

with deposit

[; if (self provides deposit_points)

score = score + self.deposit_points;

else score = score + 5;

"You feel a sense of increased esteem and worth.";

];

56

3 The language of objects

and we want to create an instance called Bat_Idol which (say) flutters away, resisting deposition,
but only if the room is dark:

Treasure Bat_Idol "jewelled bat idol"

with deposit

[; if (location == thedark)

{ remove self;

"There is a clinking, fluttering sound!";

}

...

];

In place of ..., we have to copy out all of the previous code about depositing treasures. This is
clumsy: what we really want is a way of sending the deposit message to Bat_Idol but “as if it had
not changed the value of deposit it inherited from Treasure”. We achieve this with the so-called
superclass operator, ::. (The term “superclass” is borrowed from the Smalltalk-80 system, where
it is more narrowly defined.) Thus, in place of ..., we could simply write:

self.Treasure::deposit();

to send itself the deposit message again, but this time diverted to the property as provided by
Treasure.

The :: operator works on all property values, not just for message sending. In general,

object.class::property

evaluates to the value of the given property which the class would normally pass on (or gives an
error if the class doesn’t provide that property or if the object isn’t a member of that class). Note
that :: exists as an operator in its own right, so it is perfectly legal to write, for example,

x = Treasure::deposit; Bat_Idol.x();

To continue the avian theme, BirdOfPrey might have its own flying_strength routine:

flying_strength

[; return self.Bird::flying_strength() + self.people_eaten;

],

reflecting the idea that, unlike other birds, these can gain strength by eating people.

§3.11 Philosophy

44 This section is best skipped until the reader feels entirely happy with the rest of Chapter
I. It is aimed mainly at those worried about whether the ideas behind the apparently complicated
system of classes and objects are sound. (As Stephen Fry once put it, “Socialism is all very well
in practice, but does it work in theory?”) We begin with two definitions:

57

3 The language of objects

object
a member of the program’s object tree, or a routine in the program, or a literal string
in the program. (Routines and strings can’t, of course, be moved around in the object
tree, but the tests ofclass and provides can be applied to them, and they can be sent
messages.) Objects are part of the compiled program produced by Inform.
class
an abstract name for a set of objects in the game, which may have associated with it a
set of characteristics shared by its objects. Classes themselves are frequently described by
text in the program’s source code, but are not part of the compiled program produced by
Inform.

Here are the full rules:
(1) Compiled programs are composed of objects, which may have variables attached called

“properties”.
(2) Source code contains definitions of both objects and classes.
(3) Any given object in the program either is, or is not, a member of any given class.
(4) For every object definition in the source code, an object is made in the final program. The

definition specifies which classes this object is a member of.
(5) If an object X is a member of class C, then X “inherits” property values as given in the

class definition of C.

The details of how inheritance takes place are omitted here. But note that one of the things which
can be inherited from class C is being a member of some other class, D.

(6) For every class definition, an object is made in the final program to represent it, called its
“class-object”.

For example, suppose we have a class definition like:

Class Dwarf

with beard_colour;

The class Dwarf will generate a class-object in the final program, also called Dwarf. This class-
object exists in order to receive messages like create and destroy and, more philosophically, in
order to represent the concept of “dwarfness” within the simulated world.

It is important to remember that the class-object of a class is not normally a member of
that class. The concept of dwarfness is not itself a dwarf: the condition Dwarf ofclass Dwarf is
false. Individual dwarves provide a property called beard_colour, but the class-object of Dwarf
does not: the concept of dwarfness has no single beard colour.

(7) Classes which are automatically defined by Inform are called “metaclasses”. There are
four of these: Class, Object, Routine and String.

It follows by rule (6) that every Inform program contains the class-objects of these four, also called
Class, Object, Routine and String.

(8) Every object is a member of one, and only one, metaclass:
(8.1) The class-objects are members of Class, and no other class.
(8.2) Routines in the program (including those given as property values) are members of Routine

and no other class.
(8.3) Static strings in the program (including those given as property values) are members of

String, and of no other class.

58

3 The language of objects

(8.4) The objects defined in the source code are members of Object, and possibly also of other
classes defined in the source code.

It follows from (8.1) that Class is the unique class whose class-object is one of its own members:
the condition Class ofclass Class is true, whereas X ofclass X is false for every other class X.

There is one other unusual feature of metaclasses, and it is a rule provided for pragmatic
reasons (see below) even though it is not very elegant:

(9) Contrary to rules (5) and (8.1), the class-objects of the four metaclasses do not inherit
from Class.

This concludes the list of rules. To see what they entail, one needs to know the definitions of the
four metaclasses. These definitions are never written out in any textual form inside Inform, as
it happens, but here are definitions equivalent to what actually does happen. (There is no such
directive as Metaclass: none is needed, since only Inform itself can define metaclasses, but the
definitions here pretend that there is.)

Metaclass Object;

In other words, this is a class from which nothing is inherited. So the ordinary objects described
in the source code only have the properties which the source code says they have.

Metaclass Class

with create [; ...],

recreate [instance; ...],

destroy [instance; ...],

copy [instance1 instance2; ...],

remaining [; ...];

So class-objects respond only to these five messages, which are described in detail in the next
section, and provide no other properties: except that by rule (9), the class-objects Class, Object,
Routine and String provide no properties at all. The point is that these five messages are
concerned with object creation and deletion at run time. But Inform is a compiler and not,
like Smalltalk-80 or other highly object-oriented languages, an interpreter. We cannot create the
program while it is actually running, and this is what it would mean to send requests for creation
or deletion to Class, Object, Routine or String. (We could write the above routines to allow the
requests to be made, but to print out some error if they ever are: but it is more efficient to have
rule (9) instead.)

Metaclass Routine

with call [parameters...; ...];

Routines therefore provide only call. See the next section for how to use this.

Metaclass String

with print [; print_ret (string) self;],

print_to_array [array; ...];

Strings therefore provide only print and print_to_array. See the next section for how to use
these.

59

3 The language of objects

To demonstrate this, here is an Inform code representation of what happens when the message

O.M(p1, p2, ...)

is sent.

if (~~(O provides M)) "Error: O doesn’t provide M";

P = O.M;

switch(metaclass(P))

{ nothing, Object, Class: return P;

Routine: return P.call(p1, p2, ...);

String: return P.print();

}

(The messages call and print are actually implemented by hand, so this is not actually a circular

definition. Also, this is simplified to remove details of what happens if P is an array.)

§3.12 Sending messages to routines, strings or classes

4 In the examples so far, messages have only been sent to proper Objects. But it’s a logical
possibility to send messages to objects of the other three metaclasses too: the question is whether
they are able to receive any. The answer is yes, because Inform provides 8 properties for such
objects, as follows.

The only thing you can do with a Routine is to call it. Thus, if Explore is the name of a
routine, then

Explore.call(2, 4); and Explore(2, 4);

are equivalent expressions. The message call(2,4) means “run this routine with parameters
(2,4)”. This is not quite redundant, because it can be used more flexibly than ordinary function
calls:

x = Explore; x.call(2, 4);

The call message replies with the routine’s return value.
Two different messages can be sent to a String. The first is print, which is provided

because it logically ought to be, rather than because it is useful. So, for example,

("You can see an advancing tide of bison!").print();

prints out the string, followed by a new-line; the print message replies true, or 1.

44 print_to_array is more useful. It copies out the text of the string into entries 2, 3, 4, ...
of the supplied byte array, and writes the number of characters as a word into entries 0 and 1.
That is, if A has been declared as a suitably large array,

("A rose is a rose is a rose").print_to_array(A);

will cause the text of the string to be copied into the entries

A->2, A->3, ..., A->27

with the value 26 written into

A-->0

And the reply value of the message is also 26, for convenience.

60

3 The language of objects

Five different messages can be sent to objects of metaclass Class, i.e., to classes, and these

are detailed in the next section. (But an exception to this is that no messages at all can be sent

to the four metaclasses Class, Object, Routine and String.)

§3.13 Creating and deleting objects

A vexed problem in all object-oriented systems is that it is often elegant to grow data
structures organically, simply conjuring new objects out of mid-air and attaching them to
the structure already built. The problem is that since resources cannot be infinite, there
will come a point where no new objects can be conjured up. The program must be written
so that it can cope with this, and this can present the programmer with some difficulty,
since the conditions that will prevail when the program is being run may be hard to predict.

In an adventure-game setting, object creation is useful for something like a beach
full of stones: if the player wants to pick up more and more stones, the game needs to
create a new object for each stone brought into play.

Inform allows object creation, but it insists that the programmer must specify in
advance what the maximum resources ever needed will be: for example, the maximum
number of stones which can ever be in play. Although this is a nuisance, the reward is that
the resulting program is guaranteed to work correctly on every machine running it (or else
to fail in the same way on every machine running it).

The model is this. When a class is defined, a number N is specified, which is the
maximum number of created instances of the class which the programmer will ever need
at once. When the program is running, “instances” can be created (up to this limit); or
deleted. One can imagine the class having a stock of instances, so that creation consists
of giving out one of the stock-pile and deletion consists of taking one back.

Classes can receive the following five messages:

remaining()
What is the current value of N? That is, how many more instances can be created?

create()
Replies with a newly created instance, or with nothing if no more can be created.

destroy(I)
Destroys the instance I, which must previously have been created.

recreate(I)
Re-initialises the instance I, as if it had been destroyed and then created again.

copy(I, J)
Copies I to be equal to J, where both have to be instances of the class.
4 Note that recreate and copy can be sent for any instances, not just instances which have
previously been created. For example,

Plant.copy(Gilded_Branch, Poison_Ivy)

copies over all the Plant properties and attributes from Poison_Ivy to Gilded_Branch, but leaves
all the rest alone. Likewise,

Treasure.recreate(Gilded_Branch)

only resets the properties to do with Treasure, leaving the Plant properties alone.

61

3 The language of objects

Unless the definition of a class C is made in a special way, C.remaining() will
always reply 0, C.destroy() will cause an error and C.create() will be refused. This is
because the magic number N for a class is normally 0.

The “special way” is to give N in brackets after the class name. For example, if the
class definition for Leaf begins:

Class Leaf(100) ...

then initially Leaf.remaining() will reply 100, and the first 100 create() messages will
certainly be successful. Others will only succeed if leaves have been destroyed in the mean
time. In all other respects Leaf is an ordinary class.

4 Object creation and destruction may need to be more sophisticated than this. For example,
we might have a data structure in which every object of class A is connected in some way with four
objects of class B. When a new A is created, four new Bs need to be created for it; and when an
A is destroyed, its four Bs need to be destroyed. In an adventure game setting, we might imagine
that every Dwarf who is created has to carry an Axe of his own.

When an object has been created (or recreated), but before it has been “given out” to the
program, a create message is sent to it (if it provides create). This gives the object a chance to
set itself up sensibly. Similarly, when an object is about to be destroyed, but before it actually is,
a destroy message is sent to it (if it provides destroy). For example:

Class Axe(30);

Class Dwarf(7)

with beard_colour,

create

[x; self.beard_colour = random("black", "red", "white", "grey");

! Give this new dwarf an axe, if there are any to spare

x = Axe.create(); if (x ~= nothing) move x to self;

],

destroy

[x;

! Destroy any axes being carried by this dwarf

objectloop (x in self && x ofclass Axe) Axe.destroy(x);

];

§3.14 Footnote on common vs. individual properties

44 The properties used in the sections above are all examples of “individual properties”, which
some objects provide and others do not. There are also “common properties” which, because they
are inherited from the class Object, are held by every member of Object. An example is capacity.
The capacity can be read for an ordinary game object (say, a crate) even if it doesn’t specify
a capacity for itself, and the resulting “default” value will be 100. However, this is only a very
weak form of inheritance – you can’t change the crate’s capacity value and the condition crate

provides capacity evaluates to false.

62

3 The language of objects

The properties defined by the Inform library, such as capacity, are all common: mainly
because common properties are marginally faster to access and marginally cheaper on memory.
Only 62 are available, of which the library uses up 48. Individual properties, on the other hand,
are practically unlimited. It is therefore worth declaring a common property only in those cases
where it will be used very often in your program. You can declare common properties with the
directive:

Property 〈name〉;

which should be made after the inclusion of “Parser” but before first use of the new name. The
class Object will now pass on this property, with value 0, to all its members. This so-called
“default value” can optionally be specified. For example, the library itself makes the declaration

Property capacity 100;

which is why all containers in a game which don’t specify any particular capacity can hold up to

100 items.

63

Chapter II: Using the Compiler

I was promised a horse, but what I got instead

was a tail, with a horse hung from it almost dead.

– Palladas of Alexandria (?–?)

– translated by Tony Harrison (–)

4 The language of Inform

§4.1 ICL

The Inform compiler is quite configurable: it has a number of settings which can be altered
to suit the convenience of the user. Many of these settings are “switches”, which usually
have just two possible states, off or on. However, some can be set to a single-digit number.

The other numerical settings are “memory settings”, which control how much of
your computer’s memory Inform uses while running (too low and it may not be able to
compile games of the size you desire; too high and it may choke any other programs in the
computer for space).

Finally, there are “path variables”, which contain text and are used to sort out
filenames for the files Inform uses or creates. The usage of these variables varies widely
from machine to machine, or rather, from one operating system to another.

If Inform seems to work adequately for you already, this section can safely be ignored
until the day comes to compile a really big project. Times like that call for the ability to
conveniently change many settings at once, and a tiny language called “ICL” is provided
for you to supply detailed specifications.

On many systems, though not usually the Apple Macintosh, the user sets Inform running
by typing a command at the “command line”, that is, in response to a prompt printed by
the computer. For example, under RISC OS one would press function key f12 from the
desktop and be given the prompt *, to which one might reply

inform ruins

64

4 The language of Inform

On computers with more doggedly windowed interfaces, there will be a higher-level inter-
face of some kind provided with Inform, which should come with its own brief documen-
tation.

The usual way to alter switches on the command line is to give a word of options
after the inform command, introduced by a minus sign. The switches are all single letters,
and by default are mostly off. For example, the -x switch causes Inform to print a row of
hash signs as it compiles:

inform -x shell

RISC OS Inform 6.01 (April 25th 1996)

::###

One hash sign is printed for every 100 textual lines of source code compiled. (On my own
machine, an Acorn Risc PC 700, about 10 hashes are printed every second: that is, the
compilation speed is about 1000 lines per second.) Although -x is provided to indicate
that a slow compilation is continuing normally, many designers use it to get a feeling for
how large their games are, and it’s a morale boost when the row of hashes spills over onto
a second screen line.

Inform has documentation built-in on the subject of switches and other ICL features,
which may vary from machine to machine. Running Inform with no filename will print
this “help information”. In addition, -h1 will print details of filenaming conventions in use
on your machine, and -h2 will print a list of switches and their settings.

The full command line syntax is

inform 〈ICL commands〉 〈source file〉 〈output file〉

where only the 〈source file〉 is mandatory. By default, the full names to give the source and
output files are derived in a way suitable for the machine Inform is running on: on a PC, for
instance, advent may be understood as asking to compile advent.inf to advent.z5. This
is called “filename translation”. No detailed information on filenaming rules is given here,
because it varies so much from machine to machine: see the -h1 on-line documentation.
Note however that a filename can contain spaces if it is written in double-quotes.

One possible ICL command is to give a filename in brackets: e.g.,

inform -x (skyfall_setup) ...

sets the -x switch, then runs through the text file skyfall_setup executing each line as
an ICL command. As an example, this file might read as follows:

! Setup file for "Skyfall"

-d ! Contract double spaces

$max_objects=1000 ! 500 of them snowflakes

(usual_setup) ! include my favourite settings, too

+module_path=mods ! keep modules in the "mods" directory

65

4 The language of Inform

Note that ICL can include comments after !, just as in Inform. Otherwise, an ICL file has
one command per line (with no dividing semicolons), and the possibilities are as follows:

-<switches>
set these switches; or unset any switch preceded by a tilde ~. (For example, -a~bc sets a,
unsets b and sets c.)
$list
list current memory settings
$?<name>
ask for information on what this memory setting is for
$small
set the whole collection of memory settings to suitable levels for a small game
$large
ditto, for a slightly larger game
$huge
ditto, for a reasonably big one
$<name>=<quantity>
alter the named memory setting to the given level
+<name>=<filename>
set the named pathname variable to the given filename, which should be one or more
filenames of directories, separated by commas
compile <filename> <filename>
compile the first-named file, containing source code, writing the output program to the
(optional) second-named file
(<filename>)
execute this ICL file (files may call each other in this way)

§4.2 Controlling what is compiled

Several directives instruct Inform to “compile this part next” or “only compile this...”.
First,

Include "filename";

instructs Inform to compile the whole of the source code in the given file, and only carry
on compiling from here once that is complete. It is exactly equivalent to removing the
Include directive and replacing it with the whole file "filename". (The rules for how
Inform interprets "filename" vary from machine to machine: run Inform with the -h1
switch for information.) Note that you can write

Include ">shortname";

to mean “the file called "shortname" which is in the same directory that the present file
came from”. This is convenient if all the files making up the source code of your game are
housed together.

66

4 The language of Inform

4 Next, there are a number of “conditional compilation” directives. They take the general
form of a condition:

Ifdef <name>; Is the name defined as having some meaning?

Ifndef <name>; Is the name undefined?

Iftrue <condition>; Is this condition true?

Iffalse <condition>; Is this condition false?

followed by a chunk of Inform and then either

Ifnot;

and another chunk of Inform, or just

Endif;

At this point it is perhaps worth mentioning that (most) directives can also be
interspersed with statements in routine declarations, provided they are preceded by a #
sign. For example:

[MyRoutine;

#Iftrue MAX_SCORE > 1000;

print "My, what a long game we’re in for!^";

#Ifnot;

print "Let’s have a quick game, then.^";

#Endif;

PlayTheGame();

];

which actually only compiles one of the two print statements, according to what the value
of the constant MAX_SCORE is.

44 Four more arcane directives control conditional compilation.

Default <name> <value>;

defines 〈name〉 as a constant if it wasn’t already the name of something: so it’s equivalent to the
manoeuvre

Ifndef <name>;

Constant <name> = <value>;

Endif;

Similarly,

Stub <name> <number>;

67

4 The language of Inform

defines a routine with this name and number of local variables, if it isn’t already the name of
something: so it’s equivalent to

Ifndef <name>;

[<name> x1 x2 ... x<number>;

];

Endif;

44 Large blocks of code intended to be used in many different games, such as the files which
make up the Inform library, should be marked somewhere with the directive

System_file;

If this is done, it is possible for an outside program including the file to use Replace. The idea is
that a sequence like:

Replace DoSomething;

...

Include "SomeLibrary";

...

[DoSomething; "Tarantaraa!";];

allows a routine DoSomething, which would normally be defined in the Include file "SomeLibrary",
to be defined in this file instead. The definition in the Include file is simply ignored. In this way,
one can override the library routines without actually having to modify the library source code.
To recap, the rule here is that a routine’s definition is ignored if both (a) it occurs in a declared
“system file”, and (b) its name has been given in a Replace directive.

One way to follow what is being compiled is to use the Message directive. The compiler
can be made to print messages at compile time using:

Message "information"

Message error "error message"

Message fatalerror "fatal error message"

Message warning "warning message"

For example,

Ifndef VN_1610;

Message fatalerror "This code can only be compiled by Inform 6.1";

Endif;

(By a special rule, the condition VN_1610-is-defined is true if and only if the version number
is 6.10 or more; similarly for other four-digit numbers beginning with a 1.) Informational
messages are simply printed: e.g.,

Message "Library extension by Boris J. Parallelopiped";

just prints out this line (with a carriage return).

68

4 The language of Inform

§4.3 Using the linker

The process of “linking” is as follows. A game being compiled (called the “external”
program) may Link one or more pre-compiled sections of code called “modules”. Suppose
the game Jekyll has a subsection called Hyde. Then these two methods of making Jekyll
are, nearly, equivalent:

(i) Putting Include "Hyde"; in the source code for "Jekyll", and compiling "Jekyll".
(ii) Compiling "Hyde" with the -M (“module”) switch set, then putting Link "Hyde";

into the same point in the source code for "Jekyll", and compiling "Jekyll".
Option (ii) is much faster as long as "Hyde" does not change very often, since its ready-
compiled module can be left lying around while "Jekyll" is being developed.

Because “linking the library” is by far the most common use of the linker, this
is made simple. All you have to do is compile your game with the -U switch set, or,
equivalently, to begin your source code with

Constant USE_MODULES;

(This assumes that you already have pre-compiled copies of the two library modules: if
not, you’ll need to make them with

inform -M library.parserm

inform -M library.verblibm

(where library.parserm should be replaced with the filename for your copy of the library
file “parserm”, and likewise for “verblibm”).) Note that it is essential not to make any
Attribute or Property declarations before the Include "Parser" line in the source code,
though after that point is fine. (Library 6/2 and later will print an error message if you
make this mistake, but under 6/1 it can be a source of mysterious problems.)

44 You can also write your own library modules, or indeed subdivide a large game into many
modular parts. But there are certain restrictions to the possibilities. (Real experts may want to
look at the Technical Manual here.) Here’s a brief list of these:

1. The module must make the same Property and Attribute directives as the main pro-
gram. Including the library file "linklpa.h" (“link library properties and attributes”) declares
the library’s stock, so it would be sensible to begin a module with

Include "linklpa";

and then include a similar file defining all the extra common properties and attributes which are
needed by the program (if any).

2. The module cannot contain grammar (i.e., use Verb or Extend directives) or create fake
actions.

3. The module can only use global variables defined outside the module if they are explicitly
declared before use using the Import directive. For example,

Import global frog;

69

4 The language of Inform

allows the rest of the module’s source code to refer to the variable frog (which must be defined
in the outside program). Note that the Include file "linklv.h" (“link library variables”) imports
all the library variables, so it would be sensible to include this.

4. An object in the module can’t inherit from a class defined outside the module. (But an
object outside can inherit from a class inside.)

5. Certain constant values in the module must be known at module-compile-time (and must
not, for instance, be a symbol only defined outside the module). For instance: the size of an array
must be known now, not later; the number of duplicate members of a Class; and the quantities
being compared in an Iftrue or Iffalse.

6. The module can’t: define the Main routine; use the Stub or Default directives; or define an
object whose parent object is not also in the same module.

These restrictions are mild in practice. As an example, here is a short module to play with:

Include "linklpa"; ! Make use of the properties, attributes

Include "linklv"; ! and variables from the Library

[LitThings x;

objectloop (x has light)

print (The) x, " is currently giving off light.^";

];

It should be possible to compile this -M and then to Link it into another game, making the routine

LitThings exist in that game.

5 Compiler options and memory settings

It is time to give a full list of the “switches”, which are the main way to make choices
about how Inform will operate. (This list can always be printed out with the -h2 switch.)

a trace assembly-language (without hex dumps; see -t)

c more concise error messages

d contract double spaces after full stops in text

d2 contract double spaces after exclamation and question marks, too

e economy mode (slower): make use of declared abbreviations

f frequencies mode: show how useful abbreviations are

g traces calls to functions (except in the library)

g2 traces calls to all functions

h print this information

i ignore default switches set within the file

j list objects as constructed

k output Infix debugging information to "gamedebug"

l list every statement run through Inform

m say how much memory has been allocated

70

5 Compiler options and memory settings

n print numbers of properties, attributes and actions

o print offset addresses

p give percentage breakdown of story file

q keep quiet about obsolete usages

r record all the text to "gametext"

s give statistics

t trace assembly-language (with full hex dumps; see -a)

u work out most useful abbreviations (very very slowly)

v3 compile to version-3 (Standard) story file

v4 compile to version-4 (Plus) story file

v5 compile to version-5 (Advanced) story file

v6 compile to version-6 (graphical) story file

v7 compile to version-7 (*) story file

v8 compile to version-8 (*) story file

(*) formats for very large games, requiring

slightly modified game interpreters to play

w disable warning messages

x print # for every 100 lines compiled

y trace linking system

z print memory map of the Z-machine

D insert "Constant DEBUG;" automatically

E0 Archimedes-style error messages (current setting)

E1 Microsoft-style error messages

E2 Macintosh MPW-style error messages

F1 use temporary files to reduce memory consumption

M compile as a Module for future linking

R0 use filetype 060 + version number for games (default)

R1 use official Acorn filetype 11A for all games

T enable throwback of errors in the DDE

U insert "Constant USE_MODULES;" automatically

Note that the list may vary slightly from machine to machine: R0, R1 and T above are for
Acorn RISC OS machines only, for example.

4 Note that these switches can also be selected by putting a Switches directive, such as
Switches xdv8s; right at the start of the source code.

Only two switches have a really drastic effect:

M Makes Inform compile a “module”, not a “game”. See §4.3.

v Chooses the format of the game to be compiled. v5 is the default, but if a game
begins to overflow this, try v8. (The other settings are intended mainly for maintainers of
Infocom interpreters to test their wares.)

i Overrides any switches set by switches directives in the source code; so that the
game can be compiled with different options without having to alter that source code.

Many of the remaining switches make Inform produce text as it runs, without
affecting the actual compilation:

71

5 Compiler options and memory settings

a l m n t y Tracing options to help with maintaining Inform, or for debugging
assembly language programs.
o p s z To print out information about the final game file: the s (statistics) option is
particularly useful to keep track of how large the game is growing.
c w q E T In c mode, Inform does not quote whole source lines together with error
messages; in w mode it suppresses warnings; in T mode, which is only present on RISC OS
machines, error throwback will occur in the ‘Desktop Development Environment’. q causes
“this usage is obsolete” warnings to be suppressed, which may be useful when compiling
very long, very old programs. Finally, E is provided since different error formats fit in
better with debugging tools on different machines.
f Indicates roughly how many bytes the abbreviations saved.
h Prints out the help information.
j x Makes Inform print out steady text to prove that it’s still awake: on very slow
machines this may be a convenience.
k Writes a “debugging information” file for the use of the Infix debugger (the filename
will be something suitable for your machine).
r Intended to help with proof-reading the text of a game: transcribes all of the text
in double-quotes to the given file (whose filename will be something suitable for your
machine).
u Tries to work out a good set of abbreviations to declare for your game, but extremely
slowly (a matter of hours) and consuming very much memory (perhaps a megabyte).

D U When these switches are set, the constants DEBUG (which make the Library add
the debugging suite to a game) and USE_MODULES (which speeds up compilation by linking
in the Library rather than recompiling it) are automatically defined. This is just a con-
venience: it’s a nuisance to keep adding and removing source code lines to do the same
thing.

This leaves three more switches which actually alter the game file which Inform would
compile:

d Converts text like

"...with a mango. You applaud..."

into the same with only a single space after the full stop, which will prevent an interpreter
from displaying a spurious space at the beginning of a line when a line break happens
to occur exactly after the full stop; this is to help typists who habitually double-space.
Stepping up to -d2 also contracts double spaces after question or exclamation marks.
e Only in ‘economy’ mode does Inform actually process abbreviations, because this is
seldom needed and slows the compiler by 10% or so; the game file should not play any
differently if compiled this way, but will probably be shorter, if your choice of abbreviations
was sensible.
g Makes Inform automatically compile trace-printing code on every function call; in
play this will produce reams of text (several pages between each chance to type commands)
but is sometimes useful. Note that in Inform 5.3 or later, this can be set on an individual
command by writing * as its first local variable, without use of the g switch.

72

5 Compiler options and memory settings

4 There are two directives for setting switches, to be used if there’s no other convenient way
on your system (for example if you have a poor windowed front end and no command line to type
on). These are:

Switches 〈some settings〉;
Version 〈number〉;

These can only be used as first lines in the program and are illegal once other directives or routines
have been given. Note that

Version 6;

(for instance) is redundant, as it is equivalent to

Switches v6;

4 Inform’s memory management is very flexible, but sometimes needs attention from the
user, rather than being able to tinker with itself automatically. This is unfortunate but Inform
has to run in some quite hostile environments and is obliged to be cautious.

In particular, it is unable to increase the size of any stretch of memory once allocated, so
if it runs out of anything it has to give up. If it does run out, it will produce an error message
saying what it has run out of and how to provide more.

There are three main choices: $small, $large and $huge. (Which one is the default
depends on the computer you use.) Even $small is large enough to compile all the example
games, including ‘Advent’. $large compiles almost anything and $huge has been used only for
‘Curses’ and ‘Jigsaw’ in their most advanced states, and even they hardly need it. A typical game,
compiled with $large, will cause Inform to allocate about 350K of memory: and the same game
about 100K less under $small. (These values will be rather lower if the computer Inform runs
on has 16-bit integers.) In addition, Inform physically occupies about 210K (on my computer).
Thus, the total memory consumption of the compiler at work will be about 500K.

Running

inform $list

will list the various settings which can be changed, and their current values. Thus one can compare
small and large with:

inform $small $list

inform $large $list

If Inform runs out of allocation for something, it will generally print an error message like:

"Game", line 1320: Fatal error: The memory setting MAX_OBJECTS (which

is 200 at present) has been exceeded. Try running Inform again with

$MAX_OBJECTS=<some-larger-number> on the command line.

and indeed

inform $MAX_OBJECTS=250 game

73

5 Compiler options and memory settings

(say) will tell Inform to try again, reserving more memory for objects this time. Note that settings
are made from left to right, so that for instance

inform $small $MAX_ACTIONS=200 ...

will work, but

inform $MAX_ACTIONS=200 $small ...

will not because the $small changes MAX_ACTIONS again. Changing some settings has hardly
any effect on memory usage, whereas others are expensive to increase. To find out about, say,
MAX_VERBS, run

inform $?MAX_VERBS

(note the question mark) which will print some very brief comments. Users of Unix, where $ and
? are special shell characters, will need to type

inform ’$?list’ inform ’$?MAX_VERBS’

and so on.

6 All the Inform error messages

Three kinds of error are reported by Inform: a fatal error is a breakdown severe enough
to make Inform stop working at once; an error allows Inform to continue for the time
being, but will cause Inform not to finally output the story file (this is to prevent damaged
story files being created); and a warning means that Inform suspects you may have made
a mistake, but will not take any action itself.

Fatal errors

1. Too many errors

Too many errors: giving up

After 100 errors, Inform stops (in case it has been given the wrong source file altogether, such as
a program for a different language altogether).

2. Input/output problems
Most commonly, Inform has the wrong filename:

Couldn’t open input file <filename>

Couldn’t open output file <filename>

74

6 All the Inform error messages

(and so on). More seriously the whole process of file input/output (or “I/O”) may go wrong for
some reason to do with the host computer: for instance, if it runs out of disc space. Such errors
are rare and look like this:

I/O failure: couldn’t read from temporary file 2

Normally you can only have at most 64 files of source code in a single compilation. If this limit
is passed, Inform generates the error

Program contains too many source files: increase #define MAX_SOURCE_FILES

(This might happen if the same file accidentally Includes itself.) Finally, if a non-existent path-
name variable is set in ICL, the error

No such path setting as <name>

is generated.

3. Running out of memory
If there is not enough memory even to get started, the following appear:

Run out of memory allocating <number> bytes for <something>

Run out of memory allocating array of <number>x<number> bytes for <something>

(There are four similar hallocate errors unique to the PC ‘Quick C’ port.) More often memory
will run out in the course of compilation, like so:

The memory setting <setting> (which is <value> at present) has been exceeded.

Try running Inform again with $<setting>=<some-larger-number> on the command line.

(For details of memory settings, see §5 above.) In a really colossal game, it is just conceivable
that you might hit

One of the memory blocks has exceeded 640K

which would need Inform to be recompiled to get around (but I do not expect anyone ever to have
this trouble). Much more likely is the error

The story file/module exceeds version <n> limit (<number>K) by <number> bytes

If you’re already using version 8, then the story file is full: you might be able to squeeze more
game in using the Abbreviate directive, but basically you’re near to the maximum game size
possible. Otherwise, the error suggests that you might want to change the version from 5 to 8,
and the game will be able to grow at least twice as large again.

Errors

There are a few conventions. Anything in double-quotes is a quotation from your source code;
other strings are in single-quotes. The most common error by far takes the form

Expected ... but found ...

(of which there are over 100 kinds): most are straightforward to sort out, but a few take some
practice. One of the trickiest things to diagnose is a loop statement having been misspelt. For
example, the lines

pritn "Hello";

While (x==y) print "x is still y^";

75

6 All the Inform error messages

produce one error each:

line 1: Error: Expected assignment or statement but found pritn

line 2: Error: Expected ’;’ but found print

The first is fine. The second is odd: a human immediately sees that While is meant to be a while

loop, but Inform is not able to make textual guesses like this. Instead Inform decides that the
code intended was

While (x==y); print "x is still y^";

with While assumed to be the name of a function which hasn’t been declared yet. Thus, Inform
thinks the mistake is that the ; has been missed out.

In that example, Inform repaired the situation and was able to carry on as normal in
subsequent lines. But it sometimes happens that a whole cascade of errors is thrown up, in code
which the user is fairly sure must be nearly right. What has happened is that one syntax mistake
threw Inform off the right track, so that it continued not to know where it was for many lines in
a row. Look at the first error message, fix that and then try again.

1. Reading in the source-code

Illegal character found in source: (char) <hexadecimal number>

Unrecognised combination in source: <text>

Alphabetic character expected after <text>

No such accented character as <text>

Name exceeds the maximum length of <number> characters: <name>

The following name is reserved by Inform for its own use as a routine name;

you can use it as a routine name yourself (to override the standard

definition) but cannot use it for anything else: <name>

The obsolete ’#w$word’ construct has been removed

Binary number expected after ’$$’

Hexadecimal number expected after ’$’

Too much text for one pair of ’s to hold

Too much text for one pair of "s to hold

Note that, for instance, a ^ character is illegal in ordinary source code (producing the first error
above), but is allowed within quotation marks.

2. Variables and arrays

Variable must be defined before use: <name>

’=’ applied to undeclared variable

Local variable defined twice: <name>

All 236 global variables already declared

No array size or initial values given

Array sizes must be known now, not externally defined

An array must have a positive number of entries

A ’string’ array can have at most 256 entries

Entries in byte arrays and strings must be known constants

Missing ’;’ to end the initial array values before "[" or "]"

76

6 All the Inform error messages

The limit of 236 global variables is absolute: a program even approaching this limit should prob-
ably be making more use of object properties to store its information. “Entries... must be known
constants” is a restriction on what byte or string arrays may contain: basically, numbers or char-
acters; defined constants (such as object names) may only be used if they have already been
defined. This restriction does not apply to the more normally used word and table arrays.

3. Routines and function calls

No ’Main’ routine has been defined

It is illegal to nest routines using ’#[’

A routine can have at most 15 local variables

Argument to system function missing

System function given with too many arguments

Only constants can be used as possible ’random’ results

A function may be called with at most 7 arguments

Duplicate definition of label: <name>

Note that the system function random, when it takes more than one argument, can only take
constant arguments (this enables the possibilities to be stored efficiently within the program).
Thus random(random(10), location) will produce an error. To make a random choice between
non-constant values, write a switch statement instead.

4. Expressions and arithmetic

Missing operator: inserting ’+’

Evaluating this has no effect: <operator>

’=’ applied to <operator>

Brackets mandatory to clarify order of: <operator>

Missing operand for <operator>

Missing operand after <something>

Found ’(’ without matching ’)’

No expression between brackets ’(’ and ’)’

’or’ used improperly

Division of constant by zero

Label name used as value: <name>

System function name used as value: <name>

No such constant as <name>

“Operators” include not only addition +, multiplication * and so on, but also more exotic Inform
constructs like --> (“array entry”) and . (“property value”). An example of an operator where
“Evaluating this has no effect” is in the statement

34 * score;

where the multiplication is a waste of time, since nothing is done with the result. “= applied to
operator” means something like

(4 / fish) = 7;

which literally means “set 4/fish to 7” and results in the error “= applied to /”.

77

6 All the Inform error messages

“Brackets mandatory to clarify order” means that an ambiguous expression like

frogs == ducks == geese

requires clarification: which == is to be worked out first?

5. Miscellaneous errors in statements

’do’ without matching ’until’

’default’ without matching ’switch’

’else’ without matching ’if’

’until’ without matching ’do’

’break’ can only be used in a loop or ’switch’ block

At most 32 values can be given in a single ’switch’ case

Multiple ’default’ clauses defined in same ’switch’

’default’ must be the last ’switch’ case

’continue’ can only be used in a loop block

A reserved word was used as a print specification: <name>

No lines of text given for ’box’ display

In Version 3 no status-line drawing routine can be given

The ’style’ statement cannot be used for Version 3 games

For instance, print (fixed) X gives the “reserved word in print specification” error because
fixed is a reserved statement internal keyword. Anyway, call such a printing routine something
else.

6. Object and class declarations

Two textual short names given for only one object

The syntax ’->’ is only used as an alternative to ’Nearby’

Use of ’->’ (or ’Nearby’) clashes with giving a parent

’->’ (or ’Nearby’) fails because there is no previous object

’-> -> ...’ fails because no previous object is deep enough

Two commas ’,’ in a row in object/class definition

Object/class definition finishes with ’,’

Not an individual property name: <name>

No such property name as <name>

Not a (common) property name: <name>

Property should be declared in ’with’, not ’private’: <name>

Limit (of 32 values) exceeded for property <name>

Duplicate-number not known at compile time

The number of duplicates must be 1 to 10000

Note that “common properties” (those provided by the library, or those declared with Property)
cannot be made private. All other properties are called “individual”. The “number of duplicates”
referred to is the number of duplicate instances to make for a new class, and it needs to be a number
Inform can determine now, not later on in the source code (or in another module altogether). The
limit 10000 is arbitrary and imposed to help prevent accidents.

7. Grammar

Two different verb definitions refer to <name>

78

6 All the Inform error messages

There is no previous grammar for the verb <name>

There is no action routine called <name>

No such grammar token as <text>

’=’ is only legal here as ’noun=Routine’

Not an action routine: <name>

This is a fake action, not a real one: <name>

Too many lines of grammar for verb: increase #define MAX_LINES_PER_VERB

At present verbs are limited to 20 grammar lines each, though this would be easy to increase.
(A grammar of this kind of length can probably be written more efficiently using general parsing
routines, however.)

8. Conditional compilation

’Ifnot’ without matching ’If...’

Second ’Ifnot’ for the same ’If...’ condition

End of file reached in code ’If...’d out

This condition can’t be determined

“Condition can’t be determined” only arises for Iftrue and Iffalse, which make numerical or
logical tests: for instance,

Iftrue #strings_offset==$4a50;

can’t be determined because even though both quantities are constants, the #strings_offset will
not be known until compilation is finished. On the other hand, for example,

Iftrue #version_number>5;

can be determined, as the version number was set before compilation.

9. Miscellaneous errors in directives

You can’t ’Replace’ a system function already used

Must specify 0 to 3 local variables for ’Stub’ routine

A ’Switches’ directive must come before the first constant definition

All 48 attributes already declared

All 62 properties already declared

’alias’ incompatible with ’additive’

The serial number must be a 6-digit date in double-quotes

A definite value must be given as release number

A definite value must be given as version number

The version number must be in the range 3 to 8

All 64 abbreviations already declared

All abbreviations must be declared together

It’s not worth abbreviating <text>

’Default’ cannot be used in -M (Module) mode

’LowString’ cannot be used in -M (Module) mode

79

6 All the Inform error messages

10. Linking and importing

File isn’t a module: <name>

Link: action name clash with <name>

Link: program and module give differing values of <name>

Link: module (wrongly) declared this a variable: <name>

Link: this attribute is undeclared within module: <name>

Link: this property is undeclared within module: <name>

Link: this was referred to as a constant, but isn’t: <name>

Link: <type> <name> in both program and module

Link: <name> has type <type> in program but type <type> in module

Link: failed because too many extra global variables needed

Link: module (wrongly) declared this a variable: <name>

Link: this attribute is undeclared within module: <name>

Link: this property is undeclared within module: <name>

Link: this was referred to as a constant, but isn’t: <name>

’Import’ cannot import things of this type: <name>

’Import’ can only be used in -M (Module) mode

Note that the errors beginning “Link:” are exactly those occurring during the process of linking
a module into the current compilation. They mostly arise when the same name is used for one
purpose in the current program, and a different one in the module.

11. Assembly language

Label out of range for branch

Opcode specification should have form "VAR:102"

Unknown flag: options are B (branch), S (store),

T (text), I (indirect addressing), F** (set this Flags 2 bit)

Only one ’->’ store destination can be given

Only one ’?’ branch destination can be given

No assembly instruction may have more than 8 operands

This opcode does not use indirect addressing

Indirect addressing can only be used on the first operand

Store destination (the last operand) is not a variable

Opcode unavailable in this Z-machine version: <name>

Assembly mistake: syntax is <syntax>

Routine contains no such label as <name>

For this operand type, opcode number must be in range <range>

12. None of the above
If you should see an incomprehensible error message beginning with ***, then Inform itself has
malfunctioned. This is not meant to happen, but it’s conceivable that it might occur in the process
of linking in a module which has been damaged in some way.

Finally, error messages can also be produced from within the program (deliberately) using
Message. It may be that a mysterious message is being caused by an included file written by
someone other than yourself.

Warnings

80

6 All the Inform error messages

1. Questionable practices

This statement can never be reached

There is no way that the statement being compiled can ever be executed when the game is played.
Here is an obvious example:

return; print "Goodbye!";

where the print statement can never be reached, because a return must just have happened.
Beginners often run into this example:

"You pick up the gauntlet."; score=score+1; return;

Here the score=score+1 statement is never reached because the text, given on its own, means
“print this, then print a new-line, then return from the current routine”. The intended behaviour
needs something like

print "You pick up the gauntlet.^"; score=score+1; return;

<type> <name> declared but not used

For example, a Global directive was used to create a variable, which was then never used in the
program.

’=’ used as condition: ’==’ intended?

Although a line like

if (x = 5) print "My name is Alan Partridge.";

is legal, it’s probably a mistake: x=5 sets x to 5 and results in 5, so the condition is always true.
Presumably it was a mistype for x==5 meaning “test x to see if it’s equal to 5”.

Unlike C, Inform uses ’:’ to divide parts of a ’for’ loop

specification: replacing ’;’ with ’:’

Programmers used to the C language will now and then habitually type a for loop in the form

for (i=0; i<10; i++) ...

but Inform needs colons, not semicolons: however, as it can see what was intended, it makes the
correction automatically and issues only a warning.

Missing ’,’? Property data seems to contain the property name <name>

The following, part of an object declaration, is legal but unlikely:

with found_in MarbleHall

short_name "conch shell", name "conch" "shell",

As written, the found_in property has a list of three values: MarbleHall, short_name and "conch

shell". short_name throws up the warning because Inform suspects that a comma was missed
out and the programmer intended

with found_in MarbleHall,

short_name "conch shell", name "conch" "shell",

This is not a declared Attribute: <name>

81

6 All the Inform error messages

Similarly, suppose that a game contains a pen. Then the following give statement is dubious but
legal:

give MarbleDoorway pen;

The warning is caused because it’s far more likely to be a misprint for

give MarbleDoorway open;

Without bracketing, the minus sign ’-’ is ambiguous

For example,

Array Doubtful --> 50 10 -20 56;

because Inform is not sure whether this contains three entries, the middle one being 10−20 = −10,
or four. It guesses four, but suggests brackets to clarify the situation.

Array entry too large for a byte

Byte -> and string arrays can only hold numbers in the range 0 to 255. If a larger entry is
supplied, only the remainder mod 256 is stored, and this warning is issued.

Verb disagrees with previous verbs: <verb>

The Extend only directive is used to cleave off a set of synonymous English verbs and make them
into a new Inform verb. For instance, ordinarily “take”, “get”, “carry” and “hold” are one single
Inform verb, but this directive could split off “carry” and “get” from the other two. The warning
would arise if one tried to split off “take” and “drop” together, which come from different original
Inform verbs. (It’s still conceivably usable, which is why it’s a warning, not an error.)

This does not set the final game’s statusline

An attempt to choose, e.g., Statusline time within a module, having no effect on the program
into which the module will one day be linked. Futile.

This module has a more advanced format than this release of the

Inform 6 compiler knows about: it may not link in correctly

2. Obsolete usages

more modern to use ’Array’, not ’Global’

use ’->’ instead of ’data’

use ’->’ instead of ’initial’

use ’->’ instead of ’initstr’

use ’word’ as a constant dictionary address

’#a$Act’ is now superceded by ’##Act’

’#n$word’ is now superceded by ’’word’’

’#r$Routine’ can now be written just ’Routine’

all properties are now automatically ’long’

use the ^ character for the apostrophe in <dictionary word>

These all occur if Inform compiles a syntax which was correct under Inform 5 (or earlier) but has
now been withdrawn in favour of something better.

44 No Inform library file (or any other file marked System_file) produces warning messages.
It may contain many declared but unused routines, or may contain obsolete usages for the sake
of backward compatibility.

82

Chapter III: Fundamentals

7 Getting started

Nothing so difficult as a beginning
In poesy, unless perhaps the end.

– Lord Byron (–), Don Juan, IV iv

The examples in Chapters III and IV of this manual will put together a small game called
‘Ruins’. Its first state is very close to the minimal ‘Shell’ game supplied with Inform:

Constant Story "RUINS";

Constant Headline "^An Interactive Worked Example^

Copyright (c) 1995 by Graham Nelson.^";

Include "Parser";

Include "VerbLib";

Object Forest "Dark Forest"

with description

"In this tiny clearing, the pine-needle carpet is broken by

stone-cut steps leading down into darkness. Dark olive

trees crowd in on all sides, the air steams with warm recent

rain, midges hang in the air.",

has light;

[Initialise;

location = Forest;

"^^^^^Days of searching, days of thirsty hacking through the briars of

the forest, but at last your patience was rewarded. A discovery!^";

];

Include "Grammar";

If you can compile this successfully, Inform is probably set up and working properly on
your computer. Compilation may take a few seconds, because the game ‘includes’ three
library files which contain a great deal more code. These files are themselves written in
Inform and contain the core of ordinary rules common to all games:

Parser a program for decoding what the player types;
VerbLib how verbs, like “take” or “drop”, work;
Grammar the grammar table, or what the Parser understands.

(If compilation is annoyingly slow, it should be easy enough to “link the library files”,
which is much faster: see §4.3) Apart from the inclusions, ‘Ruins’ contains:

83

7 Getting started

(a) strings (that is, quoted text) giving the game’s name and a copyright message, to
be printed out when appropriate;

(b) a routine, called Initialise, which is run when the game begins, and simply sets
where the player starts (not that there’s much choice yet!) and prints a ‘welcome’
message;

(c) an object, so far the only room.

‘Ruins’ is at this stage an extremely dull game:

Days of searching, days of thirsty hacking through the briars of the forest,

but at last your patience was rewarded. A discovery!

RUINS

An Interactive Worked Example

Copyright (c) 1995 by Graham Nelson.

Release 1 / Serial number 960825 / Inform v6.04 Library 6/1

Dark Forest

In this tiny clearing, the pine-needle carpet is broken by stone-cut steps

leading down into darkness. Dark olive trees crowd in on all sides, the air

steams with warm recent rain, midges hang in the air.

>i

You are carrying nothing.

>north

You can’t go that way.

>wait

Time passes.

>quit

Are you sure you want to quit? yes

(The “Release” number is 1 unless you set it otherwise, putting a directive like Release
2; into the source code. The “Serial number” is set by Inform to the date of compilation.)

In an Inform game, objects are used to simulate everything: rooms and items to be picked
up, scenery, intangible things like mist and even some abstract ideas (like the direction
‘north’). The library is also present in every game, and can be thought of as a referee, or
umpire, rather than part of the game’s world.

Our second object is added by writing the following just after the Forest ends and
just before Initialise begins:

Object -> mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool";

(The arrow -> means that the mushroom begins inside the Forest rather than alongside it.)
If the game is recompiled, the mushroom is now in play: the player can call it “speckled
mushroom”, “mushroom”, “toadstool” and so on. It can be taken, dropped, looked at,
looked under and so on. However, it only adds the rather plain line “There is a speckled
mushroom here.” to the Forest’s description. So here is a more lavish version:

Object -> mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool",

initial

"A speckled mushroom grows out of the sodden earth, on a long stalk.";

84

7 Getting started

The initial message is used to tell the player about the mushroom when the Forest is
described. (Once the mushroom has been picked or moved, the message is no longer used:
hence the name ‘initial’.) The mushroom is, however, still “nothing special” when the
player asks to “look at” or “examine” it. To provide a more interesting close-up view, we
must give the mushroom its own description:

Object -> mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool",

initial

"A speckled mushroom grows out of the sodden earth, on a long stalk.",

description

"The mushroom is capped with blotches, and you aren’t at all sure

it’s not a toadstool.",

has edible;

Now if we examine the mushroom, as is always wise before eating, we get a cautionary
hint; still, thanks to the edible notation, we’re now able to eat it.

These show the two kinds of feature something can have: a “property”, which has
some definite value or list of values (such as name), and an “attribute”, which is either
present or not but has no particular value (such as edible). Values of properties change
during play, and attributes come and go. For instance,

mushroom.description = "You’re sure it’s a toadstool now.";

give mushroom general;

if (mushroom has edible) print "It’s definitely edible.^";

manipulate the attributes and properties. (general is the name used for an attribute with
no particular meaning to the game, but which is left free for your program to use as it
likes. Similarly, number is a general-purpose property.)

We can go much further with form-filling like this, but for the sake of example we’ll
begin some honest programming by adding the following property to the mushroom:

after

[; Take: "You pick the mushroom, neatly cleaving its thin stalk.";

Drop: "The mushroom drops to the ground, battered slightly.";

],

The property after doesn’t just have a string for a value: it has a routine of its own. Now
after something happens to the mushroom, the after routine is called to see if any special
rules apply. In this case, Take and Drop are the only actions tampered with, and the only
effect is that the usual messages (“Taken.” “Dropped.”) are replaced. The game can now
manage a brief but plausible dialogue:

Dark Forest

In this tiny clearing, the pine-needle carpet is broken by stone-cut steps

leading down into darkness. Dark olive trees crowd in on all sides, the air

steams with warm recent rain, midges hang in the air.

A speckled mushroom grows out of the sodden earth, on a long stalk.

>get mushroom

85

7 Getting started

You pick the mushroom, neatly cleaving its thin stalk.

>look at it

The mushroom is capped with blotches, and you aren’t at all sure it’s not a

toadstool.

>drop it

The mushroom drops to the ground, battered slightly.

The mushroom is a little more convincing now, but still passive. We can give it a somewhat
sad new rule by adding yet another property, this time with a more substantial routine:

before

[; Eat: if (random(100) <= 30)

{ deadflag = 1;

"The tiniest nibble is enough. It was a toadstool,

and a poisoned one at that!";

}

"You nibble at one corner, but the curious taste repels you.";

],

The before routine is called before the player’s intended action takes place. So when the
player tries typing, say, “eat the mushroom”, what happens is: in 30% of cases, she dies of
toadstool poisoning; and in the other 70%, she simply nibbles a corner of fungus (without
consuming it completely).

4 Like many programming languages, Inform braces together blocks of code so that several
statements can come under the if condition. deadflag is a global variable, whose value does not
belong to any particular object (or routine). It is defined somewhere in the depths of the library:
it’s usually 0; setting it to 1 causes the game to be lost, and setting it to 2 causes a win.

Note that if the first text is printed, the rule ends there, and does not flow on into
the second text. So one and only one message is printed. Here is how this is achieved:
although it’s not obvious from the look of the program, the before routine is being asked
the question “Do you want to interfere with the usual rules?”. It must reply, that is,
“return”, either “true” or “false” meaning yes or no. Because this question is asked and
answered many times in a large Inform game, there are several abbreviations for how to
reply. For example,

return true;

rtrue;

both do the same thing. Moreover,

print_ret "The tiniest nibble... ...at that!";

performs three useful tasks: prints the message, then prints a carriage return, and then
returns true. And this is so useful that a bare string

"The tiniest nibble... ...at that!";

86

7 Getting started

is understood to mean the same thing. To just print the text, the statement print has to
be written out in full. Here is an example:

before

[; Taste: print "You extend your tongue nervously.^";

rfalse;

];

In this rule, the text is printed, but the answer to “Do you want to interfere?” is no, so
the game will then go on to print something anodyne like “You taste nothing unexpected.”
(In fact the rfalse was unnecessary, because if a rule like this never makes any decision,
then the answer is assumed to be “false”.)

•EXERCISE 1
The present after routine for the mushroom is misleading, because it says the mushroom has
been picked every time it’s taken (which will be odd if it’s taken, dropped then taken again).
Correct this to complete the definition of the ‘Ruins’ mushroom.

4 More generally, some before or after rules ought to apply only once in the course of a
game. For instance, examining the tapestry reveals a key, only once. A sneaky way to do this is
to make the appropriate rule destroy itself, so for example

tapestry.before = NULL;

removes the entire before rule for the tapestry. NULL is a special value, which the properties
before, after, life and describe hold to indicate “none”.

Here is another typical object definition:
Object "stone-cut steps" Forest

with name "steps" "stone" "stairs" "stone-cut",

description

"The cracked and worn steps descend into a dim chamber. Yours

might be the first feet to tread them for five hundred years.",

door_to Square_Chamber,

door_dir d_to

has scenery door open;

This is the conventional way to lay out an Object declaration: with the header first,
then with a list of properties and their starting values, finishing up with the attributes it
initially has. (Though with and has can be given the other way round.)
Note that the first line, the so-called header, is a little different in form to those above.
Firstly, it gives no “program name” for the steps (in the way that mushroom was given
as program-name for the speckled mushroom) – there is a blank in between the Object
directive and the text of the words “short-cut steps”. This is perfectly legal, and is sensible
because the program never needs to refer to the steps object directly. Secondly, the initial
position of the steps is specified not by using arrows -> but by actually quoting the object
it is to be placed inside, the Forest. This is sometimes convenient and is only legal if the
Forest has already been defined (earlier on in the program). Such a restriction is actually
useful as it prevents you from setting up a ‘loop’ – one object in another in a third in the
first, for instance.

87

8 Introducing messages and classes

On a round ball
A workman that hath copies by, can lay
An Europe, Afrique and an Asia,
And quickly make that, which was nothing, All.

– John Donne (?–), Valediction: Of Weeping

In fact, messages have already appeared in §7. Recall from §3 that a message called
messagename can be sent to an object called objectname with various supplied details
(called info1 and info2 here, though there can be any number from none to 6) as follows:

objectname.messagename(info1, info2);

And the given object sends back a reply value (which is just a single quantity). This is
what is really happening when the player tries to eat the mushroom: first the library sends
the mushroom a before message to warn it that something will happen; it might reply
true, in which case the library gives up; otherwise the eating takes place, and the library
sends an after message to inform the mushroom of its demise.

Properties like before, then, are really rules to deal with incoming messages. The
same applies to most of the properties in §3. For example, the message

mushroom.description();

is sent when the player tries to examine the mushroom: if the reply is false then the
game prints “You see nothing special about the speckled mushroom.” Now the mushroom
was set up with

description

"The mushroom is capped with blotches, and you aren’t at all sure

it’s not a toadstool.",

which doesn’t look like a rule for receiving a message, but it is one all the same: it means
“print this text out, print a new-line and reply true”. A more complicated rule could have
been given instead, as in the following elaboration of the stone-cut steps in ‘Ruins’:

description

[; print "The cracked and worn steps descend into a dim chamber.

Yours might ";

if (Square_Chamber has visited)

print "be the first feet to tread";

else print "have been the first feet to have trodden";

" them for five hundred years. On the top step is inscribed

the glyph Q1.";

],

88

8 Introducing messages and classes

visited is an attribute which is currently held only by rooms which the player has been
to. (The glyphs will be explained later on, as will the SquareChamber room, which is
where the steps will lead down into.)

The library, i.e., the standard game rules, can send out about 40 different kinds of
message, before and description being two of these. The more interesting an object
is, the more ingeniously it will respond to these messages: an object which ignores all
incoming messages will be lifeless and inert in play, like a small stone.

44 In fact there are subtle differences between how the library uses properties, and message-
sending: the name property, for example, is not really a message-receiver but is just what it appears
to be – a list of useful data. Also, the library is careful not to send (for instance) a description

message to an object which doesn’t provide a rule for what to do with one. But the idea is right.

So the library is sending out messages to your objects all the time during play. Your
objects can also send each other messages, including “new” ones that the library would
never send. It’s sometimes convenient to use these to trigger off happenings in the game.
For example, suppose the ‘Ruins’ are home to a parrot which squawks from time to time,
for a variety of reasons:

Object -> parrot "red-tailed parrot"

with name "red" "tailed" "red-tailed" "parrot" "bird",

description

"Beautiful plumage.",

squawk

[utterance;

if (self in location)

print "The parrot squawks, ~", (string) utterance,

"! ", (string) utterance, "!~^";

],

has animate;

We might then, for instance, change the after rule for dropping the mushroom to read:

Drop: parrot.squawk("Drop the mushroom");

"The mushroom drops to the ground, battered slightly.";

so that the wretched creature would squawk “Drop the mushroom! Drop the mushroom!”
each time this was done. Likewise, squawk messages could be sent for any number of other
reasons connected with other objects. But at present it would be an error to send a squawk
message to any object other than the parrot, since only the parrot has been given a rule
telling it what to do if it receives one.

•EXERCISE 2
Make a medicine bottle, which can be opened in a variety of ways in the game, so that the
opening–code only occurs once in the bottle definition.

In most games there are groups of objects with certain rules in common, which it would
be tiresome to have to write out many times. For making such a group, a class definition

89

8 Introducing messages and classes

is the better technique. These closely resemble object definitions, but since they define
prototypes rather than actual things, they have no initial location. (An individual tree may
be somewhere, but the concept of being a tree has no particular place.) So the ‘header’
part of the definition is simpler.

For example, the scoring system in ‘Ruins’ works as follows: the player, an archae-
ologist of the old school, gets a certain number of points for each ‘treasure’ (i.e., cultural
artifact) he can filch and put away into his packing case. This is implemented with the
following class:

Class Treasure

with cultural_value 10,

after

[; Insert:

if (second==packing_case)

score = score + self.cultural_value;

"Safely packed away.";

],

before

[; Take, Remove:

if (self in packing_case)

"Unpacking such a priceless artifact had best wait

until the Metropolitan Museum can do it.";

];

Note that self is a variable, which always means “whatever object I am”. If we used
it in the definition of the mushroom it would mean the mushroom: used here, it means
whatever treasure happens to be being dealt with. (Explanations about Insert and Remove
will come later, but hopefully the idea is clear enough.) An object of the class Treasure
inherits the properties and attributes it defines: in this case, an object of class Treasure
picks up the given score and rules automatically. So

Treasure statuette "pygmy statuette"

with description

"A menacing, almost cartoon-like statuette of a pygmy spirit

with a snake around its neck.",

initial "A precious Mayan statuette rests here!",

name "snake" "mayan" "pygmy" "spirit" "statue" "statuette";

inherits the cultural_value score of 10 and the rules about taking and dropping. If the
statuette had itself set cultural_value to 15, say, then the value would be 15, because the
object’s actual definition always takes priority over anything the class might have specified.

A more unusual artifact:

Treasure honeycomb "ancient honeycomb"

with article "an",

name "ancient" "old" "honey" "honeycomb",

description "Perhaps some kind of funerary votive offering.",

initial "An exquisitely preserved, ancient honeycomb rests here!",

after

90

8 Introducing messages and classes

[; Eat: "Perhaps the most expensive meal of your life. The honey

tastes odd, perhaps because it was used to store the entrails

of the king buried here, but still like honey.";

],

has edible;

The honeycomb now has two after rules: a new one of its own, plus the existing one that
all treasures have. Both apply, but the new one happens first.

4 So comparing cultural_value and after, there seems to be an inconsistency. In the first
case, an object’s own given value wiped out the value from the class, but in the second, the two
values were joined up into a list. Why? The reason is that some of the library’s properties are
special (again) in being what’s called “additive”, so that their values accumulate into a list when
class inheritance takes place. The three useful examples are before, after and name.

44 Non-library properties you invent (like squawk or cultural_value) will never be additive,
unless you write a directive like:

Property additive squawk;

(before squawk is otherwise mentioned) to say so.

Finally, note that an object can inherit from several classes at once (see §3 for how to give
such a definition). Moreover, a class can itself inherit from other classes, so it’s easy to
make a class for “like Treasure but with cultural_value normally 8 instead of 10”.

•REFERENCES

See ‘Balances’ for an extensive use of message-sending. • ‘Advent’ has a treasure-class similar
to this one, and uses class definitions for the many similar maze and dead-end rooms (and the
sides of the fissure). • That class definitions can be worthwhile even when only two objects use
them, can be seen from the kittens-class in ‘Alice Through The Looking-Glass’. • ‘Balances’
defines many complicated classes: see especially the white cube, spell and scroll classes. •
‘Toyshop’ contains one easy one (the wax candles) and one unusually hard one (the building
blocks).

91

9 Actions and reactions

Only the actions of the just
Smell sweet and blossom in their dust.

– James Shirley (–), The Contention of Ajax and Ulysses

...a language obsessed with action, and with the joy of seeing action multiply from
action, action marching relentlessly ahead and with yet more actions filing in from
either side to fall into neat step at the rear, in a long straight rank of cause and
effect, to what will be inevitable, the only possible end.

– Donna Tartt, The Secret History

Inform is a language obsessed with actions. An ‘action’ is an attempt to perform one
simple task: for instance,

Inv Take sword Insert gold_coin cloth_bag

are all examples. Here the actual actions are Inv, Take and Insert. An action has 0, 1
or 2 objects supplied with it (or, in a few special cases, some numerical information rather
than objects). Most actions are triggered off by the game’s parser: in fact, the parser’s job
can be summed up as reducing the player’s keyboard commands to actions. Sometimes
one action causes another; a really complicated keyboard command (“empty the sack into
the umbrella stand”) may fire off quite a sequence of actions.

An action is only an attempt to do something: it may not succeed. Firstly, a before
rule might interfere, as we have seen already. Secondly, the action might not even be very
sensible. The parser will happily generate the action Eat iron_girder if the player asked
to do so in good English. In this case, even if no before rule interferes, the normal game
rules will ensure that the girder is not consumed.

Actions can also be generated by your own code, and this perfectly simulates the
effect of a player typing something. For example, generating a Look action makes the
game produce a room description as if the player had typed “look”. More subtly, suppose
the air in the Pepper Room causes the player to sneeze each turn and drop something at
random. This could be programmed directly, with objects being moved onto the floor by
explicit move statements. But then suppose the game also contains a toffee apple, which
sticks to the player’s hands. Suddenly the toffee apple problem has an unintended solution.
So rather than moving the objects directly to the floor, the game should generate Drop
actions. The result might read:

You sneeze convulsively, and lose your grip on the toffee apple...
The toffee apple sticks to your hand!

which is at least consistent.
As an example of causing actions, an odorous low_mist will soon settle over ‘Ruins’.

It will have the description “The mist carries a rich aroma of broth.” The alert player

92

9 Actions and reactions

who reads this will immediately type “smell mist”, and we want to provide a better response
than the game’s stock reply “You smell nothing unexpected.” An economical way of doing
this is to somehow deflect the action Smell low_mist into the action Examine low_mist
instead, so that the “aroma of broth” message is printed in this case too. Here is a suitable
before rule to do that:

Smell: <Examine self>; rtrue;

The statement <Examine self> causes the action Examine low_mist to be triggered
off immediately, after which whatever was going on at the time resumes. In this case,
the action Smell low_mist resumes, but since we immediately return true the action is
stopped dead.

Causing an action and then returning true (i.e., causing a new action and killing
the old one) is so useful that it has an abbreviation, putting the action in double angle-
brackets. For example,

<Look>; <<ThrowAt smooth_stone spider>>;

will behave as if the player has asked to look around and to throw the stone at the spider,
and will then return true.

At any given time, just one action is under way (though others may be waiting to resume
when the current one has finished). This current action is stored in the three variables

action noun second

noun and second hold the objects involved, or the special value nothing if they aren’t
involved at all. action holds the kind of action. Its possible values can be referred to in
the program using the ## notation: for example

if (action == ##Look) ...

tests to see if the current action is a Look.

4 Why have ## at all, why not just write Look? Partly because this way the reader can see
at a glance that an action type is being referred to, but also because the name might be wanted
for something else. For instance there’s a variable called score (holding the current game score),
quite different from the action type ##Score.

44 For a few actions, the ‘noun’ (or the ‘second noun’) is actually a number (for instance, “set
timer to 20” would probably end up with noun being timer and second being 20). Occasionally
one needs to be sure of the difference, e.g., to tell if second is holding a number or an object.
It’s then useful to know that there are two further variables, inp1 and inp2, parallel to noun and
second and usually equal to them – but equal to 1 to indicate “some numerical value, not an
object”.

93

9 Actions and reactions

The library supports about 120 different actions and any game of serious proportion will
add some more of its own. This list is initially daunting but many are used only rarely
and others are always knocked down into simpler actions (for example, <Empty rucksack
table>, meaning “empty the contents of the rucksack onto the table”, is broken down into
a stream of actions like <Remove fish rucksack> and <PutOn fish table>). It’s useful
to know that an object can only enter the player’s possession through a Take or Remove
action: block those two and it can never be acquired whatever the player types.

The list of actions is traditionally divided into three groups, called Group 1, Group
2 and Group 3. Group 1 contains ‘meta’ actions for controlling the game, like Score and
Save, which are treated quite differently from other actions and are not worth listing. Of
the rest, actions which normally do something form Group 2, while actions which normally
only print a polite refusal form Group 3. Group 2 contains:

Inv, Take, Drop, Remove, PutOn, Insert, Enter, Exit, Go, Look, Examine,

Unlock, Lock, SwitchOn, SwitchOff, Open, Close, Disrobe, Wear, Eat, Search.

It should be apparent why these do something. However, an action like Listen falls
into Group 3: the library would normally respond to it by printing “You hear nothing
unexpected.” Only if your program interferes (using a before rule) can anything happen.
Group 3 contains, in rough order of usefulness:

Pull, Push, PushDir [push object in direction], Turn,

Consult, LookUnder [look underneath something], Search,

Listen, Taste, Drink, Touch, Smell,

Wait, Sing, Jump [jump on the spot], JumpOver, Attack,

Swing [something], Blow, Rub, Set, SetTo, Wave [something],

Burn, Dig, Cut, Tie, Fill, Swim, Climb, Buy, Squeeze,

Pray, Think, Sleep, Wake, WaveHands [i.e., just "wave"],

WakeOther [person], Kiss, Answer, Ask, ThrowAt,

Yes, No, Sorry, Strong [swear word], Mild [swear word]

4 Actions involving other people, like Kiss, are often best dealt with by a life rule, which
will be discussed in §16.

4 A few actions (e.g., Transfer, Empty, GetOff) are omitted from the list above because
they’re always translated into more familiar ones. For instance, InvWide (asking for a “wide–
format” inventory listing) always ends up in an Inv.

44 The Search action (generated by “look inside 〈container〉” or “search 〈something〉”) only
ever prints text, but is in Group 2 rather than Group 3 because it does something substantial. It
decides whether something is a container, and if there’s enough light to see by, it prints out the
contents. Thus, a before rule applied to Search traps the searching of random scenery, while an
after can be used to alter the contents-listing rules of containers.

44 Most of the group 2 actions – specifically,

Take, Drop, Insert, PutOn, Remove, Enter, Exit, Go, Unlock, Lock,

SwitchOn, SwitchOff, Open, Close, Wear, Disrobe, Eat

94

9 Actions and reactions

can happen “silently”. If the variable keep_silent is set to 1, then these actions print nothing in
the event of success. (E.g., if the door was unlocked as requested.) They print up objections as
usual if anything goes wrong (e.g., if the suggested key doesn’t fit). This is useful to implement
implicit actions: for instance, to code a door which will be automatically unlocked by a player
asking to go through it, who is holding the right key.

The standard stock of actions is easily added to. Two things are necessary to create a new
action: first one must provide a routine to make it happen. For instance:

[BlorpleSub;

"You speak the magic word ~Blorple~. Nothing happens.";

];

Every action has to have a “subroutine” like this, the name of which is always the name
of the action with Sub appended. Secondly, one must add grammar so that Blorple can
actually be called for. Far more about grammar in Chapter V: for now we add the simplest
of all grammar lines, a directive

Verb "blorple" * -> Blorple;

placed after the inclusion of the Grammar file. (The spacing around the * is just a matter
of convention.) The word “blorple” can now be used as a verb. It can’t take any nouns,
so the parser will complain if the player types “blorple daisy”.

Blorple is now a typical Group 3 action. before rules can be written for it, and it
can be triggered off by a statement like

<Blorple>;

44 To make it a Group 1 action, define the verb as meta (see §26).

44 To make it a Group 2 action, rewrite the subroutine in the following form:

[WhateverSub;

... do whatever the action is supposed to do,

printing a suitable message and returning

if it turns out not to be a sensible thing to do...

if (AfterRoutines()==1) rtrue;

... print a suitable message saying that it has been done ...

];

(AfterRoutines is a library routine which sends suitable after messages to see if the objects want
to prevent the usual message being printed.)

4 A few of the library’s actions fall into none of Groups 1, 2 or 3, though these aren’t proper
actions at all, but are used only to signal goings-on. For instance, when the player types “throw
rock at dalek”, the parser generates the action ThrowAt rock dalek. As usual the rock is sent a
before message asking if it objects to being thrown at a Dalek. Since the Dalek may also have

95

9 Actions and reactions

an opinion on the matter, another before message is sent to the Dalek, but this time as if the
action were something called ThrownAt. For example, here is a dartboard’s response to a dart:

before

[; ThrownAt: if (noun==dart)

{ move dart to self; "Triple 20!"; }

move noun to location;

print_ret (The) noun, " bounces back off the board.";

],

Such an imaginary action – usually, as in this case, a perfectly sensible action seen from the
point of view of the second object involved, rather than the first – is called a “fake action”. The
important ones are ThrownAt, Receive and LetGo (the latter two being used for containers: see
§11).

44 If you really need to, you can declare a new fake action with the directive Fake_action

〈Action-name〉;.

•44 EXERCISE 3
ThrownAt would be unnecessary if Inform had an idea of before and after routines which an
object could provide if it were the second noun of an action. How might this be implemented?

Actions are processed in a simple way, but one which involves many little stages. There
are three main stages:

(a) ‘Before’. An opportunity for your code to interfere with or block altogether what
might soon happen.

(b) ‘During’. The library takes control and decides if the action makes sense according
to its normal world model: for example, only an edible object may be eaten; only
an object in the player’s possession can be thrown at somebody, and so on. If the
action is impossible, a complaint is printed and that’s all. Otherwise the action is
now carried out.

(c) ‘After’. An opportunity for your code to react to what has happened, after it has
happened but before any text announcing it has been printed. If it chooses, your
code can print and cause an entirely different outcome. If your code doesn’t inter-
fere, the library reports back to the player (with such choice phrases as “Dropped.”).

4 Group 1 actions (like Score) have no ‘Before’ or ‘After’ stages: you can’t (easily) stop
them from taking place. They aren’t happening in the game’s world, but in the player’s.

4 The ‘Before’ stage consults your code in five ways, and occasionally it’s useful to know in
what order:

i. The GamePreRoutine is called, if you have written one. If it returns ‘true’, nothing else
happens and the action is stopped.

ii. The orders property of the player is called on the same terms. For more details, see §16.
iii. And the react_before of every object in scope (which roughly means ‘in the vicinity’).
iv. And the before of the current room.

v. If the action has a first noun, its before is called on the same terms.

96

9 Actions and reactions

4 The library processes the ‘During’ stage by calling the action’s subroutine. (Subroutines
like TakeSub make up a large part of the library.)

4 The ‘After’ stage only applies to Group 2 actions, as all Group 3 actions have been packed
up at the ‘During’ stage if not ‘Before’. During ‘After’ the sequence is as follows: react_after

rules for every object in scope (including the player object); the room’s after; the first noun’s
after and finally GamePostRoutine.

44 Two things are fake about “fake actions” (see above): they don’t have subroutines, and
they never occur in the grammar of any verb (so they’re never directly generated by the parser).

4 As mentioned above, the parser can generate very peculiar actions, and this sometimes
needs to be remembered when writing before rules. Suppose a before rule intercepts the action
of putting the mushroom in the crate, and makes something exciting happen as a result. Now
even if the mushroom is, say, sealed up inside a glass jar, the parser might still generate this
action: the impossibility won’t be realised until ‘During’ time. So the exciting happening should
be written as an after rule, when the attempt to put the mushroom in the crate has already
succeeded.

•4 EXERCISE 4
This kind of snag could be avoided altogether if Inform had a ‘validation stage’ in action processing,
to check whether an action is sensible before allowing it to get as far as before rules. How could
this be added to Inform?

44 To some extent you can even meddle with the ‘During’ stage (and with the final messages
produced), and thus even interfere with Group 1 actions if you are unscrupulous enough, by
cunning use of the LibraryMessages system. See §21.

•REFERENCES

In a game compiled with the -D switch set, typing in the “actions” verb will result in trace
information being printed each time any action is generated. Try putting many things into a
rucksack and asking to “empty” it for an extravagant list. • Diverted actions (using << and >>)
are commonplace. They’re used in about 20 places in ‘Advent’: a good example is the way “take
water” is translated into a Fill bottle action. • Sometimes you want “fake fake actions”
which are fully–fledged actions (with action routines and so on) but are still never generated by
the parser (see §16).

97

Chapter IV: The Model World

A Model must be built which will get everything in without a clash;
and it can do this only by becoming intricate, by mediating its unity
through a great, and finely ordered, multiplicity.

– C. S. Lewis (–), The Discarded Image

10 Places, scenery, directions and the map

It was a long cylinder of parchment, which he unrolled and spread
out on the floor, putting a stone on one end and holding the other.
I saw a drawing on it, but it made no sense.

– John Christopher (–), The White Mountains

Back to ‘Ruins’: what lies at the foot of the stone steps? We’ll now add four rooms,
connected together:

Square Chamber↔ Web

l
Corridor

l
Shrine

with the Square Chamber lying underneath the original Forest location. For instance,
here’s the Square Chamber’s definition:

Object Square_Chamber "Square Chamber"

with name "lintelled" "lintel" "lintels" "east" "south" "doorways",

description

"A sunken, gloomy stone chamber, ten yards across. A shaft

of sunlight cuts in from the steps above, giving the chamber

a diffuse light, but in the shadows low lintelled doorways to

east and south lead into the deeper darkness of the Temple.",

u_to Forest, e_to Web, s_to Corridor,

has light;

98

10 Places, scenery, directions and the map

Like the Forest, this place has light, however dim. (If it didn’t, the player would never
see it, since it would be dark, and the player hasn’t yet been given a lamp or torch of some
kind.) Now although this is a room, and can’t be referred to by the player in the way that
a manipulable object can, it still can have a name property. These name words are those
which Inform knows “you don’t need to refer to”, and it’s a convention of the genre that
the designer should signpost off the game in this way. (Note that they’ll only be looked at
if what the player types is unrecognised, so the word “east” is understood quite normally;
but a reference to “east lintel” will get the “don’t need to refer to” treatment.) This room
is unfurnished, so:

Object -> "carved inscriptions"

with name "carved" "inscriptions" "carvings" "marks" "markings" "symbols"

"moving" "scuttling" "crowd" "of",

initial

"Carved inscriptions crowd the walls, floor and ceiling.",

description "Each time you look at the carvings closely, they seem

to be still. But you have the uneasy feeling when you look

away that they’re scuttling, moving about. Their meaning

is lost on you.",

has static;

This is part of the fittings, hence the static attribute, which means it can’t be taken or
moved. As we went out of our way to describe a shaft of sunlight, we’ll include that as
well:

Object -> sunlight "shaft of sunlight"

with name "shaft" "of" "sunlight" "sun" "light" "beam" "sunbeam" "ray"

"rays" "sun^s",

description "The shaft of sunlight glimmers motes of dust in the

air, making it seem almost solid."

has scenery;

(The ^ symbol in "sun^s" means an apostrophe, so the word is “sun’s”.) Being scenery
makes the object not only static but also not described by the game unless actually exam-
ined by the player. A true perfectionist might add a before rule:

before

[; Examine, Search: ;

default: "It’s only an insubstantial shaft of sunlight.";

],

so that the player can look at or through the sunlight, but any other request involving
them will be turned down. Note that a default rule, if given, means “any action except
those already mentioned”.

We can’t actually get into the Square Chamber yet, though. Just because there is a
map connection up from here to the Forest, it doesn’t follow that there’s a corresponding
connection down. So we must add a d_to to the Forest, and while we’re at it:

d_to Square_Chamber,

u_to "The trees are spiny and you’d cut your hands to ribbons

99

10 Places, scenery, directions and the map

trying to climb them.",

cant_go "The rainforest-jungle is dense, and you haven’t hacked

through it for days to abandon your discovery now. Really,

you need a good few artifacts to take back to civilization

before you can justify giving up the expedition.",

The property cant_go contains what is printed when the player tries to go in a nonexistent
direction, and replaces “You can’t go that way”. As is often the case with properties,
instead of giving an actual message you can instead give a routine to print one out, to
vary what’s printed with the circumstances. The Forest needs a cant_go because in real
life one could go in every direction from there: what we’re doing is explaining the game
rules to the player: go underground, find some ancient treasure, then get out to win. The
Forest’s u_to property is a string, not a room; this means that attempts to go up result
only in that string being printed.

Rooms also have rules of their own. We might add the following before rule to the Square
Chamber:

before

[; Insert:

if (noun==mushroom && second==sunlight)

{ remove mushroom;

"You drop the mushroom on the floor, in the glare of

the shaft of sunlight. It bubbles obscenely,

distends and then bursts into a hundred tiny insects

which run for the darkness in every direction. Only

tiny crumbs of fungus remain.";

}

],

The variables noun and second hold the first and second nouns supplied with an action.
Rooms have before and after routines just as objects do, and they apply to anything
which happens in the given room. This particular rule could easily enough have been part
of the definition of the mushroom or the sunlight, and in general a room’s rules are best
used only for geographical fixtures.

44 Sometimes the room may be a different one after the action has taken place. The Go

action, for instance, is offered to the before routine of the room which is being left, and the after

routine of the room being arrived in. For example:

after

[; Go: if (noun==d_obj)

print "You feel on the verge of a great discovery...^";

],

will print the message when its room is entered via the “down” direction. Note that
since the message is printed with the print command, there is no “return true” from this
routine, so it returns false: and so the usual game rules resume after the printing of the
message.

100

10 Places, scenery, directions and the map

Some objects are present in many rooms at once. The ‘Ruins’, for instance, are misty:

Object low_mist "low mist"

with name "low" "swirling" "mist",

initial "A low mist swirls about your feet.",

description "The mist carries a rich aroma of broth.",

found_in Square_Chamber Forest,

before

[; Examine, Search: ;

Smell: <<Examine self>>;

default: "The mist is too insubstantial.";

],

has static;

The found_in property gives a list of places in which the mist is found (so far just the
Square Room and the Forest).

4 If the rainforest contained many misty rooms, it would be tedious to give the full list and
even worse to have to alter it as the mist drifted about in the course of the game. Fortunately
found_in can contain a routine instead of a list. This can look at the current location and say
whether or not the object should be put in it when the room is entered, e.g.,

Object Sun "Sun",

with ...

found_in

[; if (location has light) rtrue;

],

has scenery;

44 found_in is only consulted when the player’s location changes, so if the mist has to dra-
matically lift or move then it needs to be moved or removed ‘by hand’. A good way to lift the mist
forever is to remove it, and then give it the absent attribute, which prevents it from manifesting
itself whatever found_in says.

Some pieces of scenery afflict the other four senses. The mist smells of broth, which means
that if the player types “smell” in a place where the mist is, then she should be told about
the broth. For this, a react_before rule attached to the mist is ideal:

react_before

[; Smell: if (noun==0) <<Smell low_mist>>;

],

This is called a “react” rule because the mist is reacting to the fact that a Smell action
is taking place nearby. noun is compared with zero to see if the player has indeed just
typed “smell” (not, say, “smell crocus”). Thus, when the action Smell takes place near
the mist, it is converted into Smell low_mist; whereas the action Smell crocus would
be left alone.

The five senses all have actions in Inform: Look, Listen, Smell, Taste and Touch.
Of these, Look never has a noun attached (because Examine is provided for close-ups),
Smell and Listen may or may not have while Taste and Touch always have.

101

10 Places, scenery, directions and the map

•EXERCISE 5
(Cf. ‘Spellbreaker’.) Make an orange cloud descend on the player, which can’t be seen through
or walked out of.

Directions (such as “north”) are objects called n_obj, s_obj and so on: in this case,
in_obj. (They are not to be confused with the property names n_to and so on.) Moreover,
you can change these directions: as far as Inform is concerned, a direction is any object in
the special object compass.

•4 EXERCISE 6
In the first millenium A.D., the Mayan peoples of the Yucatán Peninsula had ‘world colours’ white
(sac), red (chac), yellow (kan) and black (chikin) for what we call the compass bearings north,
east, south, west (for instance west is associated with ‘sunset’, hence black, the colour of night).
Implement this.

•4 EXERCISE 7
(Cf. ‘Trinity’.) How can the entire game map be suddenly east-west reflected?

•44 EXERCISE 8
Even when the map is reflected, there may be many room descriptions referring to “east” and
“west” by name. Reflect these too.

4 The ordinary Inform directions all have the number property defined (initially set to zero):
this is to provide a set of scratch variables useful, for instance, when coding mazes.

44 If the constant WITHOUT_DIRECTIONS is defined before inclusion of the library files, then 10
of the default direction objects are not defined by the library. The designer is expected to define
alternative ones (and put them in the compass object); otherwise the game will be rather static.
(The “in” and “out” directions are still created, because they’re needed for getting into and out
of enterable objects.)

•REFERENCES

‘Advent’ has a very tangled-up map in places (see the mazes) and a well-constructed exterior of
forest and valley giving an impression of space with remarkably few rooms. The mist object uses
found_in to the full, and see also the stream (a single object representing every watercourse in
the game). Bedquilt and the Swiss Cheese room offer classic confused-exit puzzles. • For
a simple movement rule using e_to, see the Office in ‘Toyshop’. • The library extension
“smartcantgo.h” by David Wagner provides a system for automatically printing out “You can only
go east and north.”-style messages. • ‘A Scenic View’, by Richard Barnett, demonstrates a
system for providing examinable scenery much more concisely (without defining so many objects).

102

11 Containers, supporters and sub-objects

The concept of a surface is implemented as a special kind of contain-
ment. Objects which have surfaces on which other objects may sit
are actually containers with an additional property of “surfaceness”.

– P. David Lebling, Zork and the Future

The year has been a good one for the Society (hear, hear). This year our members
have put more things on top of other things than ever before. But, I should warn
you, this is no time for complacency. No, there are still many things, and I cannot
emphasize this too strongly, not on top of other things.

– ‘The Royal Society For Putting Things On Top Of Other Things’

Monty Python’s Flying Circus, programme  ()

Objects can be inside or on top of one another. An object which has the container
attribute can contain things, like a box: one which has supporter can hold them up, like
a table. (An object can’t have both at once.) It can hold up to 100 items, by default:
this is set by the capacity property. However, one can only put things inside a container
when it has open. If it has openable, the player can open and close it at will, unless it
also has locked. A locked object (whether it be a door or a container) cannot be opened.
But if it has lockable then it can be locked or unlocked with the key object given in the
with_key property. If with_key is undeclared, then no key will fit, but this will not be
told to the player, who can try as many as he likes.

Containers (and supporters) are able to react to things being put inside them, or
removed from them, by acting on the signal to Receive or LetGo. For example, deep under
the ‘Ruins’ is a chasm which, perhaps surprisingly, is implemented as a container:

Object -> chasm "horrifying chasm"

with name "blackness" "chasm" "pit" "depths" "horrifying" "bottomless",

react_before

[; Jump: <<Enter self>>;

Go: if (noun==d_obj) <<Enter self>>;

],

before

[; Enter: deadflag=1;

"You plummet through the silent void of darkness!";

],

after

[; Receive: remove noun;

print_ret (The) noun, " tumbles silently into the

darkness of the chasm.";

Search: "The chasm is deep and murky.";

],

has scenery open container;

103

11 Containers, supporters and sub-objects

(Actually the definition is a little longer, so that the chasm reacts to a huge pumice-stone
ball being rolled into it; see ‘Ruins’.) Note the use of an after rule for the Search action:
this is because an attempt to “examine” or “look inside” the chasm will cause this action.
Search means, in effect, “tell me what is inside the container” and the after rule prevents
a message like “There is nothing inside the chasm.” from misleading the player. Note also
that the chasm ‘steals’ any stray Jump action and converts it into an early death.

•EXERCISE 9
Make the following, rather acquisitive bag:

>put fish in bag

The bag wriggles hideously as it swallows the fish.

>get fish

The bag defiantly bites itself shut on your hand until you desist.

4 LetGo and Receive are examples of actions which aren’t explicitly requested by the player,
but are generated by the game in the course of play (so-called “fake actions”).

4 Receive is sent to an object O both when a player tries to put something in O, and put
something on O. In the rare event that O needs to react differently to these, it may consult the
variable receive_action to find out whether ##PutOn or ##Insert is the cause.

The ‘Ruins’ packing case is a typical container:

Object -> packing_case "packing case"

with name "packing" "case" "box" "strongbox",

initial

"Your packing case rests here, ready to hold any important

cultural finds you might make, for shipping back to civilisation.",

before

[; Take, Remove, PushDir:

"The case is too heavy to bother moving, as long as your

expedition is still incomplete.";

],

has static container open;

Now suppose we want a portable television set with four different buttons on it. Obviously,
when the television moves, its buttons should move with it, and the sensible way to arrange
this is to make the four buttons possessions of the television object. But members of an
object which isn’t a container are normally assumed by the game to be hidden invisibly
inside (they are said to be “not in scope”). We have to override this in order to make the
four buttons visible from outside, by giving the television the transparent attribute.

•EXERCISE 10
Implement a television set with attached power button and screen.

•EXERCISE 11
Make a glass box and a steel box, which would behave differently when a lamp is shut up inside
them.

104

11 Containers, supporters and sub-objects

4 It sometimes happens that an object should have sub-objects, like lamps and buttons, as
well as possessions, in which case the above solution is unsatisfactory. Fuller details will be given
in the “scope addition” rules in §28, but briefly: an object’s add_to_scope property may contain
a list of sub-objects to be kept attached to it (and these sub-objects don’t count as possessions).

•EXERCISE 12
Implement a macramé bag hanging from the ceiling, inside which objects are visible (and audible,
etc.) but cannot be touched or manipulated in any way.

•REFERENCES

Containers and supporters abound in the example games (except ‘Advent’, which is too simple,
though see the water-and-oil carrying bottle). Interesting containers include the lottery-board
and the podium sockets from ‘Balances’ and the ‘Adventureland’ bottle. • For supporters,
the hearth-rug, chessboard, armchair and mantelpiece of ‘Alice Through The Looking-Glass’ are
typical examples; the mantelpiece and spirit level of ‘Toyshop’ make a simple puzzle, and the pile
of building blocks a complicated one; see also the scales in ‘Balances’.

12 Doors

Standing in front of you to the north, however, is a door surpassing
anything you could have imagined. For starters, its massive lock is
wrapped in a dozen six-inch thick iron chains. In addition, a certain
five-headed monster...

– Marc Blank and P. David Lebling, ‘Enchanter’

O for doors to be open and an invite with gilded edges
To dine with Lord Lobcock and Count Asthma.

– W. H. Auden (–), Song

A useful kind of object is a door. This need not literally be a door: it might be a rope-
bridge or a ladder, for instance. To set up a door:

(a) give the object the door attribute;
(b) set its door_to property to the destination;
(c) set its door_dir property to the direction which that would be, such as n_to;
(d) make the room’s map connection in that direction point to the door itself.

For example, here is a closed and locked door, blocking the way into the ‘Ruins’ shrine:

Object Corridor "Stooped Corridor"

with description "A low, square-cut corridor, running north to south,

stooping you over.",

n_to Square_Chamber,

105

12 Doors

s_to StoneDoor;

Object -> StoneDoor "stone door"

with description "It’s just a big stone door.",

name "door" "massive" "big" "stone" "yellow",

when_closed

"Passage south is barred by a massive door of yellow stone.",

when_open

"The great yellow stone door to the south is open.",

door_to Shrine,

door_dir s_to,

with_key stone_key

has static door openable lockable locked;

Note that the door is static – otherwise the player could pick it up and walk away with
it! The properties when_closed and when_open give descriptions appropriate for the door
in these two states.

Doors are rather one-way: they are only really present on one side. If a door needs
to be accessible (openable and lockable from either side), a neat trick is to make it present
in both locations and to fix the door_to and door_dir to the right way round for whichever
side the player is on. Here, then, is a two-way door:

Object -> StoneDoor "stone door"

with description "It’s just a big stone door.",

name "door" "massive" "big" "stone" "yellow",

when_closed

"The passage is barred by a massive door of yellow stone.",

when_open

"The great yellow stone door is open.",

door_to

[; if (location==Corridor) return Shrine; return Corridor;],

door_dir

[; if (location==Shrine) return n_to; return s_to;],

with_key stone_key,

found_in Corridor Shrine,

has static door openable lockable locked;

where Corridor has s_to set to StoneDoor, and Shrine has n_to set to StoneDoor. The
door can now be opened, closed, entered, locked or unlocked from either side. We could
also make when_open and when_closed into routines to print different descriptions of the
door on each side.

At first sight, it isn’t obvious why doors have the door_dir property. Why does a
door need to know which way it faces? The point is that two different actions cause the
player to go through the door. Suppose the door is in the south wall. The player may type
“go south”, which directly causes the action Go s_obj. Or the player may “enter door”
or “go through door”, causing Enter the_door. Provided the door is actually open, the
Enter action then looks at the door’s door_dir property, finds that the door faces south
and generates the action Go s_obj. Thus, however the player tries to go through the door,
it is the Go action that finally results.

106

12 Doors

This has an important consequence: if you put before and after routines on the
Enter action for the StoneDoor, they only apply to a player typing “enter door” and not
to one just typing “south”. So one safe way is to trap the Go action. A neater method
is to put some code into a door_to routine. If a door_to routine returns 0 instead of
a room, then the player is told that the door “leads nowhere” (like the famous broken
bridge of Avignon). If door_to returns 1, or ‘true’, then the library stops the action on
the assumption that something has happened and the player has been told already.

•EXERCISE 13
Create a plank bridge across a chasm, which collapses if the player walks across it while carrying
anything.

•REFERENCES

‘Advent’ is especially rich in two-way doors: the steel grate in the streambed, two bridges (one
of crystal, the other of rickety wood) and a door with rusty hinges. See also the iron gate in
‘Balances’.

13 Switchable objects

Steven: ‘Well, what does this do?’ Doctor: ‘That is the dematerialising control.
And that over yonder is the horizontal hold. Up there is the scanner, these are the
doors, that is a chair with a panda on it. Sheer poetry, dear boy. Now please stop
bothering me.’

– Dennis Spooner, The Time Meddler

Dr Who, serial  ()

Objects can also be switchable. This means they can be turned off or on, as if they had
some kind of switch on them. The object has the attribute on if it’s on. For example:

Object searchlight "Gotham City searchlight" skyscraper

with name "search" "light" "template", article "the",

description "It has some kind of template on it.",

when_on "The old city searchlight shines out a bat against

the feather-clouds of the darkening sky.",

when_off "The old city searchlight, neglected but still

functional, sits here."

has switchable static;

Something more portable would come in handy for the explorer of ‘Ruins’, who would
hardly have embarked on his expedition without a decent light source. . .

Object sodium_lamp "sodium lamp"

with name "sodium" "lamp" "heavy",

107

13 Switchable objects

describe

[; if (self hasnt on)

"^The sodium lamp squats heavily on the ground.";

"^The sodium lamp squats on the ground, burning away.";

],

battery_power 40,

before

[; Examine: print "It is a heavy-duty archaeologist’s lamp, ";

if (self hasnt on) "currently off.";

if (self.battery_power < 10) "glowing a dim yellow.";

"blazing with brilliant yellow light.";

Burn: <<SwitchOn self>>;

SwitchOn:

if (self.battery_power <= 0)

"Unfortunately, the battery seems to be dead.";

if (parent(self) hasnt supporter && self notin location)

"The lamp must be securely placed before being lit.";

Take, Remove:

if (self has on)

"The bulb’s too delicate and the metal frame’s too

hot to lift the lamp while it’s switched on.";

],

after

[; SwitchOn: give self light;

SwitchOff: give self ~light;

],

has switchable;

The ‘Ruins’ lamp will eventually be a little more complicated, with a daemon to make
the battery power run down and to extinguish the lamp when it runs out; and it will be
pushable from place to place, making it not quite as useless as the player will hopefully
think at first.

4 A point to note is that this time the when_on and when_off properties haven’t been used
to describe the lamp when it’s on the ground: this is because once an object has been held by
the player, it’s normally given only a perfunctory mention in room descriptions (“You can also
see a sodium lamp and a grape here.”). But the describe property has priority over the whole
business of how objects are described in room descriptions. When it returns true, as above, the
usual description process does nothing further. For much more on room descriptions, see §22.

•REFERENCES

The original switchable object was the brass lamp from ‘Advent’ (which also provides verbs “on”
and “off” to switch it). (The other example games are generally pre-electric in setting.)

108

14 Things to enter, travel in and push around

. . .the need to navigate a newly added river prompted the invention
of vehicles (specifically, a boat).

– P. David Lebling, Marc Blank and Timothy Anderson

Some objects in a game are enterable, which means that a player can get inside or
onto them. Usually, “inside” means that the player is only half-in, as with a car or a
psychiatrist’s couch. (If it’s more like a prison cell, then it should be a separate place.) In
practice one often wants to make an enterable thing also a container, or, as in the altar
from ‘Ruins’, a supporter:

Object -> stone_table "slab altar"

with name "stone" "table" "slab" "altar" "great",

initial "A great stone slab of a table, or altar, dominates the Shrine.",

has enterable supporter;

A chair to sit on, or a bed to lie down on, should also be a supporter.
If the player gets into a container and then closes it, the effect is like being in a

different location. (Unless the container has the transparent attribute and is therefore
see-through.) The interior may be dark, but if there’s light to see by, the player will want
to see some kind of room description. In any case, many enterable objects ought to look
different from inside or on top. Inside a vehicle, a player might be able to see a steering
wheel and a dashboard, for instance. On top of a cupboard, it might be possible to see
through a skylight window.

For this purpose, any enterable object can provide an inside_description, which
can be a string or a routine to print one, as usual. If the exterior location is still visible,
then the “inside description” is added to the normal room description, and otherwise it
becomes that description. As an extreme example, suppose that the player gets into a
huge cupboard, closes the door behind her and then gets into a plastic cabinet inside that.
The resulting room description might read like so:

The huge cupboard (in the plastic cabinet)
It’s a snug little cupboard in here, almost a room in itself.

In the huge cupboard you can see a pile of clothes.

The plastic walls of the cabinet distort the view.

The second line is the inside_description for the huge cupboard, and the fourth is that
for the plastic cabinet.

•EXERCISE 14
(Also from ‘Ruins’.) Implement a cage which can be opened, closed and entered.

109

14 Things to enter, travel in and push around

All the classic games have vehicles (like boats, or fork lift trucks, or hot air balloons) which
the player can journey in, so Inform makes this easy. Here is a simple case:

Object car "little red car" cave

with name "little" "red" "car",

description "Large enough to sit inside. Among the controls is a

prominent on/off switch. The numberplate is KAR 1.",

when_on "The red car sits here, its engine still running.",

when_off "A little red car is parked here.",

before

[; Go: if (car has on) "Brmm! Brmm!";

print "(The ignition is off at the moment.)^";

],

has switchable enterable static container open;

Actually, this demonstrates a special rule. If a player is inside an enterable object and
tries to move, say “north”, the before routine for the object is called with the action Go,
and n_obj as the noun. It may then return:

0 to disallow the movement, printing a refusal;
1 to allow the movement, moving vehicle and player;
2 to disallow but print and do nothing; or
3 to allow but print and do nothing.

If you want to move the vehicle in your own code, return 3, not 2: otherwise the old
location may be restored by subsequent workings.

Because you might want to drive the car “out” of a garage, the “out” verb does not make
the player get out of the car. Usually the player has to type something like “get out” to
make this happen, though of course the rules can be changed.

•EXERCISE 15
Alter the car so that it won’t go east.

4 Objects like the car or, say, an antiquated wireless on casters, are obviously too heavy
to pick up but the player should at least be able to push them from place to place. When the
player tries to do this, the PushDir action is generated. Now, if the before routine returns false,
the game will just say that the player can’t; and if it returns true, the game will do nothing at
all, guessing that the before routine has already printed something more interesting. So how
does one actually tell Inform that the push should be allowed? The answer is that one has to do
two things: call the AllowPushDir routine (a library routine), and then return true. For example
(‘Ruins’ again):

Object -> huge_ball "huge pumice-stone ball"

with name "huge" "pumice" "pumice-stone" "stone" "ball",

description "A good eight feet across, though fairly lightweight.",

initial

"A huge pumice-stone ball rests here, eight feet wide.",

before

[; PushDir:

110

14 Things to enter, travel in and push around

if (location==Junction && second==w_obj)

"The corridor entrance is but seven feet across.";

AllowPushDir(); rtrue;

Pull, Push, Turn: "It wouldn’t be so very hard to get rolling.";

Take, Remove: "There’s a lot of stone in an eight-foot sphere.";

],

after

[; PushDir:

if (second==s_obj) "The ball is hard to stop once underway.";

if (second==n_obj) "You strain to push the ball uphill.";

],

has static;

•4 EXERCISE 16
The library does not normally allow pushing objects up or down. How can the pumice ball allow
this?

•REFERENCES

For an enterable supporter puzzle, see the magic carpet in ‘Balances’ (and several items in
‘Alice Through The Looking-Glass’).

15 Reading matter and consultation

Even at present. . . we still know very little about how access to printed materials
affects human behaviour.

– Elizabeth Eisenstein, The Printing Revolution in Early Modern Europe

look up figure 18 in the engineering textbook

is a difficult line for Inform to understand, because almost anything could appear in the
first part: even its format depends on what the second part is. This kind of request, and
more generally

look up 〈any words here〉 in 〈the object〉
read about 〈any words here〉 in 〈the object〉
consult 〈the object〉 about 〈any words here〉

cause the Consult object action. Note that second is just zero: formally, there is no
second noun attached to a Consult action. The object has to parse the 〈any words here〉

111

15 Reading matter and consultation

part itself, in a before rule for Consult. The following variables are set up to make this
possible:

consult_from holds the number of the first word in the 〈any...〉 clause;
consult_words holds the number of words in the 〈any...〉 clause (at least 1).

The words given are parsed using library routines like NextWord(), TryNumber(word-
number) and so on: see §24 for full details. As usual, the before routine should return
true if it has managed to deal with the action; returning false will make the library print
“You discover nothing of interest in. . .”.

Little hints are placed here and there in the ‘Ruins’, written in the glyphs of an
ancient dialect of Mayan. Our explorer has, of course, come equipped with the latest and
finest scholarship on the subject:

Object dictionary "Waldeck’s Mayan dictionary"

with name "dictionary" "local" "guide" "book" "mayan"

"waldeck" "waldeck^s",

description "Compiled from the unreliable lithographs of the

legendary raconteur and explorer ~Count~ Jean Frederic

Maximilien Waldeck (1766??-1875), this guide contains

what little is known of the glyphs used in the local

ancient dialect.",

before

[w1 w2 glyph other; Consult:

if (consult_words>2) jump GlyphHelp;

wn=consult_from;

w1 = NextWord(); ! First word of subject

w2 = NextWord(); ! Second word (if any) of subject

if (consult_words==1 && w1==’glyph’ or ’glyphs’)

jump GlyphHelp;

! We want to recognise both "glyph q1" and "q1 glyph":

glyph=w1; other=w2;

if (w1==’glyph’) { glyph=w2; other=w1; }

! So now glyph holds the name, and other the other word

if (consult_words==2 && other~=’glyph’) jump GlyphHelp;

switch(glyph)

{ ’q1’: "(This is one glyph you have memorised!)^^

Q1: ~sacred site~.";

’circle’: "Circle: ~the Sun; also life, lifetime~.";

...

default: "That glyph is so far unrecorded.";

}

! All three of the ways the text can go wrong lead to

! this message being produced:

.GlyphHelp; "Try ~look up <name of glyph> in book~.";

],

has proper;

112

15 Reading matter and consultation

Note that this understands any of the forms “q1”, “glyph q1” or “q1 glyph” but is careful
to reject, for instance, “glyph q1 glyph”. (These aren’t genuine Mayan glyphs, but some
of the real ones have similar names, dating from when their syllabic equivalents weren’t
known: G8, the Lord of the Night, for instance.)

•EXERCISE 17
To mark the 500th anniversary of William Tyndale (the first English translator of the New Tes-
tament), prepare an edition of the four Gospels.

44 Ordinarily, a request by the player to “read” something is translated into an Examine

action. But the “read” verb is defined independently of the “examine” verb in order to make it
easy to separate the two requests. For instance:

Attribute legible;

...

Object textbook "textbook"

with name "engineering" "textbook" "text" "book",

description "What beautiful covers and spine!",

before

[; Consult, Read:

"The pages are full of senseless equations.";

],

has legible;

...

[ReadSub; <<Examine noun>>;];

Extend "read" first * legible -> Read;

Note that “read” causes a Read action only for legible objects, and otherwise causes Examine in

the usual way. ReadSub is coded as a translation to Examine as well, so that if a legible object

doesn’t provide a Read rule then an Examine happens after all.

•REFERENCES

If you really need more elaborate topic-parsing (for, e.g., “look up 〈something〉 in the catalogue”,
where any object name might appear) then extending the grammar for look may be less trouble.
For a good implementation see ‘Encyclopaedia Frobozzica’, by Gareth Rees.

16 Living creatures and conversation

To know how to live is my trade and my art.

– Michel de Montaigne (–), Essays

Everything that can be said can be said clearly.

113

16 Living creatures and conversation

– Ludwig Wittgenstein (–), Tractatus

This rummage through special kinds of objects finishes up with the most sophisticated
kind: living ones. Note that the finer points of this section, on the arts of conversation,
require some knowledge of Chapter V.

Animate objects, such as sea monsters, mad aunts or nasty little dwarves, have a
property called life. This behaves somewhat like a before or after routine, but only
applies to the following actions:

Attack The player is making hostile advances. . .

Kiss . . .or excessively friendly ones. . .

WakeOther . . .or simply trying to rouse the creature from sleep.

ThrowAt The player asked to throw noun at the creature.

Give The player asked to give noun to the creature. . .

Show . . .or, tantalisingly, just to show it.

Ask The player asked about something. Just as with a “consult” topic (see §15
passim), the variables consult_from and consult_words are set up to indi-
cate which words the object might like to think about. (In addition, second
holds the dictionary value for the first word which isn’t ’the’, but this is
much cruder.)

Tell Likewise, the player is trying to tell the creature about something. The topic
is set up just as for Ask (that is, consult_from and consult_words are set,
and second also holds the first interesting word).

Answer This can happen in two ways. One is if the player types “answer 〈some text〉
to troll” or “say 〈some text〉 to troll”; the other is if he gives an order which
the parser can’t sort out, such as “troll, og south”, and which the orders
property hasn’t handled already. Once again, variables are set as if it were a
“consult” topic. (In addition, noun is set to the first word, and an attempt
to read the text as a number is stored in the variable special_number: for
instance, “computer, 143” will cause special_number to be set to 143.)

Order This catches any ‘orders’ which aren’t handled by the orders property (see
below); action, noun and second are set up as usual.

If the life routine doesn’t exist, or returns false, events take their usual course. life
routines tend to be quite lengthy, even for relatively static characters such as the priest
who stands in the ‘Ruins’ Shrine:

Object -> priest "mummified priest"

with name "mummified" "priest",

description

"He is desiccated and hangs together only by will-power. Though

his first language is presumably local Mayan, you have the curious

114

16 Living creatures and conversation

instinct that he will understand your speech.",

initial "Behind the slab, a mummified priest stands waiting, barely

alive at best, impossibly venerable.",

life

[; Answer: "The priest coughs, and almost falls apart.";

Ask: switch(second)

{ ’dictionary’, ’book’:

if (dictionary has general)

"~The ~bird~ glyph... very funny.~";

"~A dictionary? Really?~";

’glyph’, ’glyphs’, ’mayan’, ’dialect’:

"~In our culture, the Priests are ever literate.~";

’king’, ’tomb’, ’shrine’, ’temple’, ’altar’, ’slab’:

"~The King (life! prosperity! happiness!) is buried

deep under this Shrine, where you will never go.~";

}

"~You must find your own answer.~";

Tell: "The priest has no interest in your sordid life.";

Attack, Kiss: remove self;

"The priest desiccates away into dust until nothing

remains, not a breeze nor a bone.";

ThrowAt: move noun to location; <<Attack self>>;

Show, Give:

if (noun==dictionary && dictionary hasnt general)

{ give dictionary general;

"The priest reads a little of the book, laughing

in a hollow, whispering way. Unable to restrain

his mirth, he scratches in a correction somewhere

before returning the book.";

}

"The priest is not very interested in earthly things.";

],

has animate;

(Some of the Ask topics are omitted for brevity.) Of course an animate object still has
before and after routines like any other, so you can trap many other kinds of behaviour.
Animate creatures can also react_before and react_after, and it’s here that these
properties really come into their own:

react_before

[; Drop: if (noun==satellite_gadget)

print "~I wouldn’t do that, Mr Bond,~ says Blofeld.^^";

Shoot: remove beretta;

"As you draw, Blofeld snaps his fingers and a giant

magnet snatches the gun from your hand. It hits the

ceiling with a clang. Blofeld silkily strokes his cat.";

];

If Blofeld moves from place to place, these rules move with him.

115

16 Living creatures and conversation

•EXERCISE 18
Arrange for a bearded psychiatrist to place the player under observation, occasionally mumbling
insights such as “Subject puts green cone on table. Interesting.”

Another example is the coiled snake from ‘Balances’, which shows that even the tiniest
life routine can be adequate for an animal:

Object -> snake "hissing snake"

with name "hissing" "snake",

initial "Tightly coiled at the edge of the chasm is a hissing snake.",

life [; "The snake hisses angrily!";],

has animate;

4 When writing general code to deal with animate creatures, it’s sometimes convenient to
have a system worked out for printing pronouns such as “her” and “He”. See §22 for one way to
do this.

Sometimes creatures should be transparent, sometimes not. Consider these two cases of
animate characters, for instance:

• an urchin with something bulging inside his jacket pocket;
• a hacker who has a bunch of keys hanging off his belt.

The hacker is transparent, the urchin not. That way the parser prevents the player
from referring to whatever the urchin is hiding, even if the player has played the game
before, and knows what is in there and what it’s called. But the player can look at and be
tantalised by the hacker’s keys.

When the player types in something like “pilot, fly south”, the result is called an ‘order’:
this is the corresponding idea to an ‘action’. (Indeed, if the player types “me, go south”
an ordinary Go s_obj action is produced.)

The order is sent to the pilot’s orders property, which may if it wishes obey or
react in some other way. Otherwise, the standard game rules will simply print something
like “The pilot has better things to do.” The above priest is especially unhelpful:

orders

[; Go: "~I must not leave the Shrine.~";

NotUnderstood: "~You speak in riddles.~";

default: "~It is not your orders I serve.~";

];

(The NotUnderstood clause is run when the parser couldn’t understand what the player
typed: e.g., “priest, go onrth”.)

4 Something to bear in mind is that because the library regards the words “yes” and “no”
as being verbs in Inform, it understands “delores, yes” as being a Yes order. (This can be a slight
nuisance, as “say yes to delores” is treated differently: it gets routed through the life routine as
an Answer.)

116

16 Living creatures and conversation

44 If the orders property returns false (or if there wasn’t an orders property in the first
place), the order is sent either to the Order: part of the life property (if it’s understood) or to
the Answer: part (if it isn’t). (This is how all orders used to be processed, and it’s retained to
avoid making reams of old Inform code go wrong.) If these also return false, a message like “X
has better things to do” or “There is no reply” is finally printed.

To clarify the various kinds of conversation:
Command rule action noun second consult
“orc, take axe” order Take axe 0
“orc, yes” order Yes 0 0
“ask orc for the shield” order Give shield player
“orc, troll” order NotU... ’troll’ orc 3 1
“say troll to orc” life Answer ’troll’ orc 2 1
“answer troll to orc” life Answer ’troll’ orc 2 1
“orc, tell me about coins” life Ask orc ’coins’ 6 1
“ask orc about the big troll” life Ask orc ’big’ 4 3
“ask orc about wyvern” life Ask orc 0 4 1
“tell orc about lost troll” life Tell orc ’lost’ 4 2
where “wyvern” is a word not mentioned anywhere in the program, which is why its value
is 0.

•EXERCISE 19
In some ways, Answer and Tell are just too much trouble. How can you make attempts to use
these produce a message saying “To talk to someone, try ‘someone, something’.”?

Some objects are not alive as such, but can be spoken to: microphones, tape recorders,
voice-activated computers and so on. It would be a nuisance to implement these as ani-
mate, since they have none of the other characteristics of life: instead, they can be given
just the attribute talkable and orders and life properties to deal with the resulting
conversation.

•EXERCISE 20
(Cf. ‘Starcross’.) Construct a computer responding to “computer, theta is 180”.

4 The rest of this section starts to overlap much more with Chapter V, and assumes a little
familiarity with the parser.

4 The NotUnderstood clause of orders is run when the parser has got stuck parsing an order
like “pilot, fly somersaults”. The variable etype holds the parser error that would have been
printed out, had it been a command by the player himself. See §29: for instance, CANTSEE_PE
would mean “the pilot can’t see any such object”.

4 When the player issues requests to an animate or talkable object, they’re normally parsed
exactly as if they were commands by the player himself (except that the actor is now the person
being spoken to). But sometimes one would rather they were parsed by an entirely different
grammar. For instance, consider Zen, the flight computer of an alien spacecraft. It’s inappropriate
to tell Zen to (say) pick up a teleport bracelet and the crew tend to give commands more like:

“Zen, set course for Centauro”

117

16 Living creatures and conversation

“Zen, speed standard by six”
“Zen, scan 360 orbital”
“Zen, raise the force wall”
“Zen, clear the neutron blasters for firing”

This could mostly be implemented by adding verbs like “raise” to the usual game grammar (see
the ‘Starcross’ computer exercise above), or by carefully trapping the Answer rule. But this is a
nuisance, especially if about half the commands you want are recognised as orders in the usual
grammar but the other half aren’t.

An animate or talkable object can therefore provide a grammar routine (if it likes). This
is called at a time when the parser has worked out the object that is being addressed and has
set the variables verb_num and verb_word (to the number of the ‘verb’ and its dictionary entry,
respectively: for example, in “orac, operate the teleport” verb_num would be 3 (because the
comma counts as a word on its own) and verb_word would be ’operate’). The grammar routine
can reply by returning:

0. The parser carries on as usual.
1. The grammar routine is saying it has done all the parsing necessary itself, by hand (i.e.,

using NextWord, TryNumber, NounDomain and the like): the variables action, noun and
second must be set up to contain the resulting order.

’verb’ The parser ignores the usual grammar and instead works through the grammar lines for
the given verb (see below).

-’verb’ Ditto, except that if none of those grammar lines work then the parser goes back and tries
the usual grammar as well.

In addition, the grammar routine is free to do some partial parsing of the early words provided it
moves on verb_num accordingly to show how much it’s got through.

•4 EXERCISE 21
Implement Charlotte, a little girl who’s playing Simon Says (a game in which she only follows your
instructions if you remember to say “Simon says” in front of them: so she’ll disobey “charlotte,
wave” but obey “charlotte, simon says wave”).

•4 EXERCISE 22
Another of Charlotte’s rules is that if you say a number, she has to clap that many times. Can
you play?

•4 EXERCISE 23
Regrettably, Dyslexic Dan has always mixed up the words “take” and “drop”. Implement him
anyway.

4 It’s useful to know that if the player types a comma or a full stop, then the parser cuts
these out as separate words. Because of this, a dictionary word containing up to 7 letters and then
a comma or a full stop can never be matched by what the player types. Such a word is called an
“untypeable verb”, and it’s useful to help a grammar routine to shunt parsing into a piece of game
grammar which the player can never use. For instance, here’s a way to implement the ‘Starcross’
computer which doesn’t involve creating foolish new actions. We create grammar:

[Control;

switch(NextWord())

{ ’theta’: parsed_number=1; return 1;

’phi’: parsed_number=2; return 1;

118

16 Living creatures and conversation

’range’: parsed_number=3; return 1;

default: return -1;

}

];

Verb "comp," * Control "is" number -> SetTo;

And the computer itself needs properties

grammar [; return ’comp,’;],

orders

[; SetTo:

switch(noun)

{ 1: print "~Theta"; 2: print "~Phi"; 3: print "~Range"; }

print_ret " set to ", second, ".~";

default: "~Does not compute!~";

];

This may not look easier, but it’s much more flexible, as the exercises below will hopefully demon-
strate.

44 Another use for untypeable verbs is to create what might be called ‘fake fake actions’.
Recall that a fake action is one which is never generated by the parser, and has no action routine.
Sometimes (very rarely) you want a proper action but which still can’t be generated by the parser:
the following example creates three.

Verb "actions." * -> Prepare * -> Simmer * -> Cook;

The parser never uses “actions.” in its ordinary grammar, so this definition has the sole effect of
creating three new actions: Prepare, Simmer and Cook.

•44 EXERCISE 24
How can you make a grammar extension to an ordinary verb that will apply only to Dan?

•4 EXERCISE 25
Make an alarm clock responding to “alarm, off”, “alarm, on” and “alarm, half past seven” (the
latter to set its alarm time).

•4 EXERCISE 26
Implement a tricorder (from Star Trek) which analyses nearby objects on a request like “tricorder,
the quartz stratum”.

•4 EXERCISE 27
And, for good measure, a replicator responding to commands like “replicator, tea earl grey” and
“replicator, aldebaran brandy”.

•44 EXERCISE 28
And a communications badge in contact with the ship’s computer, which answers questions like
“computer, where is Admiral Lebling”.

•44 EXERCISE 29
Finally, construct the formidable flight computer Zen.

119

16 Living creatures and conversation

The next two exercises really belong to §28, but are too useful (for the “someone on the other
end of a phone” situation) to bury far away. Note that an alternative to these scope-hacking
tricks, if you just want to implement something like “michael, tell me about the crystals” (when
Michael is at the other end of the line), is to make the phone a talkable object and make the
word ’michael’ refer to the phone (using a parse_name routine).

For more on scope hacking, see §28. Note that the variable scope_reason is always set to
the constant value TALKING_REASON when the game is trying to work out who you wish to talk to:
so it’s quite easy to make the scope different for conversational purposes.

•4 EXERCISE 30
Via the main screen of the Starship Enterprise, Captain Picard wants to see and talk to Noslen
Maharg, the notorious tyrant, who is down on the planet Mrofni. Make it so.

•44 EXERCISE 31
Put the player in telepathic contact with Martha, who is in a sealed room some distance away,
but who has a talent for telekinesis. Martha should respond well to “martha, look”, “ask martha
about...”, “say yes to martha”, “ask martha for red ball”, “martha, give me the red ball” and the
like.

•REFERENCES

A much fuller example of a ‘non-player character’ is given in the example game ‘The Thief’, by
Gareth Rees (though it’s really an implementation of the gentleman in ‘Zork’, himself an imitation
of the pirate in ‘Advent’). The thief is capable of walking around, being followed, stealing things,
picking locks, opening doors and so on. • Other good definitions of animate objects to look at
are Christopher in ‘Toyshop’, who will stack up building blocks on request; the kittens in ‘Alice
Through The Looking-Glass’; the barker in ‘Balances’, and the cast of ‘Advent’: the little bird, the
snake, bear and dragon, the pirate and of course the threatening little dwarves. • Following
people means being able to refer to them after they’ve left the room: see ‘Follow my leader’, also
by Mr Rees, or the library extension “follower.h” by Andrew Clover. • See the Inform home
page for a way round the Yes awkwardness. • For parsing topics of conversation in advanced
ways, see the example game ‘Encyclopaedia Frobozzica’ by Gareth Rees. • To see how much
a good set of characters can do for a game, try playing the prologue of ‘Christminster’.

120

17 The light and the dark

The library maintains light by itself, and copes with events like:

a total eclipse of the sun;
fusing all the lights in the house;
your lamp going out;
a dwarf stealing it and running away;
dropping a lit match which you were seeing by;
putting your lamp into an opaque box and shutting the lid;
black smoke filling up the glass jar that the lamp is in;
the dwarf with your lamp running back into your now-dark room.

The point of this list is to demonstrate that light versus darkness is tricky to get right,
and best left to the library. Your code needs only to do something like

give lamp light;
remove match;
give glass_jar ~transparent;
move dwarf to Dark_Room;

and can leave the library to sort out the consequences. As the above suggests, the light
attribute means that an object is giving off light, or that a room is currently lit, e.g.
because it is outdoors in day-time. If you simply never want to have darkness, a sneaky
way of doing it is to put the line

give player light;

in Initialise. The game works as if the player herself were glowing enough to provide
light to see by. So there’s never darkness near the player.

The definition of “when there is light” is complicated, involving recursion both up
and down. Remember that the parent of the player object may not be a room; it may be,
say, a red car whose parent is a room.

Definition. There is light exactly when the parent of the player ‘offers light’. An object
‘offers light’ if:

it itself has the light attribute set, or
any of its immediate possessions ‘have light’, or
it is see-through and its parent offers light;

while an object ‘has light’ if:

it currently has the light attribute set, or
it is see-through and one of its immediate possessions has light, or
any of the things it “adds to scope” (see Chapter V) have light.

The process of checking this stops as soon as light is discovered. The routines

OffersLight(object) and HasLightSource(object)

return true or false and might occasionally be useful.

121

17 The light and the dark

4 So light is cast up and down the tree of objects. In certain contrived circumstances this
might be troublesome: perhaps an opaque box, whose outside is fluorescent but whose interior is
dark, and which contains an actor who needs not to have other contents of the box in scope. . .
The dilemma could be solved by putting an inner box in the outer one.

•EXERCISE 32
How would you code a troll who is afraid of the dark, and needs to be bribed but will only accept
a light source. . . so that the troll will be as happy with a goldfish bowl containing a fluorescent
jellyfish as he would be with a lamp?

Each turn, light is reconsidered. The presence or absence of light affects the Look, Search,
LookUnder and Examine actions, and (since this is a common puzzle) also the Go action:
you can provide a routine called

DarkToDark()

and if you do then it will be called when the player goes from one dark room into another
dark one (just before the room description for the new dark room, probably “Darkness”,
is printed). If you want, you can take the opportunity to kill the player off or extract
some other forfeit. If you provide no such routine, then the player can move about freely
(subject to any rules which apply in the places concerned).

4 When the player is in darkness, the current location becomes thedark, a special ob-
ject which acts like a room and has the short name “Darkness”. You can change the initial,
description or short_name properties for this. For example, your Initialise routine might set

thedark.short_name = "Creepy, nasty darkness";

See §18 for how ‘Ruins’ makes darkness menacing.

•4 EXERCISE 33
Implement a pet moth which escapes if it’s ever taken into darkness.

•REFERENCES

For a DarkToDark routine which discourages wandering about caves in the dark, see ‘Advent’.

122

18 Daemons and the passing of time

Some, such as Sleep and Love, were never human. From this class an individual
daemon is allotted to each human being as his ‘witness and guardian’ through life.

– C. S. Lewis (–), The Discarded Image

A great Daemon. . . Through him subsist all divination, and the science of sacred
things as it relates to sacrifices, and expiations, and disenchantments, and prophecy,
and magic. . . he who is wise in the science of this intercourse is supremely happy. . .

– Plato (c.– BC), The Symposium

– translated by Percy Bysshe Shelley (–)

In medieval neo-Platonist philosophy, daemons are the intermediaries of God, hovering
invisibly over the world and interfering with it. They may be guardian spirits of places or
people. So, here, a daemon is a meddling spirit, associated with a particular game object,
which gets a chance to interfere once per turn while it is ‘active’. The classic example is
of the dwarves of ‘Advent’, who appear in the cave from time to time: a daemon routine
attached to the dwarf object moves it about, throws knives at the player and so on. Each
object can have a daemon routine of its own. This is set going, and stopped again, by
calling the (library) routines

StartDaemon(object);
StopDaemon(object);

Once active, the daemon property of the object is called as a routine each turn. Daemons
are often started by a game’s Initialise routine and sometimes remain active throughout.
For instance, a lamp-battery daemon might do something every turn, while others may
hide for many turns before pouncing: such as the daemon in ‘Advent’ which waits until
the player has found all the treasures.

4 In particular, a daemon doesn’t stop running just because the player has moved on to
somewhere else. (Indeed, the library never stops a daemon unless told to.) Actually this is very
useful, as it means daemons can be used for ‘tidying-up operations’, or for the consequences of
the player’s actions to catch up with him.

•EXERCISE 34
Many games contain ‘wandering monsters’, characters who walk around the map. Use a daemon
to implement one who wanders as freely as the player, like the gentleman thief in ‘Zork’.

•4 EXERCISE 35
Use a background daemon to implement a system of weights, so that the player can only carry a
certain weight before her strength gives out and she is obliged to drop something. It should allow
for feathers to be lighter than lawn-mowers.

123

18 Daemons and the passing of time

A ‘timer’ (these are traditionally called ‘fuses’) can also be attached to an object. A timer
is started with

StartTimer(object, time);

in which case it will ‘go off’, alarm clock-style, in the given number of turns. This means
that its time_out property will be called, once and once only, when the time comes. The
timer can be deactivated (so that it will never go off) by calling

StopTimer(object);

A timer is required to provide a time_left property, to hold the amount of time left. (If
it doesn’t, an error message is printed at run-time.) You can alter time_left yourself: a
value of 0 means ‘will go off at the end of this turn’, so setting time_left to 0 triggers
immediate activation.

4 Normally, you can only have 32 timers or daemons active at the same time as each other
(plus any number of inactive ones). But this limit is easily raised: just define the constant
MAX_TIMERS to some larger value, putting the definition in your code before the Parser file is
included.

There is yet a third form of timed event. If a room provides an each_turn routine, then
this will be called at the end of each turn while the player is there; if an object provides
each_turn, this is called while the object is nearby. For instance, a radio might blare
out music whenever it is nearby; a sword might glow whenever monsters are nearby; or a
stream running through several forest locations might occasionally float objects by.

’Each turn’ is especially useful to run creatures which stay in one room and are
only active when the player is nearby. An ogre with limited patience can therefore have
an each_turn routine which worries the player (“The ogre stamps his feet angrily!”, etc.)
while also having a timer set to go off when his patience runs out.

4 ‘Nearby’ actually means ‘in scope’, a term which will be properly explained later. The
idea is based on line of sight, which works well in most cases.

44 But it does mean that the radio will be inaudible when shut up inside most containers –
which is arguably fair enough – yet audible when shut up inside transparent, say glass, ones. You
can always change the scope rules using an InScope routine to get around this. In case you want
to tell whether scope is being worked out for ordinary parsing reasons or instead for each_turn

processing, look at the scope_reason variable (see §28). Powerful effects are available this way –
you could put the radio in scope within all nearby rooms so as to allow sound to travel. Or you
could make a thief audible throughout the maze he is wandering around in, as in ‘Zork I’.

•EXERCISE 36
(Why the ‘Ruins’ are claustrophobic.) Make “the sound of scuttling claws” approach the player
in darkness and, after 4 consecutive turns in darkness, kill him.

•4 EXERCISE 37
A little harder: implement the scuttling claws in a single object definition, with no associated code
anywhere else in the program (not even a line in Initialise) and without running its daemon
all the time.

124

18 Daemons and the passing of time

The library also has the (limited) ability to keep track of time of day as the game goes
on. The current time is held in the variable the_time and runs on a 24-hour clock: this
variable holds minutes since midnight, so it has values between 0 and 1439. The time can
be set by

SetTime(60×〈hours〉+〈minutes〉, 〈rate〉);

The rate controls how rapidly time is moving: a rate of 0 means it is standing still (that
is, that the library doesn’t change it: your routines still can). A positive rate means that
that many minutes pass between each turn, while a negative rate means that many turns
pass between each minute. (It’s usual for a timed game to start off the clock by calling
SetTime in its Initialise routine.) The time only (usually) appears on the game’s status
line if you set

Statusline time;

as a directive somewhere in your code.

•EXERCISE 38
How could you make your game take notice of the time passing midnight, so that the day of the
week could be nudged on?

•4 EXERCISE 39
(Cf. Sam Hulick’s vampire game, ‘Knight of Ages’.) Make the lighting throughout the game
change at sunrise and sunset.

4 Exactly what happens at the end of each turn is:

1. The turns counter is incremented.

2. The 24-clock is moved on.

3. Daemons and timers are run (in no guaranteed order).

4. each_turn takes place for the current room, and then for everything nearby (that is, in
scope).

5. The game’s global TimePasses routine is called.

6. Light is re-considered (it may have changed as a result of events since this time last turn).

The sequence is abandoned if at any stage the player dies or wins.

•4 EXERCISE 40
Suppose the player is magically suspended in mid-air, but that anything let go of will fall out of
sight. The natural way to code this is to use a daemon which gets rid of anything it finds on the
floor (this is better than just trapping Drop actions because objects might end up on the floor in
many different ways). Why is using each_turn better?

•EXERCISE 41
How would a game work if it involved a month-long archaeological dig, where anything from days
to minutes pass between successive game turns?

125

18 Daemons and the passing of time

•REFERENCES

Daemons abound in most games. ‘Advent’ uses them to run down the lamp batteries, make
the bear follow you, animate the dwarves and the pirate and watch for the treasure all being
found. See also the flying tortoise from ‘Balances’ and the chiggers from ‘Adventureland’. For
more ingenious uses of daemon, see the helium balloon, the matchbook and (particularly cunning)
the pair of white gloves in ‘Toyshop’. • Classic timers include the burning match and the
hand grenade from ‘Toyshop’, the endgame timer from ‘Advent’ and the ‘Balances’ cyclops (also
employing each_turn). • ‘Adventureland’ makes much use of each_turn: see the golden fish,
the mud, the dragon and the bees. • The library extension ‘timewait.h’ by Andrew Clover
thoroughly implements time of day, allowing the player to “wait until quarter past three”.

19 Starting, moving, changing and killing the player

There are only three events in a man’s life; birth, life and death; he
is not conscious of being born, he dies in pain and he forgets to live.

– Jean de la Bruyère (–)

Life’s but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more; it is a tale
Told by an idiot, full of sound and fury,
Signifying nothing.

– William Shakespeare (–), Macbeth V. v

The only compulsory task for a game’s Initialise routine is to set the location variable
to the place where the player should begin. This is usually a room (and is permitted to
be one that’s in darkness) but could instead be an object inside a room, such as a chair or
a bed. If you would like to give the player some items to begin with, Initialise should
also move them to player.

Games with a long opening sequence might want to start by offering the player a
chance to restore a saved game at once. They can do so by writing the following in their
Initialise routines:

print "Would you like to restore a game? >";

if (YesOrNo()) <Restore>;

(If you want to make the status line invisible during an opening sequence, see §33.) Ini-
tialise normally returns 0 or 1 (it doesn’t matter which), but if it returns 2 then no
game banner will be printed at once. (This is for games which, like ‘Sorcerer’, delay their
banners until after the prologue.) ‘Ruins’, however, opens in classical fashion:

[Initialise;

126

19 Starting, moving, changing and killing the player

TitlePage();

location = Forest;

move food_ration to player;

move sodium_lamp to player;

move dictionary to player;

thedark.description = "The darkness of ages presses in on you, and you

feel claustrophobic.";

"^^^^^Days of searching, days of thirsty hacking through the briars of

the forest, but at last your patience was rewarded. A discovery!^";

];

(The TitlePage routine will be an exercise in §33: ‘Ruins’ is really too small a game
to warrant one, but never mind.) The location variable needs some explanation. It
holds either the current room, if there’s light to see by, or the special value thedark (the
“Darkness” object) if there isn’t. In the latter case (but only in the latter case) the actual
current room is held in the variable real_location, should you need to know it. Neither
of these is necessarily the same as the parent of the player object. For instance, if the
player sits in a jeep parked in a dark garage, then location is thedark, real_location
is Garage and parent(player) is jeep.

Because of this, one shouldn’t simply move the player object by hand. Instead, to
move the player about (for teleportation of some kind), use the routine PlayerTo(place);
(which automatically takes care of printing the new room’s description if there’s enough
light there to see by).

4 PlayerTo can also be used to move the player to a place inside a room (e.g., a cage, or a
traction engine).

4 Calling PlayerTo(place, 1); moves the player but prints nothing (in particular, prints
no room description).

4 Calling PlayerTo(place, 2); will Look as if the player had arrived in the room by walking
in as usual, so only a short description appears if the room is one that has been seen before.

4 In a process called ‘scoring arrival’, a room which the player has entered for the first time
is given the visited attribute. If it was listed as scored, points are awarded. (See §14.)

44 When a Look action takes place, or a call to PlayerTo(place,1), the library ‘notes arrival’
as well as ‘scores arrival’. ‘Noting arrival’ consists of checking to see if the room has changed since
last time (darkness counting as a different room for this purpose). If so, the following happens:

1. If the new location has an initial property, this is printed if it’s a string, or run if it’s a
routine.

2. The entry point NewRoom is called (if it exists).

3. Any ‘floating objects’, such as drifting mist, which are found_in many places at once, are

moved into the room.

The player’s whole persona can easily be changed, because the player object can itself
have an orders routine, just as the object for any non-player character can. To replace
the orders routine for the standard player object, set

player.orders = MyNewRule;

127

19 Starting, moving, changing and killing the player

where MyNewRule is a new orders rule. Note that this is applied to every action or order
issued by the player. The variable actor holds the person being told to do something,
which may well be the player himself, and the variables action, noun and second are set
up as usual. For instance, if a cannon goes off right next to the player, a period of partial
deafness might ensue:

[MyNewRule;

if (actor~=player) rfalse;

Listen: "Your hearing is still weak from all that cannon-fire.";

];

The if statement needs to be there to prevent commands like “helena, listen” from being
ruled out – after all, the player can still speak.

•4 EXERCISE 42
Why not achieve the same effect by giving the player a react_before rule instead?

•EXERCISE 43
(Cf. ‘Curses’.) Write an orders routine for the player so that wearing the gas mask will prevent
him from talking.

4 In fact a much more powerful trick is available: the player can actually become a different
character in the game, allowing the real player at the keyboard to act through someone else.
Calling ChangePlayer(obj) will transform the player to obj. There’s no need for obj to have
names like “me” or “myself”; the parser understands these words automatically to refer to the
currently-inhabited player object. However, it must provide a number property (which the library
will use for workspace). The maximum number of items the player can carry as that object will
be its capacity. Finally, since ChangePlayer prints nothing, you may want to conclude with a
<<Look>>;

ChangePlayer has many possible applications. The player who tampers with Dr Franken-
stein’s brain transference machine may suddenly become the Monster strapped to the table. A
player who drinks too much wine could become a ‘drunk player object’ to whom many different
rules apply. The “snavig” spell of ‘Spellbreaker’, which transforms the player to an animal like the
one cast upon, could be implemented thus. More ambitiously, a game could have a stock of half
a dozen main characters, and the focus of play can switch between them. A player might have a
team of four adventurers to explore a dungeon, and be able to switch the one being controlled by
typing the name. In this case, an AfterLife routine – see below – may be needed to switch the
focus back to a still-living member of the team after one has met a sticky end.

4 Calling ChangePlayer(object,1); will do the same but make the game print “(as Who-
ever)” during room descriptions.

44 When the person to be changed into has an orders routine, things start to get complicated.
It may be useful to arrange such a routine as follows:

orders

[; if (player==self)

{ ! I am the player object...

if (actor==self)

128

19 Starting, moving, changing and killing the player

{ ! ...giving myself an order, i.e., trying an action.

}

else

{ ! ...giving someone else, the "actor", an order.

}

}

else

{ ! The player is the "actor" and is giving me an order.

}

],

•4 EXERCISE 44
In Central American legend, a sorceror can transform himself into a nagual, a familiar such as a
spider-monkey; indeed, each individual has an animal self or wayhel, living in a volcanic land over
which the king, as a jaguar, rules. Turn the player into his wayhel.

•44 EXERCISE 45
Write an orders routine for a Giant with a conscience, who will refuse to attack a mouse, but so
that a player who becomes the Giant can be as cruel as he likes.

The player is still alive for as long as the variable deadflag is zero. When set to 1, the
player dies; when set to 2, the player wins; and all higher values are taken as more exotic
forms of death. Now Inform does not know what to call these exotica: so if they should
arise, it calls the DeathMessage routine, which is expected to look at deadflag and can
then print something like “You have changed”.

Many games allow reincarnation (or, as David M. Baggett points out, in fact resur-
rection). You too can allow this, by providing an AfterLife. This routine gets the chance
to do as it pleases before any “You are dead” type message appears, including resetting
deadflag back to 0 – which causes the game to proceed in the normal way, rather than
end. AfterLife routines can be tricky to write, though, because the game has to be set
to a state which convincingly reflects what has happened.

•REFERENCES

The magic words “xyzzy” and “plugh” in ‘Advent’ make use of PlayerTo. • ‘Advent’ has an
amusing AfterLife routine: for instance, try collapsing the bridge by leading the bear across,
then returning to the scene after resurrection. ‘Balances’ has one which only slightly penalises
death.

129

20 Miscellaneous constants and scoring

For when the One Great Scorer comes
To write against your name,
He marks – not that you won or lost –
But how you played the game.

– Grantland Rice (–), Alumnus Football

Some game rules can be altered by defining ‘constants’ at the start of the program. Two
constants you must provide (and before including any of the library files) are the strings
Story and Headline:

Constant Story "ZORK II";

Constant Headline "^An Interactive Plagiarism^

Copyright (c) 1995 by Ivan O. Ideas.^";

All the rest are optional, but should be defined before Verblib is included if they’re to
take effect.

The library won’t allow the player to carry an indefinite number of objects: the limit
allowed is the constant MAX_CARRIED, which you may define if you wish. If you don’t
define it, it’s 100, which nearly removes the rule. In fact you can change this during
play, since it is actually the capacity of the player which is consulted; the only use of
MAX_CARRIED is to set this up to an initial value.

If you define SACK_OBJECT to be some container, then the player will automatically
put old, least-used objects away in it as the game progresses, provided it is being carried.
This is a feature which endears the designer greatly to players. For instance, the following
code appears (in between inclusion of Parser and Verblib) in ‘Toyshop’:

Object satchel "satchel"

with description "Big and with a smile painted on it.",

name "satchel", article "your",

when_closed "Your satchel lies on the floor.",

when_open "Your satchel lies open on the floor.",

has container open openable;

Constant SACK_OBJECT satchel;

‘Ruins’ isn’t going to provide this feature, because there are few portable objects and those
there are would be incongruous if described as being in a rucksack.

Another constant is AMUSING_PROVIDED. If you define this, the library knows to put an
“amusing” option on the menu after the game is won. It will then call Amusing from your
code when needed. You can use this to roll closing credits, or tell the player various strange
things about the game, now that there’s no surprise left to spoil.

The other constants you are allowed to define help the score routines along. There
are two scoring systems provided by the library, side by side: you can use both or neither.

130

20 Miscellaneous constants and scoring

You can always do what you like to the score variable in any case, though the “fullscore”
verb might then not fully account for what’s happened. One scores points for getting
certain items or reaching certain places; the other for completing certain actions. These
constants are:

MAX_SCORE the maximum game score (by default 0);
NUMBER_TASKS number of individual “tasks” to perform (1);
OBJECT_SCORE bonus for first picking up a scored object (4);
ROOM_SCORE bonus for first entering a scored room (5)

and then the individual tasks have scores, as follows:

Array task_scores -> t1 t2 ... tn;

As this is a byte array, the task scores must be between 0 and 255. Within your code, when
a player achieves something, call Achieved(task) to mark that the task has been com-
pleted. It will only award points if this task has not been completed before. There do not
have to be any “tasks”: there’s no need to use the scoring system provided. Tasks (and the
verb “full” for full score) will only work at all if you define the constant TASKS_PROVIDED.
The entry point PrintTaskName prints the name of a game task (but, of course, is only
ever called in a game with TASKS_PROVIDED defined). For instance, (‘Toyshop’ again)

[PrintTaskName ach;

switch(ach)

{ 0: "eating a sweet";

1: "driving the car";

2: "shutting out the draught";

3: "building a tower of four";

4: "seeing which way the mantelpiece leans";

}

];

Another entry point, called PrintRank, gets the chance to print something additional to
the score (traditionally, though not necessarily, rankings). For instance, we bid farewell to
the ‘Ruins’ with the following:

[PrintRank;

print ", earning you the rank of ";

switch(score)

{ 0 to 9: "humble rainforest Tourist.";

10 to 19: "Investigator.";

20 to 29: "Acquisitor.";

30 to 49: "Archaeologist.";

50: "Master Archaeologist.";

}

];

131

20 Miscellaneous constants and scoring

Normally, an Inform game will print messages like

[Your score has gone up by three points.]

when the score changes (by whatever means). The player can turn this on and off with the
“notify” verb; by default it is on. (You can alter the flag notify_mode yourself to control
this.)

The verbs “objects” and “places” are usually provided, so the player can get a list of all
handled objects (and where they now are), and all places visited. If you don’t want these
to be present, define the constant NO_PLACES before inclusion of the library.

•4 EXERCISE 46
Suppose one single room object is used internally for the 64 squares of a gigantic chessboard,
each of which is a different location to the player. Then “places” is likely to result in only the
last-visited square being listed. Fix this.

•REFERENCES

‘Advent’ contains ranks and an Amusing reward (but doesn’t use either of these scoring systems,
instead working by hand). • ‘Balances’ uses scored objects (for its cubes). • ‘Toyshop’
has tasks, as above. • ‘Adventureland’ uses its TimePasses entry point to recalculate the score
every turn (and watch for victory).

21 Extending and redefining the Library

A circulating library in a town is as an ever-green tree of diabolical
knowledge! It blossoms through the year!

– R. B. Sheridan (–), The Rivals

Most large games will need to enrich the ‘model world’: for instance, by creating a new
concept such as “magic amulets”. The game might contain a dozen of these, each with
the power to cast a different spell. So it will need routines which can tell whether or not
a given object is an amulet, and what to do when the spell is cast.

To do this, a game should make a class definition for amulets: called Amulet, say.
Then

if (noun ofclass Amulet) ...

will test to see if noun is one of the amulets, for instance.

132

21 Extending and redefining the Library

The amulet’s spell will be represented by the property amulet_spell. Typical
values for this might be:

amulet_spell "The spell fizzles out with a dull phut! sound.",

amulet_spell

[; if (location == thedark)

{ give real_location light;

"There is a burst of magical light!";

}

],

amulet_spell HiddenVault,

amulet_spell

[; return random(LeadRoom, SilverRoom, GoldRoom);

],

Then the process of casting the spell for amulet X is a matter of sending the message

X.amulet_spell();

which will reply with either: false, meaning nothing has happened; true, meaning that
something did happen; or an object, a room to teleport the player to. Here is a routine
which deals with it all:

[CastSub destination;

if (noun ofclass Amulet)

{ if (~~(noun provides amulet_spell))

"[Ooops. Forgot to program this amulet_spell.]";

destination = noun.amulet_spell();

switch(destination)

{ false: "Nothing happens.";

true: ;

default: print "You are magically teleported to...^";

PlayerTo(destination);

}

}

else "You only know how to cast spells with amulets.";

];

An elaborate library extension will end up defining many classes, grammar, actions and
verb definitions. These may neatly be packaged up into an Include file and placed with
the other library files.

44 If this file contains the directive System_file; then it will even be possible for games to
Replace routines from it (see below).

133

21 Extending and redefining the Library

4 The ordinary Library’s own properties, such as description or e_to, are called “common
properties”. They are special for the following reason: if an object O does not give any value for
common property P, then O.P can still be looked up, though it can’t be set to something else. (If
you tried this with a property of your own invention, such as amulet_spell above, an error would
be printed out at run-time.) The value of O.P is just the “default value” provided by the Library
for property P: for example, the default value of cant_go is “You can’t go that way.”

4 But you can change this default value during play, using the library’s ChangeDefault

routine. For instance, at a late stage in the game:

ChangeDefault(cant_go, "You’re a Master Adventurer now, and still

you walk into walls!");

Of course this cannot change defaults for properties of your own invention, because they haven’t
got default values.

44 Common properties are also slightly faster to perform calculations with: the down side is
that there’s a strictly limited supply of them (63 in all), of which the library uses up half already.
To indicate that a property needs to be a common property, use the Property directive. For
example:

Property door_to;

Property capacity 100;

Property cant_go "You can’t go that way.";

In the latter cases we are giving default values: in the former case, the default value will just be
0.

Major library extensions are rarely needed. More often, one would like simply to change
the stock of standard messages, such as the “Nothing is on sale.” which tends to be printed
when the player asks to buy something, or the “Taken.” printed when something is picked
up.

This facility is available as follows. Provide a special object called LibraryMes-
sages, which must be defined between the inclusion of the “Parser” and “VerbLib” library
files. This object should have just one property, a before rule. For example:

Object LibraryMessages
with before

[; Jump: "You jump and float uselessly for a while in
the zero gravity here on Space Station Alpha.";

SwitchOn:
if (lm_n==3)
{ print "You power up ", (the) lm_o, "."; }

];

The object never physically appears in the game, of course. The idea is that the before
rule is consulted before any message is printed: if it returns false, the standard message is
printed; if true, then nothing is printed, as it’s assumed that this has already happened.

134

21 Extending and redefining the Library

The Jump action only ever prints one message (usually “You jump on the spot.”),
but more elaborate actions such as SwitchOn have several (the extreme case is Take, with
13). lm_n holds the message number, which counts upwards from 1. The messages and
numbers are given in §A9. New message numbers may possibly be added in future, but
old ones will not be renumbered.

An especially useful library message to change is the prompt, normally set to "^>"
(new-line followed by >). This is printed under the action Prompt (actually a fake action
existing for exactly this purpose). In this way, the game’s prompt can be made context-
sensitive, or the “skipped line on screen each turn” convention can be removed.

4 This prompt is only used in ordinary game play, and not at such keyboard inputs as yes/no
questions or the RESTART/RESTORE/QUIT game over choice.

•EXERCISE 47
Infocom’s game ‘The Witness’ has the prompt “What should you, the detective, do next?” on
turn one and “What next?” subsequently. Implement this.

44 An amusing way to see the system in action is to put

Object LibraryMessages

with before

[; print "[", sw__var, ", ", lm_n, "] ";

];

into your game (arcane note: sw__var, the “switch variable”, in this case holds the action number).
Another amusing effect is to simply write rtrue; for the before routine, which results in an
alarmingly silent game – blindfold Adventure, perhaps.

44 Note that LibraryMessages can be used as a sneaky way to add extra rules onto the back
of actions, since there’s nothing to stop you doing real processing in a call to it; or, more happily,
to make messages more sensitive to game context, so that “Nothing is on sale.” might become
“That’s not one of the goods on sale.” inside a shopping mall.

•44 EXERCISE 48
Write an Inform game in Occitan (a dialect of medieval French spoken in Provence).

The Library is itself written in Inform, and with experience it’s not too hard to alter it
if need be. But this is an inconvenience and an inelegant way to carry on. So here is the
last resort in library modification: work out which routine is giving trouble, and Replace
it. For example, if the directive

Replace BurnSub;

is placed in your file before the library files are included, Inform ignores the definition of
BurnSub in the library files. You then have to define a routine called BurnSub yourself. It
would be normal to copy the definition of BurnSub out of the library files into your own
code, and then modify that copy as needed.

The most popular routine to replace is DrawStatusLine: see §33 for several exam-
ples.

135

21 Extending and redefining the Library

44 Inform even allows you to Replace “hardware” functions like random, which would normally
be translated directly to machine opcodes. Obviously, replacing something like child with a
software routine will impose an appreciable speed penalty and slightly increase object code size.
Replacing random may however be useful when fixing the random number generator for game-
testing purposes.

•REFERENCES

‘Balances’ contains a section of code (easily extractable to other games) implementing the ‘En-
chanter’ trilogy’s magic system by methods like the above. • There are several formal library
extension files in existence, mostly small: see the Inform home page on the WWW. • “plu-
ralobj.h” by Andrew Clover makes large-scale use of LibraryMessages to ensure that the library
always uses words like “those” instead of “that” when talking about objects with names like “a
heap of magazines”.

136

Chapter V: Describing and Parsing

Language disguises thought. . . The tacit conventions on which the
understanding of everyday language depends are enormously com-
plicated.

– Ludwig Wittgenstein (–), Tractatus

22 Describing objects and rooms

And we were angry and poor and happy,
And proud of seeing our names in print.

– G. K. Chesterton (–), A Song of Defeat

Talking to the player about the state of the world is much easier than listening to his
intentions for it. Despite this, the business of description takes up a fair part of Chapter
V since the designer of a really complex game will eventually need to know almost every
rule involved. (Whereas nobody would want to know everything about the parser.)

To begin, the simplest description is the “short name” given to a single object. For
instance

print (a) brass_lamp;

may result in “an old brass lamp” being printed. There are four such forms of print:
print (the) obj Print the object with its definite article
print (The) obj The same, but capitalised
print (a) obj Print the object with indefinite article
print (name) obj Print the object’s short name alone

and these can be freely mixed into lists of things to print or print_ret, as for example:

print_ret "The ogre declines to eat ", (the) noun, ".";

•EXERCISE 49
(By Gareth Rees.) When referring to animate objects, one usually needs to use pronouns such as
“his”. Define new printing routines so that, say, print "You throw the book at ", (PronounAcc)

obj, "!"; will insert the right accusative pronoun.

137

22 Describing objects and rooms

44 There is also a special syntax print object for printing object names, but do not use it
without good reason: it doesn’t understand some of the features below and is not protected against
crashing if you mistakenly try to print the name for an out of range object number.

Inform tries to work out the right indefinite article for any object automatically. In English-
language games, it uses ‘an’ when the short name starts with a vowel and ‘a’ when it does
not (unless the name is plural, when ‘some’ is used in either case). You can override this
by setting article yourself. Here are some possibilities:

a / platinum bar, an / orange balloon, your / Aunt Jemima,
some bundles of / reeds, far too many / marbles, The / London Planetarium

If the object is given the attribute proper then its name is treated as a proper noun with
no indefinite article, so the value of article is ignored.

4 The article property can also hold a routine to print one.

Definite articles are always “the” (except for proper nouns). Thus

the platinum bar, Benjamin Franklin, Elbereth

are all printed by print (the) ...; the latter two objects being proper.

4 There’s usually no need to worry about definite and indefinite articles for room objects,
as Inform never has cause to print them.

A single object whose name is plural, such as “grapes” or “marble pillars”, should
be given the attribute pluralname. As a result the library might say, e.g., ”You can’t open
those” instead of ”You can’t open that”. It also affects the pronoun “them” and makes
the usual indefinite article “some”.

4 You can give animate objects the attributes male, female or neuter to help the parser
understand pronouns properly. animate objects are assumed to be male if you set neither alter-
native.

The short name of an object is normally the text given in double-quotes at the head of
its definition. This is very inconvenient to change during play when, for example, “blue
liquid” becomes “purple liquid” as a result of a chemical reaction. A more flexible way to
specify an object’s short name is with the short_name property. To print the name of such
an object, Inform does the following:

1. If the short_name is a string, it’s printed and that’s all.
2. If it is a routine, then it is called. If it returns true, that’s all.

3. The text given in the header of the object definition is printed.

For example, the dye might be given:
short_name

[; switch(self.colour)

{ 1: print "blue ";

2: print "purple ";

3: print "horrid sludge"; rtrue;

}

],

138

22 Describing objects and rooms

with "liquid" as the short name in its header. According to whether its colour property
is 1, 2 or 3, the printed result is “blue liquid”, “purple liquid” or “horrid sludge”.

4 Alternatively, define the dye with short_name "blue liquid" and then simply execute
dye.short_name = "purple liquid"; when the time comes.

4 Rooms can also be given a short_name routine, which is useful to code, say, a grid of four
hundred similar locations called “Area 1” up to “Area 400”. (They can be represented by just
one object in the program.)

For many objects the indefinite article and short name will most often be seen in inventory
lists, such as

>i

You are carrying:

a leaf of mint

a peculiar book

your satchel (which is open)

a green cube

Some objects, though, ought to have fuller entries in an inventory: a wine bottle should
say how much wine is left, for instance. The invent property is designed for this. The
simplest way to use invent is as a string. For instance, declaring a peculiar book with

invent "that harmless old book of Geoffrey’s",

will make this the inventory line for the book. In the light of events, it could later be
changed to

geoffreys_book.invent = "that lethal old book of Geoffrey’s";

4 Note that this string becomes the whole inventory entry: if the object were an open
container, its contents wouldn’t be listed, which might be unfortunate. In such circumstances it’s
better to write an invent routine, and that’s also the way to append text like “(half-empty)”.

4 Each line of an inventory is produced in two stages. First, the basic line:

1a. The global variable inventory_stage is set to 1.
1b. The invent routine is called (if there is one). If it returns true, stop here.

1c. The object’s indefinite article and short-name are printed.

Second, little informative messages like “(which is open)” are printed, and inventories are given
for the contents of open containers:

2a. The global variable inventory_stage is set to 2.
2b. The invent routine is called (if there is one). If it returns true, stop here.
2c. A message such as “(closed, empty and providing light)” is printed, as appropriate.

2d. If it is an open container, its contents are inventoried.

After each line is printed, linking text such as a new-line or a comma is printed, according to the
current “list style”.

139

22 Describing objects and rooms

For example, here is the invent routine used by the matchbook in ‘Toyshop’:

invent

[i; if (inventory_stage==2)

{ i=self.number;

if (i==0) print " (empty)";

if (i==1) print " (1 match left)";

if (i>1) print " (",i," matches left)";

}

],

•44 EXERCISE 50
Suppose you want to change the whole inventory line for an ornate box but you can’t use an
invent string, or return true from stage 1, because you still want stage 2d to happen properly (so
that its contents will be listed). How can you achieve this?

The largest and most complicated messages Inform ever prints on its own initiative are
room descriptions, printed when the Look action is carried out (for instance, when the
statement <Look>; triggers a room description). What happens is: the room’s short name
is printed (usually in bold-face) on a line of its own, then its description, followed by a
list of the objects residing there which aren’t concealed or scenery.

Chapter IV mentioned many different properties – initial, when_on, when_off
and so on – giving descriptions of what an object looks like when in the same room as the
player; some apply to doors, others to switchable objects and so on. All of them can be
routines to print text, instead of being strings to print. The precise rules are given below.

But the whole system can be bypassed using the describe property. If an object
gives a describe routine then this takes priority over everything: if it returns true, the
library assumes that the object has already been described, and prints nothing further.
For example,

describe

[; "^The platinum pyramid catches the light beautifully.";

];

means that even when the pyramid has been moved (i.e. held by the player at some stage)
it will always have its own line of room description.

4 Note the initial ^ (new-line) character. The library doesn’t print a skipped line itself before
calling describe because it doesn’t know yet whether the routine will want to say anything. A
describe routine which prints nothing and returns true makes an object invisible, as if it were
concealed.

44 The Look action does three things: it ‘notes arrival’, prints the room description then
‘scores arrival’. Only the printing rules are given here (see §20 for the others), but they’re given
in full. In what follows, the word ‘location’ means the room object if there’s light to see by, and
the special “Darkness” object otherwise. First the top line:

140

22 Describing objects and rooms

1a. A new-line is printed. The location’s short name is printed (in bold-face, if possible).

1b. If the player is on a supporter, then “ (on 〈something〉)” is printed; if inside anything
else, then “ (in 〈something〉)”.

1c. “ (as 〈something〉)” is printed if this was requested by the game’s most recent call to
ChangePlayer (for instance, “ (as a werewolf)”).

1d. A new-line is printed.

Now the ‘long description’. This step is skipped if the player has just moved of his own will into
a location already visited, unless the game is in “verbose” mode.

2. If the location has a describe property, then run it. If not, look at the location’s de-

scription property: if it’s a string, print it; if it’s a routine, run it.

All rooms must provide either a describe property or a description of themselves. Now for
items nearby:

3a. List any objects on the floor.

3b. If the player is in or on something, list the other objects in that.

The library has now finished, but your game gets a chance to add a postscript:

4. Call the entry point LookRoutine.

4 The visited attribute is only given to a room after its description has been printed for
the first time (it happens during ‘scoring arrival’). This is convenient for making the description
different after the first time.

4 ‘Listing objects’ (as in 3a and 3b) is a complicated business. Some objects are given a line
or paragraph to themselves, others are lumped together in a list at the end. The following objects
are not mentioned at all: the player, what the player is in or on (if anything) and anything which
is scenery or concealed. The remaining objects are looked through (eldest first) as follows:

1. If the object has a describe routine, run it. If it returns true, stop here and don’t mention
the object at all.

2. Work out the “description property” for the object:

a. For a container, this is when_open or when_closed;

b. Otherwise, for a switchable object this is when_on or when_off;

c. Otherwise, for a door this is when_open or when_closed;

d. Otherwise, it’s initial.

3. If either the object doesn’t have this property or the object has been held by the player
before (i.e., has moved) and the property isn’t when_off or when_closed then then the
object will be listed at the end.

4. Otherwise a new-line is printed and the property is printed (if it’s a string) or run (if it’s

a routine).

4 A supporter which is scenery won’t be mentioned, but anything on top of it which is not
concealed will be.

4 Objects which have just been pushed into a new room are not listed in that room’s de-
scription on the turn in question. This is not because of any rule about room descriptions, but
because the pushed object is moved into the new room only after the room description is made.
This means that when a wheelbarrow is pushed for a long distance, the player does not have to
keep reading “You can see a wheelbarrow here.” every move, as though that were a surprise.

141

22 Describing objects and rooms

4 You can use a library routine called Locale to perform ‘object listing’. See §A7 for details:
suffice to say here that the process above is equivalent to executing

if (Locale(location, "You can see", "You can also see"))

print " here.^";

Locale is useful for describing areas of a room which are sub-divided off, such as the stage of a

theatre.

•44 EXERCISE 51
The library implements “superbrief” and “verbose” modes for room description (one always omits
long room descriptions, the other never does). How can verbose mode automatically print room
descriptions every turn? (Some of the later Infocom games did this.)

•REFERENCES

‘Balances’ often uses short_name, especially for the white cubes (whose names change) and lottery
tickets (whose numbers are chosen by the player). ‘Adventureland’ uses short_name in simpler
ways: see the bear and the bottle, for instance. • The scroll class of ‘Balances’ uses invent.
• See the ScottRoom class of ‘Adventureland’ for a radically different way to describe rooms (in
pidgin English, like telegraphese).

23 Listing and grouping objects

As some day it may happen that a victim must be found
I’ve got a little list – I’ve got a little list
Of society offenders who might well be underground,
And who never would be missed
Who never would be missed!

– W. S. Gilbert (–), The Mikado

The library often needs to reel off a list of objects: when an Inv (inventory) action takes
place, for instance, or when describing the contents of a container or the duller items in a
room. Lists are difficult to print out correctly ‘by hand’, because there are many cases to
get right, especially when taking plurals into account. Fortunately, the library’s list-maker
is available to the public. The routine to call is:

WriteListFrom(object, style);

where the list will start from the given object and go along its siblings. Thus, to list all
the objects inside X, list from child(X). What the list looks like depends on the “style”,
which is a bitmap you can make by adding some of the following constants:

NEWLINE_BIT New-line after each entry

142

23 Listing and grouping objects

INDENT_BIT Indent each entry according to depth
FULLINV_BIT Full inventory information after entry
ENGLISH_BIT English sentence style, with commas and ‘and’
RECURSE_BIT Recurse downwards with usual rules
ALWAYS_BIT Always recurse downwards
TERSE_BIT More terse English style
PARTINV_BIT Only brief inventory information after entry
DEFART_BIT Use the definite article in list
WORKFLAG_BIT At top level (only), only list objects

which have the workflag attribute
ISARE_BIT Prints “ is ” or “ are ” before list
CONCEAL_BIT Misses out concealed or scenery objects

The best way to use this is to experiment. For example, a ‘tall’ inventory is produced by:

WriteListFrom(child(player),

FULLINV_BIT + INDENT_BIT + NEWLINE_BIT + RECURSE_BIT);

and a ‘wide’ one by:

WriteListFrom(child(player),

FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT);

which produce effects like:

>inventory tall

You are carrying:

a bag (which is open)

three gold coins

two silver coins

a bronze coin

four featureless white cubes

a magic burin

a spell book

>inventory wide

You are carrying a bag (which is open), inside which are three gold

coins, two silver coins and a bronze coin, four featureless white

cubes, a magic burin and a spell book.

except that the ‘You are carrying’ part is not done by the list-maker, and nor is the final
full stop in the second example. The workflag is an attribute which the library scribbles
over from time to time as temporary storage, but you can use it with care. In this case it
makes it possible to specify any reasonable list.

44 WORKFLAG_BIT and CONCEAL_BIT specify conflicting rules. If they’re both given, then what
happens is: at the top level, but not below, everything with workflag is included; on lower levels,
but not at the top, everything without concealed or scenery is included.

143

23 Listing and grouping objects

•EXERCISE 52
Write a DoubleInvSub action routine to produce an inventory like so:

You are carrying four featureless white cubes, a magic burin and a

spell book. In addition, you are wearing a purple cloak and a miner’s

helmet.

4 Finally, there is a neat way to customise the grouping together of non-identical items in
lists, considerably enhancing the presentation of the game. If a collection of game objects – say,
all the edible items in the game – have a common non-zero value of the property list_together,
in the range 1 to 1000, they will always appear adjacently in inventories, room descriptions and
the like.

Alternatively, instead of being a small number the common value can be a string such as
"foodstuffs". If so then lists will cite, e.g.,

three foodstuffs (a scarlet fish, some lemmas and an onion)

in running text, or

three foodstuffs:
a scarlet fish
some lemmas
an onion

in indented lists. This only happens when two or more are gathered together.
Finally, the common value can be a routine, such as:

list_together

[; if (inventory_stage==1) print "heaps of food, notably ";

else print ", which would do you no good";

],

Typically this might be part of a class definition from which all the objects in question inherit. A
list_together routine will be called twice: once, with inventory_stage set to 1, as a preamble
to the list of items, and once (with 2) to print any postscript required. It is allowed to change
c_style (the current list style) without needing to restore the old value and may, by returning 1
from stage 1, signal the list-maker not to print a list at all. The simple example above results in

heaps of food, notably a scarlet fish, some lemmas
and an onion, which would do you no good

Such a routine may want to make use of the variables parser_one and parser_two, which re-
spectively hold the first object in the group and the depth of recursion in the list (this might be
needed to keep indentation going properly). Applying x=NextEntry(x,parser_two); moves x on
from parser_one to the next item in the group. Another helpful variable is listing_together,
set up to the first object of a group being listed or to 0 whenever no group is being listed. The
following list of 24 items shows some possible effects (see the example game ‘List Property’):

You can see a plastic fork, knife and spoon, three hats (a fez, a Panama
and a sombrero), the letters X, Y, Z, P, Q and R from a Scrabble set, a
defrosting Black Forest gateau, Punch magazine, a recent issue of the
Spectator, a die and eight coins (four silver, one bronze and three gold)
here.

•4 EXERCISE 53
Implement the Scrabble pieces.

144

23 Listing and grouping objects

•44 EXERCISE 54
Implement the three denominations of coin.

•44 EXERCISE 55
Implement the I Ching in the form of six coins, three gold (goat, deer and chicken), three silver
(robin, snake and bison) which can be thrown to reveal gold and silver trigrams.

•REFERENCES

A good example of WriteListFrom in action is the definition of CarryingClass from the example
game ‘The Thief’, by Gareth Rees. This alters the examine description of a character by appending
a list of what that person is carrying and wearing. • Denominations of coin are also in evidence
in ‘Balances’.

24 How nouns are parsed

The Naming of Cats is a difficult matter,
It isn’t just one of your holiday games;
You may think at first I’m as mad as a hatter
When I tell you, a cat must have THREE DIFFERENT NAMES.

– T. S. Eliot (–), The Naming of Cats

Bulldust, coolamon, dashiki, fizgig, grungy, jirble, pachinko, poodle-
faker, sharny, taghairm

– Catachrestic words from Chambers English Dictionary

Suppose we have a tomato defined with

name "fried" "green" "tomato",

but which is going to redden later and need to be referred to as “red tomato”. It’s perfectly
straightforward to alter the name property of an object, which is a word array of dictionary
words. For example,

[Names obj i;

for (i=0:2*i<obj.#name:i++) print (address) (obj.&name)-->i, "^";

];

prints out the list of dictionary words held in name for a given object. It’s perfectly possible
to write to this, so we could just set

(tomato.&name)-->1 = ’red’;

but this is not a flexible or elegant solution, and it’s time to begin delving into the parser.

145

24 How nouns are parsed

4 Note that we can’t change the size of the name array. To simulate this, we could define
the object with name set to, say, 30 copies of an ‘untypeable word’ (see below) such as ’blank.’.

The Inform parser is designed to be as “open-access” as possible, because a parser cannot
ever be general enough for every game without being highly modifiable. The first thing it
does is to read in text from the keyboard and break it up into a stream of words: so the
text “wizened man, eat the grey bread” becomes

wizened / man / , / eat / the / grey / bread

and these words are numbered from 1. At all times the parser keeps a “word number”
marker to keep its place along this line, and this is held in the variable wn. The routine
NextWord() returns the word at the current position of the marker, and moves it forward,
i.e. adds 1 to wn. For instance, the parser may find itself at word 6 and trying to match
“grey bread” as the name of an object. Calling NextWord() gives the value ’grey’ and
calling it again gives ’bread’.

Note that if the player had mistyped “grye bread”, “grye” being a word which isn’t
mentioned anywhere in the program or created by the library, NextWord() returns 0 for
‘misunderstood word’. Writing something like if (w==’grye’) ... somewhere in the
program makes Inform put “grye” into the dictionary automatically.

4 Remember that the game’s dictionary only has 9-character resolution. (And only 6 if In-
form has been told to compile an early-model story file: see §31.) Thus the values of ’polyunsat-
urate’ and ’polyunsaturated’ are equal. Also, upper case and lower case letters are considered
the same. Words are permitted to contain numerals or symbols (but not at present to contain
accented characters).

44 A dictionary word can even contain spaces, full stops or commas. If so it is ‘untypeable’.
For instance, ’in,out’ is an untypeable word because if the player does type it then the parser
cuts it into three, never checking the dictionary for the entire word. Thus the constant ’in,out’
can never be anything that NextWord returns. This can actually be useful (as it was in §16).

4 It can also be useful to check for numbers. The library routine TryNumber(wordnum) tries
to parse the word at wordnum as a number (recognising decimal numbers and English ones from
“one” to “twenty”), returning -1000 if it fails altogether, or else the number. Values exceeding
10000 are rounded down to 10000.

44 Sometimes there is no alternative but to actually look at the player’s text one character
at a time (for instance, to check a 20-digit phone number). The routine WordAddress(wordnum)

returns a byte array of the characters in the word, and WordLength(wordnum) tells you how many
characters there are in it. Thus in the above example,

thetext = WordAddress(4);

print WordLength(4), " ", (char) thetext->0, (char) thetext->2;

prints the text “3 et”.

146

24 How nouns are parsed

An object can affect how its name is parsed by giving a parse_name routine. This is
expected to try to match as many words as possible starting from the current position of
wn, reading them in one at a time using the NextWord() routine. Thus it must not stop
just because the first word makes sense, but must keep reading and find out how many
words in a row make sense. It should return:

0 if the text didn’t make any sense at all,
k if k words in a row of the text seem to refer to the object, or
−1 to tell the parser it doesn’t want to decide after all.

The word marker wn can be left anywhere afterwards. For example:

Object -> thing "weird thing"

with parse_name

[i; while (NextWord()==’weird’ or ’thing’) i++;

return i;

];

This definition duplicates (very nearly) the effect of having defined:

Object -> thing "weird thing"

with name "weird" "thing";

Which isn’t very useful. But the tomato can now be coded up with

parse_name

[i j; if (self has general) j=’red’; else j=’green’;

while (NextWord()==’tomato’ or ’fried’ or j) i++;

return i;

],

so that “green” only applies until its general attribute has been set, whereupon “red”
does.

•EXERCISE 56
Rewrite this to insist that the adjectives must come before the noun, which must be present.

•EXERCISE 57
Create a musician called Princess who, when kissed, is transformed into “/?%?/ (the artiste
formerly known as Princess)”.

•EXERCISE 58
(Cf. ‘Café Inform’.) Construct a drinks machine capable of serving cola, coffee or tea, using only
one object for the buttons and one for the possible drinks.

4 parse_name is also used to spot plurals: see §25.

147

24 How nouns are parsed

Suppose that an object doesn’t have a parse_name routine, or that it has but it returned
−1. The parser then looks at the name words. It recognises any arrangement of some or
all of these words as a match (the more words, the better). Thus “fried green tomato” is
understood, as are “fried tomato” and “green tomato”. On the other hand, so are “fried
green” and “green green tomato green fried green”. This method is quick and good at
understanding a wide variety of sensible inputs, though bad at throwing out foolish ones.

However, you can affect this by using the ParseNoun entry point. This is called with
one argument, the object in question, and should work exactly as if it were a parse_name
routine: i.e., returning −1, 0 or the number of words matched as above. Remember that it
is called very often and should not be horribly slow. For example, the following duplicates
what the parser usually does:

[ParseNoun obj n;

while (IsAWordIn(NextWord(),obj,name) == 1) n++; return n;

];

[IsAWordIn w obj prop k l m;

k=obj.∝ l=(obj.#prop)/2;

for (m=0:m<l:m++)

if (w==k-->m) rtrue;

rfalse;

];

In this example IsAWordIn just checks to see if w is one of the entries in the word array
obj.&prop.

•4 EXERCISE 59
Many adventure-game parsers split object names into ‘adjectives’ and ‘nouns’, so that only the
pattern 〈0 or more adjectives〉 〈1 or more nouns〉 is recognised. Implement this.

•4 EXERCISE 60
During debugging it sometimes helps to be able to refer to objects by their internal numbers, so
that “put object 31 on object 5” would work. Implement this.

•4 EXERCISE 61
How could the word “#” be made a wild-card, meaning “match any single object”?

•44 EXERCISE 62
And how could “*” be a wild-card for “match any collection of objects”?

•44 EXERCISE 63
There is no problem with calling a container “hole in wall”, because the parser will understand
“put apple in hole in wall” as “put (apple) in (hole in wall)”. But create a fly in amber, so that
“put fly in amber in hole in wall” works properly and isn’t misinterpreted as “put (fly) in (amber
in hole in wall)”. (Warning: you may need to know about the BeforeParsing entry point (see
§26) and the format of the parse buffer (see §27).)

•REFERENCES

Straightforward parse_name examples are the chess-pieces object and the kittens class of ‘Alice
Through The Looking-Glass’. Lengthier ones are found in ‘Balances’, especially in the white cubes
class.

148

24 How nouns are parsed

25 Plural names for duplicated objects

Abiit ad plures.

– Petronius (?–c. ), Cena Trimalchionis

A notorious problem for adventure game parsers is to handle a collection of, say, ten gold
coins, allowing the player to use them independently of each other, while gathering them
together into groups in descriptions and inventories. This is relatively easy in Inform, and
only in really hard cases do you have to provide code. Two problems must be overcome:
firstly, the game has to be able to talk to the player in plurals, and secondly vice versa.
First, then, game to player:

Class GoldCoin

with name "gold" "coin",

short_name "gold coin",

plural "gold coins";

(and similar silver and bronze coin classes here)

Object bag "bag"

with name "bag"

has container open openable;

GoldCoin ->;

GoldCoin ->;

GoldCoin ->;

SilverCoin ->;

SilverCoin ->;

BronzeCoin ->;

Now we have a bag of six coins. The player looking inside the bag will get

>look inside bag

In the bag are three gold coins, two silver coins and a bronze coin.

How does the library know that the three gold coins are the same as each other, but the
others different? It doesn’t look at the classes but the names. It will only group together
things which:

(a) have a plural set,
(b) are ‘indistinguishable’ from each other.

Indistinguishable means they have the same name words as each other, possibly in a dif-
ferent order, so that nothing the player can type will separate the two.

4 Actually, the library is cleverer than this. What it groups together depends slightly on
the context of the list it’s writing out. When it’s writing a list which prints out details of which
objects are providing light, for instance (like an inventory), it won’t group together two objects if
one is lit but the other isn’t. Similarly for objects with visible possessions or which can be worn.

149

25 Plural names for duplicated objects

44 This all gets even more complicated when the objects have a parse_name routine supplied,
because then the library can’t use the name fields to tell them apart. If they have different
parse_name routines, it decides that they’re different. But if they have the same parse_name

routine, there is no alternative but to ask them. What happens is that

1. A variable called parser_action is set to ##TheSame;
2. Two variables, called parser_one and parser_two are set to

the two objects in question;
3. Their parse_name routine is called. If it returns:

−1 the objects are declared “indistinguishable”,
−2 they are declared different.

4. Otherwise, the usual rules apply and the library looks at
the ordinary name fields of the objects.

##TheSame is a fake action. The implementation of the ‘Spellbreaker cubes’ in the ‘Balances’
game is an example of such a routine, so that if the player writes the same name on several of the
cubes, they become grouped together. Note that this whole set-up is such that if the author of
a parse_name routine has never read this paragraph, it doesn’t matter and the usual rules take
their course.

44 You may even want to provide a parse_name routine just to speed up the process of telling
two objects apart – if there were 30 gold coins the parser would be doing a lot of work comparing
all their names, but you can make the decision much faster.

Secondly, the player talking to the computer. This goes a little further than just copies
of the same object: many games involve collecting a number of similar items, say a set of
nine crowns in different colours. Then you’d want the parser to recognise things like:

> drop all of the crowns except green

> drop the three other crowns

Putting the word "crowns" in their name lists is not quite right, because the parser will still
think that “crowns” might refer to a specific item. Instead, put in the word "crowns//p".
The //p marks out the dictionary word “crowns” as one that can refer to more than one
game object at once. (So that you shouldn’t set this for the word “grapes” if a bunch of
grapes was a single game object; you should give that object the pluralname attribute
instead.) For example the GoldCoin class would read:

Class GoldCoin

with name "gold" "coin" "coins//p",

short_name "gold coin",

plural "gold coins";

and now when the player types “take coins”, the parser interprets this as “take all the
coins within reach”.

44 The only snag is that now the word "coins" is marked as //p everywhere in the game,
in all circumstances. Here is a more complicated way to achieve the same result, but strictly

150

25 Plural names for duplicated objects

in context of these objects alone. We need to make the parse_name routine tell the parser that
yes, there was a match, but that it was a plural. The way to do this is to set parser_action to
##PluralFound, another fake action. So, for example:

Class Crown

with parse_name

[i j;

for (::)

{ j=NextWord();

if (j==’crown’ or self.name) i++;

else

{ if (j==’crowns’)

{ parser_action=##PluralFound; i++; }

else return i;

}

}

];

This code assumes that the crown objects have just one name each, their colours.

•EXERCISE 64
Write a ‘cherub’ class so that if the player tries to call them “cherubs”, a message like “I’ll let
this go by for now, but the plural of cherub is cherubim” appears.

•REFERENCES

See the coinage of ‘Balances’.

26 How verbs are parsed

Grammar, which can govern even kings.

– Molière (–), Les Femmes savantes

The parser’s fundamental method is simple. Given a stream of text like

saint / peter / , / take / the / keys / from / paul

it first calls the entry point BeforeParsing (in case you want to meddle with the text
stream before it gets underway). It then works out who is being addressed, if anyone, by
looking for a comma, and trying out the text up to there as a noun (anyone animate or
anything talkable will do): in this case St Peter. This person is called the “actor”, since
he is going to perform the action, and is usually the player himself (thus, typing “myself,
go north” is equivalent to typing “go north”). The next word, in this case ’take’, is the

151

26 How verbs are parsed

“verb word”. An Inform verb usually has several English verb words attached, which are
called synonyms of each other: for instance, the library is set up with

“take” = “carry” = “hold”

all referring to the same Inform verb.

4 The parser sets up global variables actor and verb_word while working. (In the example
above, their values would be the St Peter object and ’take’, respectively.)

44 It isn’t quite that simple: names of direction objects are treated as implicit “go” commands,
so that “n” is acceptable as an alternative to “go north”. There are also “again”, “oops” and
“undo” to grapple with.

4 Also, a major feature (the grammar property for the person being addressed) has been
missed out of this description: see the latter half of §16 for details.

Teaching the parser a new synonym is easy. Like all of the directives in this section, the
following must appear after the inclusion of the library file Grammar:

Verb "steal" "acquire" "grab" = "take";

This creates another three synonyms for “take”.

4 One can also prise synonyms apart, as will appear later.

The parser is now up to word 5; i.e., it has “the keys from paul” left to understand. Apart
from a list of English verb-words which refer to it, an Inform verb also has a “grammar”.
This is a list of 1 or more “lines”, each a pattern which the rest of the text might match.
The parser tries the first, then the second and so on, and accepts the earliest one that
matches, without ever considering later ones.

A line is itself a row of “tokens”. Typical tokens might mean ‘the name of a nearby
object’, ‘the word from’ or ‘somebody’s name’. To match a line, the parser must match
against each token in sequence. For instance, the line of 3 tokens

〈a noun〉 〈the word from〉 〈a noun〉

matches the text. Each line has an action attached, which in this case is Remove: so the
parser has ground up the original text into just four numbers, ending up with

actor = st_peter

action = Remove noun = gold_keys second = st_paul

What happens then is that the St Peter’s orders routine (if any) is sent the action, and
may if it wishes cooperate. If the actor had been the player, then the action would have
been processed in the usual way.

4 The action for the line which is currently being worked through is stored in the variable
action_to_be; or, at earlier stages when the verb hasn’t been deciphered yet, it holds the value
NULL.

152

26 How verbs are parsed

The Verb directive creates Inform verbs, giving them some English verb words and a
grammar. The library’s Grammar file consists almost exclusively of Verb directives: here is
an example simplified from one of them.

Verb "take" "get" "carry" "hold"

* "out" -> Exit

* multi -> Take

* multiinside "from" noun -> Remove

* "in" noun -> Enter

* multiinside "off" noun -> Remove

* "off" held -> Disrobe

* "inventory" -> Inv;

(You can look at the grammar being used in a game with the debugging verb “showverb”:
see §30 for details.) Each line of grammar begins with a *, gives a list of tokens as far as
-> and then the action which the line produces. The first line can only be matched by
something like “get out”, the second might be matched by

take the banana
get all the fruit except the apple

and so on. A full list of tokens will be given later: briefly, "out" means the literal
word “out”, multi means one or more objects nearby, noun means just one and
multiinside means one or more objects inside the second noun. In this book, grammar
tokens are written in the style noun to prevent confusion (as there is also a variable called
noun).

44 Since this book was first written, the library has been improved so that “take” and “get”
each have their own independent grammars. But for the sake of example, suppose they share the
grammar written out above. Sometimes this has odd results: “get in bed” is correctly understood
as a request to enter the bed, “take in washing” is misunderstood as a request to enter the washing.
You might avoid this by using Extend only to separate them into different grammars, or you could
fix the Enter action to see if the variable verb_word==’take’ or ’get’.

4 Some verbs are meta - they are not really part of the game: for example, “save”, “score”
and “quit”. These are declared using Verb meta, as in

Verb meta "score"

* -> Score;

and any debugging verbs you create would probably work better this way, since meta-verbs are

protected from interference by the game and take up no game time.

After the -> in each line is the name of an action. Giving a name in this way is what
creates an action, and if you give the name of one which doesn’t already exist then you
must also write a routine to execute the action, even if it’s one which doesn’t do very
much. The name of the routine is always the name of the action with Sub appended. For
instance:

[XyzzySub; "Nothing happens.";];

Verb "xyzzy" * -> Xyzzy;

153

26 How verbs are parsed

will make a new magic-word verb “xyzzy”, which always says “Nothing happens” – always,
that is, unless some before rule gets there first, as it might do in certain magic places.
Xyzzy is now an action just as good as all the standard ones: ##Xyzzy gives its action
number, and you can write before and after rules for it in Xyzzy: fields just as you
would for, say, Take.

4 Finally, the line can end with the word reverse. This is only useful if there are objects
and numbers in the line which occur in the wrong order. An example from the library’s grammar:

Verb "show" "present" "display"

* creature held -> Show reverse

* held "to" creature -> Show;

The point is that the Show action expects the first parameter to be an item, and the second to
be a person. When the text “show him the shield” is typed in, the parser must reverse the two
parameters “him” and “the shield” before causing a Show action. On the other hand, in “show
the shield to him” the parameters are in the right order already.

The library defines grammars for the 100 or so English verbs most often used by adventure
games. However, in practice you very often need to alter these, usually to add extra lines
of grammar but sometimes to remove existing ones. For example, consider an array of 676
labelled buttons, any of which could be pushed: it’s hardly convenient to define 676 button
objects. It would be more sensible to create a grammar line which understands things like

“button j16”, “d11”, “a5 button”

(it’s easy enough to write code for a token to do this), and then to add it to the grammar
for the “press” verb. The Extend directive is provided for exactly this purpose:

Extend "push" * Button -> PushButton;

The point of Extend is that it is against the spirit of the Library to alter the standard
library files – including the grammar table – unless absolutely necessary.

44 Another method would be to create a single button object with a parse_name routine
which carefully remembers what it was last called, so that the object always knows which button
it represents. See ‘Balances’ for an example.

Normally, extra lines of grammar are added at the bottom of those already there. This
may not be what you want. For instance, “take” has a grammar line

* multi -> Take

quite early on. So if you want to add a grammar line which diverts “take something-edible”
to a different action, like so:

* edible -> Eat

154

26 How verbs are parsed

(edible being a token matching anything which has the attribute edible) then it’s no
good adding this at the bottom of the Take grammar, because the earlier line will always
be matched first. Thus, you really want to insert your line at the top, not the bottom, in
this case. The right command is

Extend "take" first

* edible -> Eat;

You might even want to over-ride the old grammar completely, not just add a line or two.
For this, use

Extend "push" replace

* Button -> PushButton;

and now “push” can be used only in this way. To sum up, Extend can take three keywords:

replace completely replace the old grammar with this one;
first insert the new grammar at the top of the old one;
last insert the new grammar at the bottom of the old one;

with last being the default (which doesn’t need to be said explicitly).

4 In library grammar, some verbs have many synonyms: for instance,

"attack" "break" "smash" "hit" "fight" "wreck" "crack"

"destroy" "murder" "kill" "torture" "punch" "thump"

are all treated as identical. But you might want to distinguish between murder and lesser crimes.
For this, try

Extend only "murder" "kill" replace * animate -> Murder;

The keyword only tells Inform to extract the two verbs “murder” and “kill”. These then become
a new verb which is initially an identical copy of the old one, but then replace tells Inform to
throw that away in favour of an entirely new grammar. Similarly,

Extend only "get" * "with" "it" -> Sing;

makes “get” behave exactly like “take” (as usual) except that it also recognises “with it”, so that
“get with it” makes the player sing but “take with it” doesn’t. Other good pairs to separate might
be “cross” and “enter”, “drop” and “throw”, “give” and “feed”, “swim” and “dive”, “kiss” and
“hug”, “cut” and “prune”.

44 Bear in mind that once a pair has been split apart like this, any subsequent extension
made to one will not be made to the other.

44 There are (a few) times when verb definition commands are not enough. For example, in
the original ‘Advent’ (or ‘Colossal Cave’), the player could type the name of a not-too-distant
place which had previously been visited, and be taken there. There are several ways to code this –
say, with 60 rather similar verb definitions, or with a single “travel” verb which has 60 synonyms,

155

26 How verbs are parsed

whose action routine looks at the parser’s verb_word variable to see which one was typed, or even
by restocking the compass object with new directions in each room – but here’s another. The
library will call the UnknownVerb routine (if you provide one) when the parser can’t even get past
the first word. This has two options: it can return false, in which case the parser just goes on to
complain as it would have done anyway. Otherwise, it can return a verb word which is substituted
for what the player actually typed. Here is a foolish example:

[UnknownVerb w;

if (w==’shazam’) { print "Shazam!^"; return ’inventory’; }

rfalse;

];

which responds to the magic word “shazam” by printing Shazam! and then, rather disappointingly,
taking the player’s inventory. But in the example above, it could be used to look for the word w

through the locations of the game, store the place away in some global variable, and then return
’go’. The GoSub routine could then be fixed to look at this variable.

•44 EXERCISE 65
Why is it usually a bad idea to print text out in an UnknownVerb routine?

44 If you allow a flexible collection of verbs (say, names of spells or places) then you may
want a single ‘dummy’ verb to stand for whichever is being typed. This may make the parser
produce strange questions because it is unable to sensibly print the verb back at the player, but
you can fix this using the PrintVerb entry point.

•44 EXERCISE 66
Implement the Crowther and Woods feature of moving from one room to another by typing its
name, using a dummy verb.

•4 EXERCISE 67
Implement a lamp which, when rubbed, produces a genie who casts a spell over the player to
make him confuse the words “white” and “black”.

•REFERENCES

‘Advent’ makes a string of simple Verb definitions; ‘Alice Through The Looking-Glass’ uses Extend
a little. • ‘Balances’ has a large extra grammar and also uses the UnknownVerb and PrintVerb

entry points.

27 Tokens of grammar

The complete list of grammar tokens is as follows:

"〈word〉" that literal word only

noun any object in scope

156

27 Tokens of grammar

held object held by the player

multi one or more objects in scope

multiheld one or more held objects

multiexcept one or more in scope, except the other

multiinside one or more in scope, inside the other

〈attribute〉 any object in scope which has the attribute

creature an object in scope which is animate

noun = 〈Routine〉 any object in scope passing the given test

scope = 〈Routine〉 an object in this definition of scope

number a number only

〈Routine〉 any text accepted by the given routine

topic any text at all

special any single word or number

These tokens are all described in this section except for scope = 〈Routine〉 , which is
postponed to the next.

"〈word〉" This matches only the literal word given, normally a preposition such as
"into". Whereas most tokens produce a “parameter” (an object or group of objects, or
a number), this token doesn’t. There can therefore be as many or as few of them on a
grammar line as desired.

It often happens that several prepositions really mean the same thing for a given
verb: ”in”, ”into” and ”inside” are often equally sensible. As a convenient shorthand you
can write a series of prepositions with slash marks / in between, to mean ”one of these
words”. For example:

* noun "in"/"into"/"inside" noun -> Insert

prepositions (Note that / can only be used with prepositions.)

4 Prepositions like this are unfortunately sometimes called ‘adjectives’ inside the parser
source code, and in Infocom hackers’ documents: the usage is traditional but has been avoided in
this manual.

noun The definition of “in scope” will be given in the next section. Roughly, it means
“visible to the player at the moment”.

held Convenient for two reasons. Firstly, many actions only sensibly apply to things
being held (such as Eat or Wear), and using this token in the grammar you can make sure
that the action is never generated by the parser unless the object is being held. That

157

27 Tokens of grammar

saves on always having to write “You can’t eat what you’re not holding” code. Secondly,
suppose we have grammar

Verb "eat"

* held -> Eat;

and the player types “eat the banana” while the banana is, say, in plain view on a shelf. It
would be petty of the game to refuse on the grounds that the banana is not being held. So
the parser will generate a Take action for the banana and then, if the Take action succeeds,
an Eat action. Notice that the parser does not just pick up the object, but issues an action
in the proper way – so if the banana had rules making it too slippery to pick up, it won’t
be picked up. This is called “implicit taking”.

The multi- tokens indicate that a list of one or more objects can go here. The parser
works out all the things the player has asked for, sorting out plural nouns and words like
“except” by itself, and then generates actions for each one. A single grammar line can
only contain one multi- token: so “hit everything with everything” can’t be parsed
(straightforwardly, that is: you can parse anything with a little more effort). The reason
not all nouns can be multiple is that too helpful a parser makes too easy a game. You
probably don’t want to allow “unlock the mystery door with all the keys” – you want the
player to suffer having to try them one at a time, or else to be thinking.

multiexcept Provided to make commands like “put everything in the rucksack”
parsable: the “everything” is matched by all of the player’s possessions except the rucksack.
This stops the parser from generating an action to put the rucksack inside itself.

multiinside Similarly, this matches anything inside the other parameter on the line,
and is good for parsing commands like “remove everything from the cupboard”.

〈attribute〉 This allows you to sort out objects according to attributes that they have:

Verb "use" "employ" "utilise"

* edible -> Eat

* clothing -> Wear

...and so on...

* enterable -> Enter;

though the library grammar does not contain such an appallingly convenient verb! Since
you can define your own attributes, it’s easy to make a token matching only your own class
of object.

creature Same as animate (a hangover from older editions of Inform).

noun = 〈Routine〉 The last and most powerful of the “a nearby object satisfying some
condition” tokens. When determining whether an object passes this test, the parser sets
the variable noun to the object in question and calls the routine. If it returns true, the

158

27 Tokens of grammar

parser accepts the object, and otherwise it rejects it. For example, the following should
only apply to animals kept in a cage:

[CagedCreature;

if (noun in wicker_cage) rtrue; rfalse;

];

Verb "free" "release"

* noun=CagedCreature -> FreeAnimal;

So that only nouns which pass the CagedCreature test are allowed. The CagedCreature
routine can appear anywhere in the code, though it’s tidier to keep it nearby.

scope = 〈Routine〉 An even more powerful token, which means “an object in scope”
where scope is redefined specially. See the next section.

number Matches any decimal number from 0 upwards (though it rounds off large
numbers to 10000), and also matches the numbers “one” to “twenty” written in English.
For example:

Verb "type"

* number -> TypeNum;

causes actions like Typenum 504 when the player types “type 504”. Note that noun is set
to 504, not to an object.

•EXERCISE 68
(A beautiful feature stolen from David M. Baggett’s game ‘The Legend Lives’, which uses it to
great effect.) Some games produce footnotes every now and then. Arrange matters so that these
are numbered [1], [2] and so on in order of appearance, to be read by the player when “footnote
1” is typed.

4 The entry point ParseNumber allows you to provide your own number-parsing routine,
which opens up many sneaky possibilities – Roman numerals, coordinates like “J4”, very long
telephone numbers and so on. This takes the form

[ParseNumber buffer length;

...returning 0 if no match is made, or the number otherwise...

];

and examines the supposed ‘number’ held at the byte address buffer, a row of characters of the
given length. If you provide a ParseNumber routine but return 0 from it, then the parser falls
back on its usual number-parsing mechanism to see if that does any better.

44 Note that ParseNumber can’t return 0 to mean the number zero. Probably “zero” won’t
be needed too often, but if it is you can always return some value like 1000 and code the verb in
question to understand this as 0. (Sorry: this was a poor design decision made too long ago to
change now.)

159

27 Tokens of grammar

〈Routine〉 The most flexible token is simply the name of a “general parsing routine”.
This looks at the word stream using NextWord and wn (see §24) and should return:

−1 if the text isn’t understood,
0 if it’s understood but no parameter results,
1 if a number results, or
n if the object n results.

In the case of a number, the actual value should be put into the variable parsed_number.
On an unsuccessful match (returning −1) it doesn’t matter what the final value of wn is.
On a successful match it should be left pointing to the next thing after what the routine
understood. Since NextWord moves wn on by one each time it is called, this happens
automatically unless the routine has read too far. For example:

[OnAtorIn w;

w=NextWord(); if (w==’on’ or ’at’ or ’in’) return 0;

return -1;

];

makes a token which accepts any of the words “on”, “at” or “in” as prepositions (not
translating into objects or numbers). Similarly,

[Anything w; while (w~=-1) w=NextWordStopped(); return 0;];

accepts the entire rest of the line (ignoring it). NextWordStopped is a form of NextWord
which returns −1 once the original word stream has run out.

topic This token matches as much text as possible. It should either be at the end
of its grammar line, or be followed by a preposition. (The only way it can fail to match is
if it finds no text at all.) The library’s grammar uses this token for topics of conversation
and topics looked up in books (see §§15, 16), hence the name. The parser ignores the text
for now (your own code will have to think about it later), and simply sets the variables
consult_from to the number of the first word of the matched text and consult_words to
the number of words.

special Obsolete and best avoided.

•EXERCISE 69
Write a token to detect low numbers in French, “un” to “cinq”.

•4 EXERCISE 70
Write a token to detect floating-point numbers like “21”, “5.4623”, “two point oh eight” or “0.01”,
rounding off to two decimal places.

•4 EXERCISE 71
Write a token to match a phone number, of any length from 1 to 30 digits, possibly broken up
with spaces or hyphens (such as “01245 666 737” or “123-4567”).

160

27 Tokens of grammar

•44 EXERCISE 72
(Adapted from code in Andrew Clover’s ‘timewait.h’ library extension.) Write a token to match
any description of a time of day, such as “quarter past five”, “12:13 pm”, “14:03”, “six fifteen” or
“seven o’clock”.

•4 EXERCISE 73
Code a spaceship control panel with five sliding controls, each set to a numerical value, so that
the game looks like:

>look

Machine Room

There is a control panel here, with five slides, each of which can be

set to a numerical value.

>push slide one to 5

You set slide one to the value 5.

>examine the first slide

Slide one currently stands at 5.

>set four to six

You set slide four to the value 6.

44 General parsing routines sometimes need to get at the raw text originally typed by the
player. Usually WordAddress and WordLength (see §24) are adequate. If not, it’s helpful to know
that the parser keeps a string array called buffer holding:

buffer->0 = 〈maximum number of characters which can fit in buffer〉
buffer->1 = 〈the number n of characters typed〉
buffer->2...buffer->(n + 1) = 〈the text typed〉

and, in parallel with this, another one called parse holding:

parse->0 = 〈maximum number of words which can fit in buffer〉
parse->1 = 〈the number m of words typed〉
parse->2... = 〈a four-byte block for each word, as follows〉

block-->0 = 〈the dictionary entry if word is known, 0 otherwise〉
block->2 = 〈number of letters in the word〉
block->3 = 〈index to first character in the buffer〉

(However, for version 3 games the format is slightly different: in buffer the text begins at byte
1, not at byte 2, and its end is indicated with a zero terminator byte.) Note that the raw text is
reduced to lower case automatically, even if within quotation marks. Using these buffers directly
is perfectly safe but not recommended unless there’s no other way, as it tends to make code rather
illegible.

•44 EXERCISE 74
Try to implement the parser’s routines NextWord, WordAddress and WordLength.

•44 EXERCISE 75
(Difficult.) Write a general parsing routine accepting any amount of text (including spaces, full
stops and commas) between double-quotes as a single token.

161

27 Tokens of grammar

•EXERCISE 76
How would you code a general parsing routine which never matches anything?

•44 EXERCISE 77
Why would you code a general parsing routine which never matches anything?

•4 EXERCISE 78
An apparent restriction of the parser is that it only allows two parameters (noun and second).
Write a general parsing routine to accept a third. (This final exercise with general parsing
routines is easier than it looks: see the specification of the NounDomain library routine in §A9.)

28 Scope and what you can see

He cannot see beyond his own nose. Even the fingers he outstretches
from it to the world are (as I shall suggest) often invisible to him.

– Max Beerbohm (–), of George Bernard Shaw

Wherefore are these things hid?

– William Shakespeare (–), Twelfth Night

Time to say what “in scope” means. This definition is one of the most important rules
of play, because it decides what the player is allowed to refer to. You can investigate this
in practice by compiling any game with the debugging suite of verbs included and typing
“scope” in different places: but here are the rules in full. The following are in scope:

the player’s immediate possessions;
the 12 compass directions;
if there is light (see §17), the objects in the same ‘enclosure’ as the player;
if not, any objects in the thedark object; if the player is inside a dark container, then that container.

The ‘enclosure’ of the player is usually the current location. Formally, it’s the outermost
object containing the player which remains visible – for instance, if the player is in a
transparent cabinet in a closed, huge cupboard in the Stores Room, then the enclosure
is the huge cupboard. (Thus items in the huge cupboard are in scope, subject to the
remaining rules, but other items in the Stores Room are not.)

In addition, if an object is in scope then its immediate possessions are in scope, if
it is ‘see-through’, which means that:

the object has supporter, or
the object has transparent, or

162

28 Scope and what you can see

the object is an open container.

In addition, if an object is in scope then anything which it “adds to scope” is also in scope.

4 The player’s possessions are in scope in a dark room – so the player can still turn his lamp
on. On the other hand, a player who puts the lamp on the ground and turns it off then loses the
ability to turn it back on again, because it is out of scope. This can be changed; see below.

4 Compass directions make sense as things. The player can always type something like
“attack the south wall” and the before rule for the room could trap the action Attack s_obj to
make something unusual happen, if this is desired.

4 The parser applies scope rules to all actors, not just the player. Thus “dwarf, drop sword”
will be accepted if the dwarf can see it, even if the player can’t.

4 The concealed attribute only hides objects from room descriptions, and doesn’t remove
them from scope. If you want things to be both concealed and unreferrable-to, put them some-
where else! Or give them an uncooperative parse_name routine.

44 Actually, the above definition is not quite right, because the compass directions are not in
scope when the player asks for a plural number of things, like “take all the knives”; this makes
some of the parser’s plural algorithms run faster. Also, for a multiexcept token, the other

object is not in scope; and for a multiinside token, only objects in the other object are in
scope. This makes “take everything from the cupboard” work in the natural way.

Two library routines are provided to enable you to see what’s in scope and what isn’t.
The first, TestScope(obj, actor), simply returns true or false according to whether or
not obj is in scope. The second is LoopOverScope(routine, actor) and calls the given
routine for each object in scope. In each case the actor given is optional; if it’s omitted,
scope is worked out for the player as usual.

•EXERCISE 79
Implement the debugging suite’s “scope” verb, which lists all the objects currently in scope.

•EXERCISE 80
Write a “megalook” verb, which looks around and examines everything nearby.

Formally, scope determines what you can talk about, which usually means what
you can see. But what can you touch? Suppose a locked chest is inside a sealed glass
cabinet. The Inform parser will allow the command “unlock chest with key” and generate
the appropriate action, Unlock chest key, because the chest is in scope, so the command
at least makes sense.

But it’s impossible to carry out, because the player can’t reach through the solid
glass. So the library’s routine for handling the Unlock action needs to enforce this. The
library does this using a stricter rule called “touchability”. The rule is that you can touch
anything in scope unless there’s a closed container between you and it. This applies either
if you’re in the container, or if it is.

Some purely visual actions don’t require touchability – Examine or LookUnder, for
instance. But most actions are tactile, and so will many actions created by designers. If
you want to make your own action routines enforce touchability, you can call the library

163

28 Scope and what you can see

routine ObjectIsUntouchable(obj). This either returns false if there’s no problem in
touching obj, or returns true and prints a suitable message (such as “The solid glass
cabinet is in the way.”). Thus, the first line of many of the library’s action routines is:

if (ObjectIsUntouchable(noun)) return;

You can also call ObjectIsUntouchable(obj, true) to simply return true or false, and
print nothing, if you’d rather provide your own failure message.
The rest of this section is about how to change the scope rules. As usual with Inform,
you can change them globally, but it’s more efficient and safer to work locally. To take a
typical example: how do we allow the player to ask questions like the traditional “what
is a grue”? The “grue” part ought to be parsed as if it were a noun, so that we could
distinguish between, say, a “garden grue” and a “wild grue”. So it isn’t good enough to
look only at a single word. Here is one solution:

Object questions "qs";

[QuerySub; print_ret (string) noun.description;

];

[Topic i;

switch(scope_stage)

{ 1: rfalse;

2: objectloop (i in questions) PlaceInScope(i); rtrue;

3: "At the moment, even the simplest questions confuse you.";

}

];

where the actual questions at any time are the current children of the questions object,
like so:

Object q1 "long count" questions

with name "long" "count",

description "The Long Count is the great Mayan cycle of time,

which began in 3114 BC and will finish with the world’s end

in 2012 AD.";

and we also have a grammar line:

Verb "what"

* "is" scope=Topic -> Query

* "was" scope=Topic -> Query;

Note that the questions and q1 objects are out of the game for every other purpose. The
name “qs” doesn’t matter, as it will never appear; the individual questions are named so
that the parser might be able to say “Which do you mean, the long count or the short
count?” if the player asked “what is the count”.

When the parser reaches scope=Topic , it calls the Topic routine with the variable
scope_stage set to 1. The routine should return 1 (true) if it is prepared to allow multiple
objects to be accepted here, and 0 (false) otherwise: as we don’t want “what is everything”
to list all the questions and answers in the game, we return false.

164

28 Scope and what you can see

A little later on in its machinations, the parser again calls Topic with scope_stage
now set to 2. Topic is now obliged to tell the parser which objects are to be in scope. It
can call two parser routines to do this.

ScopeWithin(object)

puts everything inside the object into scope, though not the object itself;

PlaceInScope(object)

puts just a single object into scope. It is perfectly legal to declare something in scope
that “would have been in scope anyway”: or even something which is in a different room
altogether from the actor concerned, say at the other end of a telephone line. Our scope
routine Topic should then return

0 (false) to carry on with the usual scope rules, so that everything that would usually
be in scope still is, or

1 (true) to tell the parser not to put any more objects into scope.
So at scope_stage 2 it is quite permissible to do nothing but return false, whereupon the
usual rules apply. Topic returns true because it wants only question topics to be in scope,
not question topics together with the usual miscellany near the player.

This is enough to deal with “what is the long count”. If on the other hand the
player typed “what is the lgon cnout”, the error message which the parser would usually
produce (“You can’t see any such thing”) would be unsatisfactory. So if parsing failed at
this token, then Topic is called at scope_stage 3 to print out a suitable error message.
It must provide one.

4 Note that ScopeWithin(object) extends the scope down through its possessions according
to the usual rules, i.e., depending on their transparency, whether they’re containers and so on.
The definition of Topic above shows how to put just the direct possessions into scope.

•EXERCISE 81
Write a token which puts everything in scope, so that you could have a debugging “purloin” verb
which could take anything, regardless of where it was and the rules applying to it.

Changing the global definition of scope should be done cautiously (there may be unantic-
ipated side effects); bear in mind that scope decisions need to be taken often – every time
an object token is parsed, so perhaps five to ten times in every game turn – and hence
moderately quickly. The global definition can be tampered with by providing the entry
point

InScope(actor)

where the actor is usually the player, but not always. If the routine decides that a
particular object should be in scope for the actor, it should execute PlaceInScope and
ScopeWithin just as above, and return true or false, as if it were at scope_stage 2. Thus,
it is vital to return false in circumstances when you don’t want to intervene.

165

28 Scope and what you can see

4 The token scope=〈Routine〉 takes precedence over InScope, which will only be reached
if the routine returns false to signify ‘carry on’.

44 There are seven reasons why InScope might be being called; the scope_reason variable is
set to the current one:

PARSING REASON The usual one. Note that action_to_be holds NULL in the
early stages (before the verb has been decided) and later on
the action which would result from a successful match.

TALKING REASON Working out which objects are in scope for being spoken to
(see the end of §16 for exercises using this).

EACHTURN REASON When running each_turn routines for anything nearby, at
the end of each turn.

REACT BEFORE REASON When running react_before.
REACT AFTER REASON When running react_after.
TESTSCOPE REASON When performing a TestScope.
LOOPOVERSCOPE REASON When performing a LoopOverScope.

Here are some examples. Firstly, as promised, how to change the rule that “things you’ve just
dropped disappear in the dark”:

[InScope person i;

if (person==player && location==thedark)

objectloop (i near player)

if (i has moved)

PlaceInScope(i);

rfalse;

];

With this routine added, the objects in the dark room the player is in are in scope only if they
have moved (that is, have been held by the player in the past); and even then, are in scope only
to the player.

•44 EXERCISE 82
Construct a long room divided by a glass window. Room descriptions on either side should
describe what’s in view on the other; the window should be lookable-through; objects on the far
side should be in scope, but not manipulable; and everything should cope well if one side is in
darkness.

•44 EXERCISE 83
Code the following puzzle. In an initially dark room there is a light switch. Provided you’ve seen
the switch at some time in the past, you can turn it on and off – but before you’ve ever seen it,
you can’t. Inside the room is nothing you can see, but you can hear a dwarf breathing. If you tell
the dwarf to turn the light on, he will.

As mentioned in the definition above, each object has the ability to drag other objects into scope
whenever it is in scope. This is especially useful for giving objects component parts: e.g., giving a
washing-machine a temperature dial. (The dial can’t be a child object because that would throw
it in with the clothes: and it ought to be attached to the machine in case the machine is moved
from place to place.) For this purpose, the property add_to_scope may contain a list of objects
to add.

166

28 Scope and what you can see

4 Alternatively, it may contain a routine. This routine can then call AddToScope(x) to put
any object x into scope. It may not, however, call ScopeWithin or any other scoping routines.

44 Scope addition does not occur for an object moved into scope by an explicit call to Pla-

ceInScope, since this must allow complete freedom in scope selections. But it does happen when
objects are moved in scope by calls to ScopeWithin(domain).

•EXERCISE 84
(From the tiny example game ‘A Nasal Twinge’.) Give the player a nose, which is always in scope
and can be held, reducing the player’s carrying capacity.

•EXERCISE 85
(Likewise.) Create a portable sterilising machine, with a “go” button, a top which things can be
put on and an inside to hold objects for sterilisation. (Thus it is a container, a supporter and a
possessor of sub-objects all at once.)

•44 EXERCISE 86
Create a red sticky label which the player can affix to any object in the game. (Hint: use InScope,
not add_to_scope.)

•REFERENCES

‘Balances’ uses scope = 〈routine〉 tokens for legible spells and memorised spells. • See also
the exercises at the end of §16 for further scope trickery.

167

29 Helping the parser out of trouble

4 Once you begin programming the parser on a large scale, you soon reach the point where
the parser’s ordinary error messages no longer appear sensible. The ParserError entry point can
change the rules even at this last hurdle: it takes one argument, the error type, and should return
true to tell the parser to shut up, because a better error message has already been printed, or
false, to tell the parser to print its usual message. The error types are all defined as constants:

STUCK_PE I didn’t understand that sentence.
UPTO_PE I only understood you as far as. . .
NUMBER_PE I didn’t understand that number.
CANTSEE_PE You can’t see any such thing.
TOOLIT_PE You seem to have said too little!
NOTHELD_PE You aren’t holding that!
MULTI_PE You can’t use multiple objects with that verb.
MMULTI_PE You can only use multiple objects once on a line.
VAGUE_PE I’m not sure what ‘it’ refers to.
EXCEPT_PE You excepted something not included anyway!
ANIMA_PE You can only do that to something animate.
VERB_PE That’s not a verb I recognise.
SCENERY_PE That’s not something you need to refer to. . .
ITGONE_PE You can’t see ‘it’ (the whatever) at the moment.
JUNKAFTER_PE I didn’t understand the way that finished.
TOOFEW_PE Only five of those are available.
NOTHING_PE Nothing to do!
ASKSCOPE_PE whatever the scope routine prints

Each unsuccessful grammar line ends in one of these conditions. A verb may have many lines of
grammar; so by the time the parser wants to print an error, all of them must have failed. The
error message it prints is the most ‘interesting’ one: meaning, lowest down this list.

4 The VAGUE_PE and ITGONE_PE apply to all pronouns (in English, “it”, “him”, “her” and
“them”). The variable vague_word contains the dictionary address of which is involved (’it’,
’him’, etc.).

You can find out the current setting of a pronoun using the library’s PronounValue routine:
for instance, PronounValue(’it’) would give the object which “it” currently refers to (possibly
nothing). Similarly SetPronoun(’it’, magic_ruby) would set “it” to mean the magic ruby ob-
ject. (When something like a magic ruby suddenly appears in the middle of a turn, players will ha-
bitually call it “it”.) A better way to adjust the pronouns is to call PronounNotice(magic_ruby),
which sets whatever pronouns are appropriate. That is, it works out if the object is a thing or a
person, of what number and gender, which pronouns apply to it in the parser’s current language,
and so on. In code predating Inform 6.1 you may see variables called itobj, himobj and herobj

holding the English pronoun values: these still work properly, but please use the modern system
in new games.

4 The Inform parser resolves ambiguous inputs with a complicated algorithm based on prac-
tical experience. However, it can’t have any expertise with newly-created verbs: here is how to

168

29 Helping the parser out of trouble

provide it. If you define a routine

ChooseObjects(object, code)

then it’s called in two circumstances. If code is 0 or 1, the parser is considering including the
given object in an “all”: 0 means the parser has decided against, 1 means it has decided in favour.
The routine should reply

0 (or false) to say “carry on”;
1 to force the object to be included; or
2 to force the object to be excluded.

It may want to decide using verb_word (the variable storing the current verb word, e.g., ’take’)
and action_to_be, which is the action which would happen if the current line of grammar were
successfully matched.

The other circumstance is when code is 2. This means the parser is sorting through a list
of items (those in scope which best matched the input), trying to decide which single one is most
likely to have been intended. If it can’t choose a best one, it will give up and ask the player.
ChooseObjects should then return a number from 0 to 9 (0 being the default) to give the object
a score for how appropriate it is.

For instance, some designers would prefer “take all” not to attempt to take scenery objects
(which Inform, and the parsers in most of the Infocom games, will do). Let us code this, and also
teach the parser that edible things are more likely to be eaten than inedible ones:

[ChooseObjects obj code;

if (code<2) { if (obj has scenery) return 2; rfalse; }

if (action_to_be==##Eat && obj has edible) return 3;

if (obj hasnt scenery) return 2;

return 1;

];

Scenery is now excluded from “all” lists; and is further penalised in that non-scenery objects are
always preferred over scenery, all else being equal. Most objects score 2 but edible things in the
context of eating score 3, so “eat black” will now always choose a Black Forest gateau in preference
to a black rod with a rusty iron star on the end.

•4 EXERCISE 87
Allow “lock” and “unlock” to infer their second objects without being told, if there’s an obvi-
ous choice (because the player’s only carrying one key), but to issue a disambiguation question
otherwise. (Use Extend, not ChooseObjects.)

•REFERENCES

See ‘Balances’ for a usage of ParserError.

169

Chapter VI: Testing and Hacking

30 Debugging verbs and tracing

If builders built buildings the way programmers write programs, the
first woodpecker that came along would destroy civilisation.

– old computing adage

Infocom claimed to have fixed nearly 2000 bugs in the course of writing ‘Sorcerer’, which
is a relatively simple game today. Adventure games are exhausting programs to test and
debug because of the huge number of states they can get into, many of which did not occur
to the author. (For instance, if the player solves the “last” puzzle first, do the other puzzles
still work properly? Are they still fair?) The main source of error is simply the designer
not noticing that some states are possible. The Inform library can’t help with this, but
it does contain features to help the tester to quickly reproduce states (by moving objects
around freely, for instance) and to see what the current state actually is (by displaying the
tree of objects, for instance).

Inform provides a small suite of debugging verbs, which will be added to any game
compiled with the -D switch. If you prefer, you can include them manually by writing

Constant DEBUG;

DEBUG somewhere in the program before the library files are included. (Just in case you
forget having done this, the letter D appears in the game banner to stop you releasing such
a version by accident.)

You then get the following verbs, which can be used at any time in play:
showobj <anything>

purloin <anything>

abstract <anything> to <anything>

tree tree <anything>

scope scope <anything>

showverb <verb>

goto <number> gonear <anything>

actions actions on actions off

routines routines on routines off

messages messages on messages off

timers timers on timers off

trace trace on trace off trace <1 to 5>

recording recording on recording off

replay

random

170

30 Debugging verbs and tracing

“showobj” is very informative about the current state of an object. You can “purloin”
any item or items in your game at any time, wherever you are. This clears concealed for
anything it takes, if necessary. You can likewise “abstract” any item to any other item
(meaning: move it to the other item). To get a listing of the objects in the game and how
they contain each other, use “tree”, and to see the possessions of one of them alone, use
“tree 〈that〉”. The command “scope” prints a list of all the objects currently in scope, and
can optionally be given the name of someone else you want a list of the scope for (e.g.,
“scope pirate”). “showverb” will display the grammar being used when the given verb is
parsed. Finally, you can go anywhere, but since rooms don’t have names understood by
the parser, you have to give either the object number, which you can find out from the
“tree” listing, or the name of some object in the room you want to go to (this is what
“gonear” does).

Turning on “actions” gives a trace of all the actions which take place in the game
(the parser’s, the library’s or yours); turning on “routines” traces every object routine
(such as before or life) that is ever called, except for short_name (as this would look
chaotic, especially on the status line). It also describes all messages sent in the game,
which is why it can also be written as “messages”. Turning on “timers” shows the state
of all active timers and daemons each turn.

The commands you type can be transcribed to a file with the “recording” verb, and
run back through with the “replay” verb. (This may not work under some implementations
of the ITF interpreter.) If you’re going to use such recordings, you will need to fix the
random number generator, and the “random” verb should render this deterministic: i.e.,
after any two uses of “random”, the same stream of random numbers results. Random
number generation is poor on some machines: you may want to Replace the random-
number generator in software instead.

A source-level debugger for Inform, called Infix, has been planned for some years, and may
possibly be coming to fruition soon.
4 For the benefit of such tools, Inform (if compiling with the -k option set) produces a file
of “debugging information” (cross-references of the game file with the source code), and anyone
interested in writing an Inform utility program may want to know the format of this file: see the
Technical Manual for details.

On most interpreters, though, run-time crashes can be mysterious, since the interpreters
were written on the assumption that they would only ever play Infocom game files (which
are largely error-free). A Standard interpreter is better here and will usually tell you why
and where the problem is; given a game file address you can work back to the problem
point in the source either with Mark Howell’s txd (disassembler) or by running Inform
with the assembler trace option on.

Here are all the ways I know to crash an interpreter at run-time (with high-level
Inform code, that is; if you insist on using assembly language or the indirect function
you’re raising the stakes), arranged in decreasing order of likelihood:

• Writing to a property which an object hasn’t got;
• Dividing by zero, possibly by calling random(0);
• Giving a string or numerical value for a property which can only legally hold a

routine, such as before, after or life;

171

30 Debugging verbs and tracing

• Applying parent, child or children to the nothing object;
• Using print object on the nothing object, or for some object which doesn’t exist

(use print (name), print (the) etc., instead as these are safeguarded);
• Using print (string) or print (address) to print from an address outside the

memory map of the game file, or an address at which no string is present (this will
result in random text appearing, possibly including unprintable characters, which
might crash the terminal);

• Running out of stack space in a recursive loop.

4 There are times when it’s hard to work out what the parser is up to and why (actually,
most times are like this). The parser is written in levels, the lower levels of which are murky
indeed. Most of the interesting things happen in the middle levels, and these are the ones for
which tracing is available. The levels which can be traced are:

Level 1 Grammar lines
Level 2 Individual tokens
Level 3 Object list parsing
Level 4 Resolving ambiguities and making choices of object(s)
Level 5 Comparing text against an individual object

“trace” or “trace on” give only level 1 tracing. Be warned: “trace five” can produce reams of text

when you try anything at all complicated: but you do sometimes want to see it, to get a list of

exactly everything that is in scope and when. There are two levels lower than that but they’re

too busy doing dull spade-work to waste time on looking at parser_trace. There’s also a level

0, but it consists mostly of making arrangements for level 1, and isn’t very interesting.

44 Finally, though this is a drastic measure, you can always compile your game -g (‘debugging
code’) which gives a listing of every routine ever called and their parameters. This produces an
enormous melée of output. More usefully you can declare a routine with an asterisk * as its first
local variable, which produces such tracing only for that one routine. For example,

[ParseNoun * obj n m;

results in the game printing out lines like

[ParseName, obj=26, n=0, m=0]

every time the routine is called.

•REFERENCES

A simple debugging verb called “xdeterm” is defined in the DEBUG version of ‘Advent’, to make
the game deterministic (i.e., not dependant on what the random number generator produces).

172

31 Limitations on the run-time format

How wide the limits stand
Between a splendid and an happy land.

– Oliver Goldsmith (–), The Deserted Village

The Infocom run-time format is well-designed, and has three major advantages: it is
compact, widely portable and can be quickly executed. Nevertheless, like any rigidly
defined format it imposes limitations. These are not by any means pressing. Inform
itself has a flexible enough memory-management system not to impose artificial limits on
numbers of objects and the like.

Games can be compiled to several “versions” of the run-time format. Unless told
otherwise Inform compiled to what used to be called Advanced games (version 5). It can
still compile Standard games (version 3) but doing so imposes genuine restrictions, and
there is little point any more. Stepping up to the new version 8, on the other hand, allows
much larger games to be compiled. Other versions exist but are not useful to present-day
game designers, so the real decision is V5 versus V8.

Memory. This is the only serious restriction. The maximum size of a game (in K) is given
by:

V3 V4 V5 V6 V7 V8
128 256 256 512 320 512

Because games are encoded in a very compressed form, and because the centralised library
of Inform is efficient in terms of not duplicating code, even 128K allows for a game at
least half as large again as a typical old-style Infocom game. The default format (V5) will
hold a game as large and complex as the final edition of ‘Curses’, substantially bigger than
any Infocom game, with room to spare. V6, the late Infocom graphical format, should be
avoided for text games, as it is much more difficult to interpret. The V8 format allows
quite gargantuan games (one could implement, say, a merging of the ‘Zork’ and ‘Enchanter’
trilogies in it) and is recommended as the standard size for games too big to fit in V5.

Grammar. The number of verbs is limited only by memory. Each can have up to 20
grammar lines (one can recompile Inform with MAX_LINES_PER_VERB defined to a higher
setting to increase this) and a line contains at most 6 tokens. (Using general parsing
routines will prevent either restriction from biting.)

Vocabulary. There is no theoretical limit. Typical games have vocabularies of between
1000 and 2000 words, but doubling that would pose no problem.

Dictionary resolution. Dictionary words are truncated to their first 9 letters (except that
non-alphabetic characters, such as hyphens, count as 2 “letters” for this purpose). They
must begin with an alphabetic character and upper and lower case letters are considered
equal. (In V3, the truncation is to 6 letters.)

Attributes, properties, names. 48 attributes and 63 common properties are available, and
each property can hold 64 bytes of data. Hence, for example, an object can have up to

173

31 Limitations on the run-time format

32 names. These restrictions are harmless in practice: except in V3, where the numbers
in question are 32, 31, 8 and 4, which begins to bite. Note that the number of different
individual properties is unlimited.

Special effects. V3 games cannot have special effects such as bold face and underlining.
(See the next two sections.)

Objects. Limited only by memory: except in V3, where the limit is 255.

Memory management. The Z-machine does not allow dynamic allocation or freeing of
memory: one must statically define an array to a suitable maximum size and live within
it. This restriction greatly increases the portability of the format, and the designer’s
confidence that the game’s behaviour is genuinely independent of the machine it’s running
on: memory allocation at run-time is a fraught process on many machines.

Global variables. There can only be 240 of these, and the Inform compiler uses 5 as
scratch space, while the library uses slightly over 100; but since a typical game uses only
a dozen of its own, code being almost always object-oriented, the restriction is never felt.
An unlimited number of Array statements is permitted and array entries do not, of course,
count towards the 240.

“Undo”. No “undo” verb is available in V3.

Function calls. A function can be called with at most 7 arguments. (Or, in V3 and V4,
at most 3.)

Recursion and stack usage. The limit on this is rather technical (see the Z-Machine Stan-
dards Document). Roughly speaking, recursion is permitted to a depth of 90 routines in
almost all circumstances (and often much deeper). Direct usage of the stack via assembly
language must be modest.

4 If memory does become short, there is a standard mechanism for saving about 8-10% of
the memory. Inform does not usually trouble to, since there’s very seldom the need, and it makes
the compiler run about 10% slower. What you need to do is define abbreviations and then run
the compiler in its “economy” mode (using the switch -e). For instance, the directive

Abbreviate " the ";

(placed before any text appears) will cause the string “ the ” to be internally stored as a single
‘letter’, saving memory every time it occurs (about 2500 times in ‘Curses’, for instance). You can
have up to 64 abbreviations. When choosing abbreviations, avoid proper nouns and instead pick
on short combinations of a space and common two- or three-letter blocks. Good choices include "

the ", "The", ", ", "and", "you", " a ", "ing", " to". You can even get Inform to work out by
itself what a good stock of abbreviations would be: but be warned, this makes the compiler run
about 29000% slower.

174

32 Boxes, menus and drawings

Yes, all right, I won’t do the menu. . . I don’t think you realise how
long it takes to do the menu, but no, it doesn’t matter, I’ll hang
the picture now. If the menus are late for lunch it doesn’t matter,
the guests can all come and look at the picture till they are ready,
right?

– John Cleese and Connie Booth, Fawlty Towers

One harmless effect, though not very special, is to ask the player a yes/no question. To
do this, print up the question and then call the library routine YesOrNo, which returns
true/false accordingly.

The status line is perhaps the most distinctive feature of Infocom games in play.
This is the (usually highlighted) bar across the top of the screen. Usually, the game
automatically prints the current game location, and either the time or the score and number
of turns taken. It has the score/turns format unless the directive

Statusline time;

has been written in the program, in which case the game’s 24-hour clock is displayed.

4 If you want to change this, just Replace the parser’s private DrawStatusLine routine. This
requires a little assembly language: see the next section for numerous examples.

About character graphic drawings: on some machines, text will by default be displayed in
a proportional font (i.e., one in which the width of a letter depends on what it is, so that
for example an ‘i’ will be narrower than an ‘m’). If you want to display a diagram made
up of letters, such as a map, the spacing may then be wrong. The statement font off
ensures that any fancy font is switched off and that a fixed-pitch one is being used: after
this, font on restores the usual state.

•WARNING

Don’t turn the font on and off in the middle of a line; this doesn’t look right on some
machines.

4 When trying to produce a character-graphics drawing, you sometimes want to produce
the \ character, one of the four “escape characters” which can’t normally be included in text. A
double @ sign followed by a number includes the character with that ASCII code; thus:

@@64 produces the literal character @

@@92 produces \ @@94 produces ^ @@126 produces ~

44 Some interpreters are capable of much better character graphics (those equipped to run the
Infocom game ‘Beyond Zork’, for instance). There is a way to find out if this feature is provided
and to make use of it: see the Z-Machine Standards Document.

175

32 Boxes, menus and drawings

44 A single @ sign is also an escape character. It must be followed by a 2-digit decimal number
between 0 and 31 (for instance, @05). What this prints is the n-th ‘variable string’. This feature is
not as useful as it looks, since the only legal values for such a variable string are strings declared
in advance by a LowString directive. The String statement then sets the n-th variable string.
For details and an example, see the answer to the east-west reversal exercise in §10.

A distinctive feature of later Infocom games was their use of epigrams. The assembly
language required to produce this effect is easy but a nuisance, so there is an Inform
statement to do it, box. For example,

box "I might repeat to myself, slowly and soothingly,"

"a list of quotations beautiful from minds profound;"

"if I can remember any of the damn things."

""

"-- Dorothy Parker";

Note that a list of one or more lines is given (without intervening commas) and that a
blank line is given by a null string. Remember that the text cannot be too wide or it will
look awful on a small screen. Inform will automatically insert the boxed text into the game
transcript, if one is being made. The author takes the view that this device is amusing for
irrelevant quotations but irritating when it conveys vital information (such as “Beware of
the Dog”). Also, some people might be running your game on a laptop with a vertically
challenged screen, so it is polite to provide a “quotes off” verb.

A snag with printing boxes is that if you do it in the middle of a turn then it will
probably scroll half-off the screen by the time the game finishes printing for the turn.
The right time to do so is just after the prompt (usually >) is printed, when the screen
will definitely scroll no more. You could use the Prompt: slot in LibraryMessages to
achieve this, but a more convenient way is to put your box-printing into the entry point
AfterPrompt (called at this time each turn).

•EXERCISE 88
Implement a routine Quote(n) which will arrange for the n-th quotation (where 0 ≤ n ≤ 49) to
be displayed at the end of this turn, provided it hasn’t been quoted before.

Sometimes one would like to provide a menu of text options (for instance, when pro-
ducing instructions which have several topics, or when giving clues). This can be done
with the DoMenu routine, which imitates the traditional “Invisiclues” style. By setting
pretty_flag=0 you can make a simple text version instead; a good idea for machines with
very small screens. Here is a typical call to DoMenu:

DoMenu("There is information provided on the following:^

^ Instructions for playing

^ The history of this game

^ Credits^",

HelpMenu, HelpInfo);

Note the layout, and especially the carriage returns. The second and third arguments
are themselves routines. (Actually the first argument can also be a routine to print a

176

32 Boxes, menus and drawings

string instead of the string itself, which might be useful for adaptive hints.) The HelpMenu
routine is supposed to look at the variable menu_item. In the case when this is zero, it
should return the number of entries in the menu (3 in the example). In any case it should
set item_name to the title for the page of information for that item; and item_width to
half its length in characters (this is used to centre titles on the screen). In the case of item
0, the title should be that for the whole menu.

The second routine, HelpInfo above, should simply look at menu_item (1 to 3
above) and print the text for that selection. After this returns, normally the game prints
“Press [Space] to return to menu” but if the value 2 is returned it doesn’t wait, and if the
value 3 is returned it automatically quits the menu as if Q had been pressed. This is useful
for juggling submenus about.

Menu items can safely launch whole new menus, and it is easy to make a tree of
these (which will be needed when it comes to providing hints across any size of game).

•EXERCISE 89
Code an “Invisiclues”-style sequence of hints for a puzzle, revealed one at a time, as a menu item.

Finally, you can change the text style. The statement for this is style and its effects are
loosely modelled on the VT100 (design of terminal). The style can be style roman, style
bold, style reverse or style underline. Again, poor terminals may not be able to
display these, so you shouldn’t hide crucial information in them.

•REFERENCES

‘Advent’ contains a menu much like that above. • The “Infoclues” utility program translates
UHS format hints (a standard, easy to read and write layout) into an Inform file of calls to DoMenu

which can simply be included into a game; this saves a good deal of trouble.

33 Descending into assembly language

44 Some dirty tricks require bypassing all of Inform’s higher levels to program the Z-machine
directly with assembly language. There is an element of danger in this, in that some combinations
of unusual opcodes might look ugly on some incomplete or wrongly-written interpreters: so if
you’re doing anything complicated, test it as widely as possible.

The best-researched and most reliable interpreters available by far are Mark Howell’s Zip and
Stefan Jokisch’s Frotz: they are also faster than their only serious rival, the InfoTaskForce, a
historically important work which is fairly thorough (and should give little trouble in practice)
but which was written when the format was a little less well understood. In some ports, ITF gets
rarer screen effects wrong, and it lacks an “undo” feature, so the Inform “undo” verb won’t work
under ITF. (The other two publically-available interpreters are pinfocom and zterp, but these are

177

33 Descending into assembly language

unable to run Advanced games. In the last resort, sometimes it’s possible to use one of Infocom’s
own supplied interpreters with a different game from that it came with; but only sometimes, as
they may have inconvenient filenames ‘wired into them’.)

Interpreters conforming to the Z-Machine Standard, usually but not always derived from
Frotz or Zip, are reliable and widely available. But remember that one source of unportability is
inevitable. Your game may be running on a screen which is anything from a 64 characters by 9
pocket organiser LCD display, up to a 132 by 48 window on a 21-inch monitor.

Anyone wanting to really push the outer limits (say, by implementing Space Invaders or
NetHack) will need to refer to The Z-Machine Standards Document. This is much more detailed
(the definition of aread alone runs for two pages) and covers the whole range of assembly language.
However, this section does document all those features which can’t be better obtained with higher-
level code.

Lines of assembly language must begin with an @ character and then the name of the “opcode”
(i.e., assembly language statement). A number of arguments, or “operands” follow (how many
depends on the opcode): these may be any Inform constants, local or global variables or the stack
pointer sp, but may not be compound expressions. sp does not behave like a variable: writing a
value to it pushes that value onto the stack, whereas reading the value of it (for instance, by giving
it as an operand) pulls the top value off the stack. Don’t use sp unless you have to. After the
operands, some opcodes require a variable (or sp) to write a result into. The opcodes documented
in this section are as follows:

@split_window lines

@set_window window

@set_cursor line column

@buffer_mode flag

@erase_window window

@set_colour foreground background

@aread text parse time function <result>

@read_char 1 time function <result>

@tokenise text parse dictionary

@encode_text ascii-text length from coded-text

@output_stream number table

@input_stream number

@catch <result>

@throw value stack-frame

@save buffer length filename <result>

@restore buffer length filename <result>

178

33 Descending into assembly language

@split_window lines

Splits off an upper-level window of the given number of lines in height from the main screen.
This upper window usually holds the status line and can be resized at any time: nothing visible
happens until the window is printed to. Warning: make the upper window tall enough to include
all the lines you want to write to it, as it should not be allowed to scroll.

@set_window window

The text part of the screen (the lower window) is “window 0”, the status line (the upper one) is
window 1; this opcode selects which one text is to be printed into. Each window has a “cursor
position” at which text is being printed, though it can only be set for the upper window. Printing
on the upper window overlies printing on the lower, is always done in a fixed-pitch font and does
not appear in a printed transcript of the game. Note that before printing to the upper window,
it is wise to use @buffer_mode to turn off word-breaking.

@set_cursor line column

Places the cursor inside the upper window, where (1, 1) is the top left character.

@buffer_mode flag

This turns on (flag=1) or off (flag=0) word-breaking for the current window (that is, the practice
of printing new-lines only at the ends of words, so that text is neatly formatted). It is wise to
turn off word-breaking while printing to the upper window.

@erase_window window

This opcode is unfortunately incorrectly implemented on some interpreters and so it can’t safely
be used to erase individual windows. However, it can be used with window=-1, and then clears
the entire screen. Don’t do this in reverse video mode, as a bad interpreter may (incorrectly) wipe
the entire screen in reversed colours.

@set_colour foreground background

If coloured text is available, set text to be foreground-against-background. The colour numbers
are borrowed from the IBM PC:

2 = black, 3 = red, 4 = green, 5 = yellow,

6 = blue, 7 = magenta, 8 = cyan, 9 = white

0 = the current setting, 1 = the default.

On many machines coloured text is not available: the opcode will then do nothing.

@aread text parse time function <result>

The keyboard can be read in remarkably flexible ways. This opcode reads a line of text from the
keyboard, writing it into the text string array and ‘tokenising’ it into a word stream, with details
stored in the parse string array (unless this is zero, in which case no tokenisation happens). (See
the end of §27 for the format of text and parse.) While it is doing this, it calls function(time)

every time tenths of a second while the user is thinking: the process ends if ever this function
returns true. <result> is to be a variable, but the value written in it is only meaningful if you’re
using a “terminating characters table”. Thus (by Replaceing the Keyboard routine in the library
files) you could, say, move around all the characters every ten seconds of real time. Warning:
not every interpreter supports this real-time feature, and most of those that do count in seconds
instead of tenths of seconds.

179

33 Descending into assembly language

@read_char 1 time function <result>

results in the ASCII value of a single keypress. Once again, the function is called every time

tenths of a second and may stop this process early. Function keys return special values from 129
onwards, in the order: cursor up, down, left, right, function key f1, ..., f12, keypad digit 0, ..., 9.
The first operand must be 1 (used by Infocom as a device number to identify the keyboard).

@tokenise text parse dictionary

This takes the text in the text buffer (in the format produced by aread) and tokenises it (i.e.
breaks it up into words, finds their addresses in the dictionary) into the parse buffer in the
usual way but using the given dictionary instead of the game’s usual one. (See the Z-Machine
Standards Document for the dictionary format.)

@encode_text ascii-text length from coded-text

Translates an ASCII word to the internal (Z-encoded) text format suitable for use in a @tokenise

dictionary. The text begins at from in the ascii-text and is length characters long, which
should contain the right length value (though in fact the interpreter translates the word as far as
a 0 terminator). The result is 6 bytes long and usually represents between 1 and 9 letters.

@output_stream number table

Text can be output to a variety of different ‘streams’, possibly simultaneously. If number is 0
this does nothing. +n switches stream n on, −n switches it off. The output streams are: 1 (the
screen), 2 (the game transcript), 3 (memory) and 4 (script of player’s commands). The table can
be omitted except for stream 3, when it’s a table array holding the text printed; printing to this
stream is never word-broken, whatever the state of @buffer_mode.

@input_stream number

Switches the ‘input stream’ (the source of the player’s commands). 0 is the keyboard, and 1 a
command file (the idea is that a list of commands produced by output_stream 4 can be fed back
in again).

@catch <result>

The opposite of throw, catch preserves the “stack frame” of the current routine: meaning, roughly,
the current position of which routine is being run and which ones have called it so far.

@throw value stack-frame

This causes the program to execute a return with value, but as if it were returning from the
routine which was running when the stack-frame was caught (see catch). Any routines which
were called in the mean time and haven’t returned yet (because each one called the next) are
forgotten about. This is useful to get the program out of large recursive tangles in a hurry.

@save buffer length filename <result>

Saves the byte array buffer (of size length) to a file, whose (default) name is given in the
filename (a string array). Afterwards, result holds 1 on success, 0 on failure.

180

33 Descending into assembly language

@restore buffer length filename <result>

Loads in the byte array buffer (of size length) from a file, whose (default) name is given in the
filename (a string array). Afterwards, result holds the number of bytes successfully read.

•WARNING
Some of these features may not work well on obsolete interpreters which do not adhere to the
Z-Machine Standard. Standard interpreters are widely available, but if seriously worried you can
test whether your game is running on a good interpreter:

if (standard_interpreter == 0)

{ print "This game must be played on an interpreter obeying the

Z-Machine Standard.^";

@quit;

}

•EXERCISE 90
In a role-playing game campaign, you might want several scenarios, each implemented as a separate
Inform game. How could the character from one be saved and loaded into another?

•4 EXERCISE 91
Design a title page for ‘Ruins’, displaying a more or less apposite quotation and waiting for a key
to be pressed.

•4 EXERCISE 92
Change the status line so that it has the usual score/moves appearance except when a variable
invisible_status is set, when it’s invisible.

•4 EXERCISE 93
Alter the ‘Advent’ example game to display the number of treasures found instead of the score
and turns on the status line.

•4 EXERCISE 94
(From code by Joachim Baumann.) Put a compass rose on the status line, displaying the directions
in which the room can be left.

•44 EXERCISE 95
(Cf. ‘Trinity’.) Make the status line consist only of the name of the current location, centred in
the top line of the screen.

•44 EXERCISE 96
Implement an Inform version of the standard ‘C’ routine printf, taking the form

printf(format, arg1, ...)

to print out the format string but with escape sequences like %d replaced by the arguments (printed
in various ways). For example,

printf("The score is %e out of %e.", score, MAX_SCORE);

should print something like “The score is five out of ten.”

•REFERENCES

The assembly-language connoisseur will appreciate ‘Freefall’ by Andrew Plotkin and ‘Robots’ by
Torbjørn Andersson, although the present lack of on-line hints make these difficult games to win.

181

Appendix: Tables and summaries

A1 Inform operators

In the table, “Level” refers to precedence level: thus *, on level 6, has precedence over +, down on
level 5, but both subordinate to unary -, up on level 8. The “associativity” of an operator is the
way it brackets up if the formula doesn’t specify this: for instance, - is left associative because

a - b - c

is understood as

(a - b) - c

with brackets going on the left. With some Inform operators, you’re not allowed to be vague like
this; these are the ones whose associative is listed as “none”. Thus

a == b == c

will produce an error insisting that brackets be written into the program to make clear what the
meaning is. Given the table (and sufficient patience) all expressions can be broken down into
order: for instance

a * b .& c --> d / - f

is calculated as

(a*((b.&c)-->d)) / (-f)

182

Level Operator Usage Assoc. Purpose

0 , binary left separating values to work out
1 = binary right set equal to
2 && binary left logical AND
2 || binary left logical OR
2 ~~ unary (pre) logical NOT
3 == binary none equal to?
3 ~= binary none not equal to?
3 > binary none greater than?
3 >= binary none greater than or equal to?
3 < binary none less than?
3 <= binary none less than or equal to?
3 has binary none object has this attribute?
3 hasnt binary none object hasn’t this attribute?
3 in binary none first obj a child of second?
3 notin binary none first obj not a child of second?
3 ofclass binary none obj inherits from class?
3 provides binary none obj provides this property?
4 or binary left separating alternative values
5 + binary left 16-bit signed addition
5 - binary left 16-bit signed subtraction
6 * binary left 16-bit signed multiplication
6 / binary left 16-bit signed integer division
6 % binary left 16-bit signed remainder
6 & binary left bitwise AND
6 | binary left bitwise OR
6 ~ unary (pre) bitwise NOT
7 -> binary left byte array entry
7 --> binary left word array entry
8 - unary (pre) 16-bit (signed!) negation
9 ++ unary (pre/post) incrementd
9 -- unary (pre/post) decrement
10 .& binary left property address
10 .# binary left property length
11 (...) binary left function call on right hand side
12 . binary left property value
13 :: binary left “superclass” operator
14 (...) binary left function call on left hand side

183

A2 Inform statements

box 〈line-1〉 〈line-2〉 ... 〈line-n〉
break

continue

do 〈code block〉 until 〈condition〉
font on or off

for (〈initial code〉:〈condition to carry on〉:〈update code〉) 〈code block〉
give 〈object〉 〈attribute-1〉 ... 〈attribute-n〉
if 〈condition〉 〈code block〉
if 〈condition〉 〈code block〉 else 〈code-block〉
inversion

jump 〈label〉
move 〈object〉 to 〈destination〉
new_line

objectloop 〈condition choosing objects〉 〈code block〉
print 〈list of printing specifications〉
print_ret 〈list of printing specifications〉
quit

read 〈text-buffer〉 〈parsing-buffer〉
remove 〈object〉
restore 〈label〉
return 〈optional value〉
rfalse

rtrue

save 〈label〉
spaces 〈number of spaces to print〉
string 〈number〉 〈text〉
style roman or bold or underline or reverse or fixed

switch (〈value〉) 〈block of cases〉
while 〈condition〉 〈code-block〉

Statements must be given in lower case. Code blocks consist of either a single statement or a
group of statements enclosed in braces { and }. Print specifications are given as a list of one or
more items, separated by commas:

"〈some literal text to print〉"
〈numerical quantity〉
(char) 〈a character code〉
(string) 〈a string address〉
(address) 〈text held at this byte address〉
(name) 〈object〉
(a) 〈object〉
(an) 〈object〉
(the) 〈object〉
(The) 〈object〉
(property) 〈name of a property〉
(object) 〈internal “hardware” object short name〉

184

A3 Inform directives

Abbreviate 〈word-1〉 ... 〈word-n〉
Array 〈new-name〉 〈type〉 〈initial values〉
Attribute 〈new-name〉
Class 〈new-name〉 〈body of definition〉
Constant 〈new-name〉 = 〈value〉
Default 〈possibly-new-name〉
End

Endif

Extend 〈grammar extension〉
Global 〈new-name〉 = 〈value〉
Ifdef 〈symbol-name〉
Ifndef 〈symbol-name〉
Ifnot

Iftrue 〈condition〉
Iffalse 〈condition〉
Import 〈list of imported goods〉
Include 〈source code filename〉
Link 〈module filename〉
Lowstring 〈text〉
Message 〈message-type〉 〈diagnostic-message〉
Object 〈header〉 〈body of definition〉
Property 〈new-name〉
Release 〈number〉
Replace 〈routine-name〉
Serial "〈serial number〉"
Switches 〈list of switches〉
Statusline score or time

System_file

Verb 〈verb-definition〉

Nearby, much used in Inform 5 code, is still allowed but in modern code the notation Object

-> is preferable. A few other directives, Dictionary, Fake_action, Ifv3, Ifv5, Stub, Trace and
Version, are obsolete or for compiler maintenance.

185

A4 Grammar

A ‘verb’ is a set of possible initial words in keyboard command, which are treated synonymously
(for example, “wear” and “don”) together with a ‘grammar’. A grammar is a list of ‘lines’ which
the parser tries to match, one at a time, and accepts the first one which matches. The directive

Verb [meta] 〈verb-word-1〉 . . . 〈verb-word-n〉 〈grammar〉

creates a new verb. If it is said to be meta then it will count as ‘out of the game’: for instance
“score” or “save”. New synonyms can be added to an old verb with:

Verb 〈new-word-1〉 . . . 〈new-word-n〉 = 〈existing-verb-word〉

An old verb can be modified with the directive

Extend [only] 〈existing-word-1〉 . . . 〈existing-word-n〉 [〈priority〉] 〈grammar〉

If only is specified, the existing words given (which must all be from the same existing verb) are
split off into a new independent copy of the verb. If not, the directive extends the whole existing
verb. The priority can be first (insert this grammar at the head of the list), last (insert it at
the end) or replace (throw away the old list and use this instead); the default is last.

A line is a list of ‘tokens’ together with the action generated if each token matches so that
the line is accepted. The syntax of a line is

* 〈token-1〉 〈token-2〉 . . .〈token-n〉 -> 〈action〉

where 0 ≤ n ≤ 31. The action is named without initial ## signs and if an action which isn’t in
the standard library set is named then an action routine (named with the action name followed
by Sub) must be defined somewhere in the game.

A grammar line can optionally be followed by the word reverse. This signals that the
action to be generated has two parameters, but which have been parsed in the wrong order and
need to swapped over. (Note that a topic is not a parameter, and nor is a preposition.)

A token matches a single particle of what has been typed. The possible tokens are:

"〈word〉" that literal word only

noun any object in scope

held object held by the player

multi one or more objects in scope

multiheld one or more held objects

multiexcept one or more in scope, except the other

multiinside one or more in scope, inside the other

〈attribute〉 any object in scope which has the attribute

creature an object in scope which is animate

noun = 〈Routine〉 any object in scope passing the given test

186

A4 Grammar

scope = 〈Routine〉 an object in this definition of scope

number a number only

〈Routine〉 refer to this general parsing routine

topic any text at all

special any single word or number

Two or more literal words (only) can be written with slash signs / between them as alternatives.
E.g., "in"/"on" matches either the word “in” or the word “on”.

For the noun = 〈Routine〉 token, the test routine must decide whether or not the object
in the noun variable is acceptable and return true or false.

For the scope = 〈Routine〉 token, the routine must look at the variable scope_stage.
If this is 1, then it must decide whether or not to allow a multiple object (such as “all”) here
and return true or false. If 2, then the routine may put objects into scope by calling either
PlaceInScope(obj) to put just obj in, or ScopeWithin(obj) to put the contents of obj into
scope. It must then return either true (to prevent any other objects from entering scope) or false
(to let the parser put in all the usual objects). If scope_stage=3, it must print a suitable message
to tell the player that this token was misunderstood.

A general parsing routine can match any text it likes. It should use wn, the variable holding
the number of the word currently being parsed (counting from the verb being word 1) and the
routine NextWord() to read the next word and move wn on by 1. The routine returns:

−1 if the user’s input isn’t understood,
0 if it’s understood but doesn’t refer to anything,
1 if there is a numerical value resulting, or
n if object n is understood.

In the case of a number, the actual value should be put into the variable parsed_number.On an
unsuccessful match (returning −1) it doesn’t matter what the final value of wn is. Otherwise it
should be left pointing to the next thing after what the routine understood.

A5 Library attributes

Here is a concise account of all the normal rules concerning all the library’s attributes, except
that: rules about how the parser sorts out ambiguities are far too complicated to include here,
but should not concern designers anyway; and the definitions of ‘scope’ and ‘darkness’ are given
in §§28 and 17 respectively. These rules are the result of pragmatism and compromise, but are all
easily modifiable.

absent A ‘floating object’ (one with a found_in property, which can appear in many
different rooms) which is absent will in future no longer appear in the game. Note
that you cannot make a floating object disappear merely by giving it absent, but
must explicitly remove it as well.

187

A5 Library attributes

animate “Is alive (human or animal).” Can be spoken to in “richard, hello” style; matches
the creature token in grammar; picks up “him” or “her” (according to gender)
rather than “it”, likewise “his”; an object the player is changed into becomes
animate; some messages read “on whom”, etc., instead of “on which”; can’t be
taken; its subobjects “belong to” it rather than “are part of” it; messages don’t
assume it can be “touched” or “squeezed” as an ordinary object can; the actions
Attack, ThrowAt are diverted to life rather than rejected as being ‘futile violence’.

clothing “Can be worn.”

concealed “Concealed from view but present.” The player object has this; an object which
was the player until ChangePlayer happened loses this property; a concealed door

can’t be entered; does not appear in room descriptions.

container Affects scope and light; object lists recurse through it if open (or transparent);
may be described as closed, open, locked, empty; a possession will give it a LetGo

action if the player tries to remove it, or a Receive if something is put in; things
can be taken or removed from it, or inserted into it, but only if it is open; like-
wise for “transfer” and “empty”; room descriptions describe using when_open or
when_closed if given; if there is no defined description, an Examine causes the
contents to be searched (i.e. written out) rather than a message “You see nothing
special about. . .”; Search only reveals the contents of containers, otherwise saying
“You find nothing”.

door “Is a door or bridge.” Room descriptions describe using when_open or when_closed
if given; and an Enter action becomes a Go action. If a Go has to go through this
object, then: if concealed, the player “can’t go that way”; if not open, then the
player is told either that this cannot be ascended or descended (if the player tried
“up” or “down”), or that it is in the way (otherwise); but if neither, then its
door_to property is consulted to see where it leads; finally, if this is zero, then it
is said to “lead nowhere” and otherwise the player actually moves to the location.

edible “Can be eaten” (and thus removed from game).

enterable Affects scope and light; only an enterable on the floor can be entered. If an
enterable is also a container then it can only be entered or exited if it is open.

female This object has a feminine name. In games written in English, this makes her
a female person, though in other languages it might be inanimate. The parser
uses this information when considering pronouns like “her”. (In English, anything
animate is assumed to be male unless female or neuter is set.)

general A general-purpose attribute, defined by the library but never looked at or altered
by it. This is left free to mean something different for each object: often used by
programmers for something like “the puzzle for this object has been solved”.

light “Is giving off light.” (See §17.) Also: the parser understands “lit”, “lighted”,
“unlit” using this; inventories will say “(providing light)” of it, and so will room
descriptions if the current location is ordinarily dark; it will never be automatically
put away into the player’s SACK_OBJECT, as it might plausibly be inflammable or
the main light source.

lockable Can be locked or unlocked by a player holding its key object, which is given by
the property with_key; if a container and also locked, may be called “locked” in
inventories.

locked Can’t be opened. If a container and also lockable, may be called “locked” in
inventories.

male This object has a masculine name. In games written in English, this makes him a

188

A5 Library attributes

male person, though in other languages it might be inanimate. The parser uses this
information when considering pronouns like “him”. (In English, anything animate

is assumed to be male unless female or neuter is set.)

moved “Has been or is being held by the player.” Objects (immediately) owned by the
player after Initialise has run are given it; at the end of each turn, if an item is
newly held by the player and is scored, it is given moved and OBJECT_SCORE points
are awarded; an object’s initial message only appears in room descriptions if it
is unmoved.

neuter This object’s name is neither masculine nor feminine. (In English, anything without
animate is assumed neuter, because only people and higher animals have gender.
Anything animate is assumed male unless female or neuter is set. A robot, for
instance, might be an animate object worth making neuter.)

on “Switched on.” A switchable object with this is described by with_on in room
descriptions; it will be called “switched on” by Examine.

open “Open door or container.” Affects scope and light; lists (such as inventories) re-
curse through an open container; if a container, called “open” by some descrip-
tions; things can be taken or removed from an open container; similarly inserted,
transferred or emptied. A container can only be entered or exited if it is both
enterable and open. An open door can be entered. Described by when_open in
room descriptions.

openable Can be opened or closed, unless locked.

pluralname This single object’s name is in the plural. For instance, an object called “seedless
grapes” should have pluralname set. The library will then use the pronoun “them”
and the indefinite article “some” automatically.

proper Its short name is a proper noun, and never preceded by “the” or “The”. The
player’s object must have this (so something changed into will be given it).

scenery Not listed by the library in room descriptions; “not portable” to be taken; “you
are unable to” pull, push, or turn it.

scored The player gets OBJECT_SCORE points for picking it up for the first time; or, if a
room, ROOM_SCORE points for visiting it for the first time.

static “Fixed in place” if player tries to take, remove, pull, push or turn.

supporter “Things can be put on top of it.” Affects scope and light; object lists recurse
through it; a possession will give it a LetGo action if the player tries to remove it,
or a Receive if something is put in; things can be taken or removed from it, or put
on it; likewise for transfers; a player inside it is said to be “on” rather than “in”
it; room descriptions list its contents in separate paragraphs if it is itself listed.

switchable Can be switched on or off; listed as such by Examine; described using when_on or
when_off in room descriptions.

talkable Player can talk to this object in “thing, do this” style. This is useful for micro-
phones and the like, when animate is inappropriate.

transparent “Contents are visible.” Affects scope and light; a transparent container is treated
as if it were open for printing of contents.

visited “Has been or is being visited by the player.” Given to a room immediately after
a Look first happens there: if this room is scored then ROOM_SCORE points are
awarded. Affects whether room descriptions are abbreviated or not.

workflag Temporary flag used by Inform internals, also available to outside routines; can be
used to select items for some lists printed by WriteListFrom.

worn “Item of clothing being worn.” Should only be an object being immediately carried

189

A5 Library attributes

by player. Affects inventories; doesn’t count towards the limit of MAX_CARRIED;
won’t be automatically put away into the SACK_OBJECT; a Drop action will cause a
Disrobe action first; so will PutOn or Insert.

Note that very few attributes sensibly apply to rooms: only really light, scored and visited,
together with general if you choose to use it. Note also that an object cannot be both a container

and a supporter; and that the old attribute autosearch, which was in earlier releases, has been
withdrawn as obsolete.

A6 Library properties

The following table lists every library-defined property. The banner headings give the name, what
type of value makes sense and the default value (if other than 0). The symbol ⊕ means “this
property is additive” so that inherited values from class definitions pile up into a list, rather than
wipe each other out. Recall that ‘false’ is the value 0 and ‘true’ the value 1.

n to, s to, e to, w to, ... Room, object or routine
For rooms These twelve properties (there are also ne_to, nw_to, se_to, sw_to, in_to, out_to,
u_to and d_to) are the map connections for the room. A value of 0 means “can’t go this way”.
Otherwise, the value should either be a room or a door object: thus, e_to might be set to
crystal_bridge if the direction “east” means “over the crystal bridge”.
Routine returns The room or object the map connects to; or 0 for “can’t go this way”; or 1 for
“can’t go this way; stop and print nothing further”.
Warning Do not confuse the direction properties n_to and so on with the twelve direction objects,
n_obj et al.

add to scope List of objects or routine
For objects When this object is in scope, so are all those listed, or all those nominated by the
routine. A routine given here should call PlaceInScope(obj) to put obj in scope.
No return value

after Routine NULL ⊕
Receives actions after they have happened, but before the player has been told of them.
For rooms All actions taking place in this room.
For objects All actions for which this object is noun (the first object specified in the command);
and all fake actions for it.
Routine returns False to continue (and tell the player what has happened), true to stop here
(printing nothing).
The Search action is a slightly special case. Here, after is called when it is clear that it would
be sensible to look inside the object (e.g., it’s an open container in a light room) but before the
contents are described.

article String or routine "a"

For objects Indefinite article for object or routine to print one.
No return value

190

A6 Library properties

articles Array of strings

For objects: If given, these are the articles used with the object’s name. (Provided for non-English
languages where irregular nouns may have unusual vowel-contraction rules with articles: e.g. with
French non-mute ‘H’.)

before Routine NULL ⊕
Receives advance warning of actions (or fake actions) about to happen.

For rooms All actions taking place in this room.

For objects All actions for which this object is noun (the first object specified in the command);
and all fake actions, such as Receive and LetGo if this object is the container or supporter
concerned.

Routine returns False to continue with the action, true to stop here (printing nothing).

First special case: A vehicle object receives the Go action if the player is trying to drive around
in it. In this case:

Routine returns 0 to disallow as usual; 1 to allow as usual, moving vehicle and player; 2 to
disallow but do (and print) nothing; 3 to allow but do (and print) nothing. If you want to move
the vehicle in your own code, return 3, not 2: otherwise the old location may be restored by
subsequent workings.

Second special case: in a PushDir action, the before routine must call AllowPushDir() and then
return true in order to allow the attempt (to push an object from one room to another) to succeed.

cant go String or routine "You can’t go that way."

For rooms Message, or routine to print one, when a player tries to go in an impossible direction
from this room.

No return value

capacity Number or routine 100

For objects Number of objects a container or supporter can hold.

For the player-object Number of things the player can carry (when the player is this object);
the default player object (selfobj) has capacity initially set to the constant MAX_CARRIED.

daemon Routine NULL

This routine is run each turn, once it has been activated by a call to StartDaemon, and until
stopped by a call to StopDaemon.

describe Routine NULL ⊕
For objects Called when the object is to be described in a room description, before any paragraph
break (i.e., skipped line) has been printed. A sometimes useful trick is to print nothing in this
routine and return true, which makes an object ‘invisible’.

For rooms Called before a room’s long (“look”) description is printed.

Routine returns False to describe in the usual way, true to stop printing here.

description String or routine

For objects The Examine message, or a routine to print one out.

For rooms The long (“look”) description, or a routine to print one out.

No return value

191

A6 Library properties

door dir Direction property or routine
For compass objects When the player tries to go in this direction, e.g., by typing the name of
this object, then the map connection tried is the value of this direction property for the current
room. For example, the n_obj “north” object normally has door_dir set to n_to.
For objects The direction that this door object goes via (for instance, a bridge might run east,
in which case this would be set to e_to).
Routine returns The direction property to try.

door to Room or routine
For objects The place this door object leads to. A value of 0 means “leads nowhere”.
Routine returns The room. Again, 0 (or false) means “leads nowhere”. Further, 1 (or true)
means “stop the movement action immediately and print nothing further”.

each turn String or routine NULL ⊕
String to print, or routine to run, at the end of each turn in which the object is in scope (after
all timers and daemons for that turn have been run).
No return value

found in List of rooms or routine
This object will be found in all of the listed rooms, or if the routine says so, unless it has the
attribute absent. If an object in the list is not a room, it means “present in the same room as
this object”.
Routine returns True to be present, otherwise false. The routine can look at the current location
in order to decide.
Warning This property is only looked at when the player changes rooms.

grammar Routine
For animate or talkable objects This is called when the parser has worked out that the object
in question is being spoken to, and has decided the verb_word and verb_wordnum (the position
of the verb word in the word stream) but hasn’t yet tried any grammar. The routine can, if it
wishes, parse past some words (provided it moves verb_wordnum on by the number of words it
wants to eat up).
Routine returns False to carry on as usual; true to indicate that the routine has parsed the entire
command itself, and set up action, noun and second to the appropriate order; or a dictionary
value for a verb, such as ’take’, to indicate “parse the command from this verb’s grammar
instead”; or minus such a value, e.g. -’take’, to indicate “parse from this verb and then parse
the usual grammar as well”.

initial String or routine
For objects The description of an object not yet picked up, used when a room is described; or a
routine to print one out.
For rooms Printed or run when the room is arrived in, either by ordinary movement or by
PlayerTo.
Warning If the object is a door, or a container, or is switchable, then use one of the when_

properties rather than initial.
No return value

inside description String or routine
For objects Printed as part or all of a room description when the player is inside the given object,
which must be enterable.

192

A6 Library properties

invent Routine
This routine is for changing an object’s inventory listing. If provided, it’s called twice, first with
the variable inventory_stage set to 1, second with it set to 2. At stage 1, you have an entirely
free hand to print a different inventory listing.
Routine returns Stage 1: False to continue; true to stop here, printing nothing further about the
object or its contents.
At stage 2, the object’s indefinite article and short name have already been printed, but messages
like “ (providing light)” haven’t. This is an opportunity to add something like “ (almost empty)”.
Routine returns Stage 2: False to continue; true to stop here, printing nothing further about the
object or its contents.

life Routine NULL ⊕
This routine holds rules about animate objects, behaving much like before and after but only
handling the person-to-person events:

Attack Kiss WakeOther ThrowAt Give Show Ask Tell Answer Order

See §16, and see also the properties orders and grammar.
Routine returns True to stop and print nothing, false to resume as usual (for example, printing
“Miss Gatsby has better things to do.”).

list together Number, string or routine
For objects Objects with the same list_together value are grouped together in object lists
(such as inventories, or the miscellany at the end of a room description). If a string such as
"fish" is given, then such a group will be headed with text such as "five fish".
A routine, if given, is called at two stages in the process (once with the variable inventory_stage

set to 1, once with it set to 2). These stages occur before and after the group is printed;
thus, a preamble or postscript can be printed. Also, such a routine may change the vari-
able c_style (which holds the current list style). On entry, the variable parser_one holds the
first object in the group, and parser_two the current depth of recursion in the list. Applying
x=NextEntry(x,parser_two); moves x on from parser_one to the next item in the group. An-
other helpful variable is listing_together, set up to the first object of a group being listed (or
to 0 whenever no group is being listed).
Routine returns Stage 1: False to continue, true not to print the group’s list at all.
Routine returns Stage 2: No return value.

orders Routine
For animate or talkable objects This carries out the player’s orders (or doesn’t, as it sees fit):
it looks at actor, action, noun and second to do so. Unless this object is the current player,
actor is irrelevant (it is always the player) and the object is the person being ordered about.
If the player typed an incomprehensible command, like “robot, og sthou”, then the action is
NotUnderstood and the variable etype holds the parser’s error number.
If this object is the current player then actor is the person being ordered about. actor can
either be this object – in which case an action is being processed, because the player has typed an
ordinary command – or can be some other object, in which case the player has typed an order.
See §16 for how to write orders routines in these cases.
Routine returns True to stop and print nothing further; false to continue. (Unless the object
is the current player, the life routine’s Order section gets an opportunity to meddle next; after
that, Inform gives up.)

193

A6 Library properties

name List of dictionary words ⊕
For objects A list of dictionary words referring to this object.
Warning The parse_name property of an object may take precedence over this, if present.
For rooms A list of words which the room understands but which refer to things which “do not
need to be referred to in this game”; these are only looked at if all other attempts to understand
the player’s command have failed.
Warning Uniquely in Inform syntax, these dictionary words are given in double quotes "thus",
whereas in all other circumstances they would be ’thus’. This means they can safely be only one
letter long without ambiguity.

number Any value
A general purpose property left free: conventionally holding a number like “number of turns’
battery power left”.
For compass objects Note that the standard compass objects defined by the library all provide
a number property, in case this might be useful to the designer.
For the player-object Exception: an object to be used as a player-object must provide one of
these, and musn’t use it for anything.

parse name Routine
For objects To parse an object’s name (this overrides the name but is also used in determining if
two objects are describably identical). This routine should try to match as many words as possible
in sequence, reading them one at a time by calling NextWord(). (It can leave the “word marker”
variable wn anywhere it likes).
Routine returns 0 if the text didn’t make any sense at all, −1 to make the parser resume its
usual course (looking at the name), or the number of words in a row which successfully matched.
In addition to this, if the text matched seems to be in the plural (for instance, a blind mouse object
reading blind mice), the routine can set the variable parser_action to the value ##PluralFound.
The parser will then match with all of the different objects understood, rather than ask a player
which of them is meant.
A parse_name routine may also (voluntarily) assist the parser by telling it whether or not two
objects which share the same parse_name routine are identical. (They may share the same routine
if they both inherit it from a class.) If, when it is called, the variable parser_action is set to
##TheSame then this is the reason. It can then decide whether or not the objects parser_one and
parser_two are indistinguishable.
Routine returns −1 if the objects are indistinguishable, −2 if not.

plural String or routine
For objects The plural name of an object (when in the presence of others like it), or routine to
print one; for instance, a wax candle might have plural set to "wax candles".
No return value

react after Routine
For objects Acts like an after rule, but detects any actions in the vicinity (any actions which
take place when this object is in scope).
Routine returns True to print nothing further; false to carry on.

react before Routine
For objects Acts like a before rule, but detects any actions in the vicinity (any actions which
take place when this object is in scope).
Routine returns True to stop the action, printing nothing; false to carry on.

194

A6 Library properties

short name Routine
For objects The short name of an object (like “brass lamp”), or a routine to print it.
Routine returns True to stop here, false to carry on by printing the object’s ‘real’ short name
(the string given at the head of the object’s definition). It’s sometimes useful to print text like
"half-empty " and then return false.

short name indef Routine
For objects If set, this form of the short name is used when the name is prefaced by an indefinite
article. (This is not useful in English-language games, but in other languages adjectival parts of
names agree with the definiteness of the article.)

time left Number
Number of turns left until the timer for this object (if set, which must be done using StartTimer)
goes off. Its initial value is of no significance, as StartTimer will write over this, but a timer
object must provide the property. If the timer is currently set, the value 0 means “will go off at
the end of the current turn”, the value 1 means “...at the end of next turn” and so on.

time out Routine NULL
Routine to run when the timer for this object goes off (having been set by StartTimer and not
in the mean time stopped by StopTimer).
Warning A timer object must also provide a time_left property.

when closed String or routine
For objects Description, or routine to print one, of something closed (a door or container) in a
room’s long description.
No return value

when open String or routine
For objects Description, or routine to print one, of something open (a door or container) in a
room’s long description.
No return value

when on String or routine
For objects Description, or routine to print one, of a switchable object which is currently
switched on, in a room’s long description.
No return value

when off String or routine
For objects Description, or routine to print one, of a switchable object which is currently
switched off, in a room’s long description.
No return value

with key Object nothing

The key object needed to lock or unlock this lockable object. A player must explicitly name it
as the key being used and be holding it at the time. The value nothing, or 0, means that no key
fits (though this is not made clear to the player, who can try as many as he likes).

195

A7 Library-defined objects and routines

The library defines the following special objects:

compass To contain the directions. A direction object provides a door_dir prop-
erty, and should have the direction attribute. A compass direction with
enterable, if there is one (which there usually isn’t), will have an Enter

action converted to Go.
n obj, ... Both the object signifying the abstract concept of ‘northness’, and the

‘north wall’ of the current room. (Thus, if a player types “examine the north
wall” then the action Examine n_obj will be generated.) Its door_dir prop-
erty holds the direction property it corresponds to (n_to). The other such
objects are s_obj, e_obj, w_obj, ne_obj, nw_obj, se_obj, sw_obj, u_obj,
d_obj, in_obj and out_obj. Note that the parser understands “ceiling” to
refer to u_obj and “floor” to refer to d_obj. (in_obj and out_obj differ
slightly, because “in” and “out” are verbs with other effects in some cases;
these objects should not be removed from the compass.)

thedark A pseudo-room representing ‘being in darkness’. location is then set to
this room, but the player object is not moved to it. Its description can
be changed to whatever “It is dark here” message is desired.

selfobj The default player-object. Code should never refer directly to selfobj, but
only to player, a variable whose value is usually indeed selfobj but which
might become green_frog if the player is transformed into one.

InformLibrary Represents the library. You never need to use it, but it might sometimes
be the value of sender when a message is received.

InformParser Represents the parser.

The following routines are defined in the library and available for public use:

Achieved(task) Indicate the task is achieved (which only awards score the first time).
AddToScope(obj) Used in an add_to_scope routine of an object to add another object

into scope whenever the first is in scope.
AllowPushDir() Signal that an attempt to push an object from one place to another

should be allowed.
CDefArt(obj) Print the capitalised definite article and short name of obj. Equivalent

to print (The) obj;.
ChangeDefault(p,v) Changes the default value of property p. (But this won’t do anything

useful to name.)
ChangePlayer(obj,flag) Cause the player at the keyboard to play as the given object, which

must have a number property supplied. If the flag is set to 1, then sub-
sequently print messages like “(as Ford Prefect)” in room description
headers. This routine, however, prints nothing itself.

DefArt(obj) Print the definite article and short name of obj. Equivalent to print

(the) obj;.
DoMenu(text,R1,R2) Produce a menu, using the two routines given.
EnglishNumber(x) Prints out x in English (e.g., “two hundred and seventy-seven”).
HasLightSource(obj) Returns true if obj ‘has light’.
InDefArt(obj) Print the indefinite article and short name of obj. Equivalent to print

(a) obj;.

196

A7 Library-defined objects and routines

Locale(obj,tx1,tx2) Prints out the paragraphs of room description which would appear
if obj were the room: i.e., prints out descriptions of objects in obj

according to the usual rules. After describing the objects which have
their own paragraphs, a list is given of the remaining ones. The string
tx1 is printed if there were no previous paragraphs, and the string tx2

otherwise. (For instance, you might want “On the ledge you can see”
and “On the ledge you can also see”.) After the list, nothing else is
printed (not even a full stop) and the return value is the number of
objects in the list (possibly zero).

LoopOverScope(R,actor) Calls routine R(obj) for each object obj in scope. actor is optional: if
it’s given, then scope is calculated for the given actor, not the player.

NextWord() Returns the next dictionary word in the player’s input, moving the
word number wn on by one. Returns 0 if the word is not in the dictio-
nary or if the word stream has run out.

NextWordStopped() As NextWord, but returning −1 when the word stream has run out.

NounDomain(o1,o2,type) This routine is one of the keystones of the parser: the objects given
are the domains to search through when parsing (almost always the
location and the actor) and the type indicates a token. The only tokens
safely usable are: 0: noun , 1: held and 6: creature . The routine
parses the best single object name it can from the current position
of wn. It returns 0 (no match), an object number or the constant
REPARSE_CODE (to indicate that it had to ask a clarifying question:
this reconstructed the input drastically and the parser must begin
all over again). NounDomain should only be used by general parsing
routines and these should always return REPARSE_CODE if it does. Note
that all of the usual scope and name-parsing rules apply to the search
performed by NounDomain.

ObjectIsUntouchable Determines whether any solid barrier (that is, any container that is
not open) lies between the player and obj. If flag is set, this routine
never prints anything; otherwise it prints a message like “You can’t,
because ... is in the way.” if any barrier is found. Returns true if a
barrier is found, false if not.

OffersLight(obj) Returns true if obj ‘offers light’.

PlaceInScope(obj) Puts obj into scope for the parser.

PlayerTo(place,flag) Move the player to place. Unless flag is given and is 1, describe the
player’s surroundings.

PrintShortName(obj) Print the short name of obj. (This is protected against obj having a
meaningless value.) Equivalent to print (name) obj;.

ScopeWithin(obj) Puts the contents of obj into scope, recursing downward according to
the usual scope rules.

SetTime(time,rate) Set the game clock (a 24-hour clock) to the given time (in seconds
since the start of the day), to run at the given rate r: r = 0 means it
does not run, if r > 0 then r seconds pass every turn, if r < 0 then −r
turns pass every second.

StartDaemon(obj) Makes the daemon of obj active, so that its daemon routine will be
called every turn.

StartTimer(obj,time) Starts the timer of obj, set to go off in time turns, at which time its
time_out routine will be called (it must provide a time_left prop-

197

A7 Library-defined objects and routines

erty).
StopDaemon(obj) Makes the daemon of obj inactive, so that its daemon routine is no

longer called.
StopTimer(obj) Stops the timer of obj, so that it won’t go off after all.
TestScope(obj,actor) Returns true if obj is in scope; otherwise false. actor is optional: if

it’s given, then scope is calculated for the given actor, not the player.
TryNumber(wordnum) Tries to parse the word at wordnum as a number (recognising decimal

numbers and English ones from “one” to “twenty”), returning −1000 if
it fails altogether, or the number. Values exceeding 10000 are rounded
down to 10000.

UnsignedCompare(a,b) Returns 1 if a > b, 0 if a = b and a < b, regarding a and b as unsigned
numbers between 0 and 65535 (or $ffff). (The usual > condition
performs a signed comparison.)

WordAddress(n) Returns the byte array containing the raw text of the n-th word in the
word stream.

WordLength(n) Returns the length of the raw text of the n-th word in the word stream.
WriteListFrom(obj,s) Write a list of obj and its siblings, with the style being s (a bitmap of

options).
YesOrNo() Assuming that a question has already been printed, wait for the player

to type “yes” or “no”, returning true or false accordingly.
ZRegion(value) Works out the type of value, if possible. Returns 1 if it’s a valid object

number, 2 if a routine address, 3 if a string address and 0 otherwise.

A8 Library actions

The actions implemented by the library are in three groups. Group 1 consists of actions associated
with ‘meta’-verbs, which are not subject to game rules. (If you want a room where the game can’t
be saved, as for instance ‘Spellbreaker’ cunningly does, you’ll have to tamper with SaveSub directly,
using a Replaced routine.)

1a. Quit, Restart, Restore, Verify, Save, ScriptOn, ScriptOff, Pronouns,

Score, Fullscore, LMode1, LMode2, LMode3, NotifyOn, NotifyOff,

Version, Places, Objects.

(Lmode1, Lmode2 and Lmode3 switch between “brief”, “verbose” and “superbrief” room description
styles.) In addition, but only if DEBUG is defined, so that the debugging suite is present, group 1
contains

1b. TraceOn, TraceOff, TraceLevel, ActionsOn, ActionsOff, RoutinesOn,

RoutinesOff, TimersOn, TimersOff, CommandsOn, CommandsOff, CommandsRead,

Predictable, XPurloin, XAbstract, XTree, Scope, Goto, Gonear.

Group 2 contains actions which sometimes get as far as the ‘after’ stage, because the library
sometimes does something when processing them.

2. Inv, InvTall, InvWide, Take, Drop, Remove, PutOn, Insert, Transfer,

198

A8 Library actions

Empty, Enter, Exit, GetOff, Go, GoIn, Look, Examine, Search, Give, Show,

Unlock, Lock, SwitchOn, SwitchOff, Open, Close, Disrobe, Wear, Eat.

Group 3 contains the remaining actions, which never reach ‘after’ because the library simply prints
a message and stops at the ‘during’ stage.

3. Yes, No, Burn, Pray, Wake, WakeOther [person], Consult,

Kiss, Think, Smell, Listen, Taste, Touch, Dig,

Cut, Jump [jump on the spot], JumpOver, Tie, Drink,

Fill, Sorry, Strong [swear word], Mild [swear word], Attack, Swim,

Swing [something], Blow, Rub, Set, SetTo, WaveHands [ie, just "wave"],

Wave [something], Pull, Push, PushDir [push something in a direction],

Turn, Squeeze, LookUnder [look underneath something],

ThrowAt, Answer, Buy, Ask, AskFor, Sing, Climb, Wait, Sleep.

4 The actions PushDir and Go (while the player is inside an enterable object) have special
rules: see §14.

The library also defines 8 fake actions:

LetGo, Receive, ThrownAt, Order, TheSame, PluralFound, Miscellany, Prompt

LetGo, Receive and ThrownAt are used to allow the second noun of Insert, PutOn, ThrowAt,
Remove actions to intervene; Order is used to process actions through somebody’s life routine;
TheSame and PluralFound are defined by the parser as ways for the program to communicate with
it; Miscellany and Prompt are defined as slots for LibraryMessages.

A9 Library message numbers

Answer: “There is no reply.”

Ask: “There is no reply.”

Attack: “Violence isn’t the answer to this one.”

Blow: “You can’t usefully blow that/those.”

Burn: “This dangerous act would achieve little.”

Buy: “Nothing is on sale.”

Climb: “I don’t think much is to be achieved by that.”

Close: 1. “That’s/They’re not something you can close.” 2. “That’s/They’re already
closed.” 3. “You close 〈x1〉.”

Consult: “You discover nothing of interest in 〈x1〉.”
Cut: “Cutting that/those up would achieve little.”

Dig: “Digging would achieve nothing here.”

Disrobe: 1. “You’re not wearing that/those.” 2. “You take off 〈x1〉.”
Drink: “There’s nothing suitable to drink here.”

199

A9 Library message numbers

Drop: 1. “The 〈x1〉 is/are already here.” 2. “You haven’t got that/those.” 3. “(first
taking 〈x1〉 off)” 4. “Dropped.”

Eat: 1. “That’s/They’re plainly inedible.” 2. “You eat 〈x1〉. Not bad.”

EmptyT: 1. 〈x1〉 “ can’t contain things.” 2. 〈x1〉 “ is/are closed.” 〈x1〉 “ is/are empty
already.”

Enter: 1. “But you’re already on/in 〈x1〉.” 2. “That’s/They’re not something you can
enter.” 3. “You can’t get into the closed 〈x1〉.” 4. “You can only get into something
freestanding.” 5. “You get onto/into 〈x1〉.”

Examine: 1. “Darkness, noun. An absence of light to see by.” 2. “You see nothing special
about 〈x1〉.” 3. “〈x1〉 is/are currently switched on/off.”

Exit: 1. “But you aren’t in anything at the moment.” 2. “You can’t get out of the closed
〈x1〉.” 3. “You get off/out of 〈x1〉.”

Fill: “But there’s no water here to carry.”

FullScore: 1. “The score is/was made up as follows:^” 2. “finding sundry items” 3.
“visiting various places” 4. “total (out of MAX_SCORE)”

GetOff: “But you aren’t on 〈x1〉 at the moment.”

Give: 1. “You aren’t holding 〈x1〉.” 2. “You juggle 〈x1〉 for a while, but don’t achieve
much.” 3. “〈x1〉 doesn’t/don’t seem interested.”

Go: 1. “You’ll have to get off/out of 〈x1〉 first.” 2. “You can’t go that way.” 3. “You are
unable to climb 〈x1〉.” 4. “You are unable to descend 〈x1〉.” 5. “You can’t, since 〈x1〉
is/are in the way.” 6. “You can’t, since 〈x1〉 leads nowhere.”

Insert: 1. “You need to be holding 〈x1〉 before you can put it/them into something else.”
2. “That/Those can’t contain things.” 3. “〈x1〉 is/are closed.” 4. “You’ll need to
take it/them off first.” 5. “You can’t put something inside itself.” 6. “(first taking
it/them off)^” 7. “There is no more room in 〈x1〉.” 8. “Done.” 9. “You put 〈x1〉 into
〈second〉.”

Inv: 1. “You are carrying nothing.” 2. “You are carrying”

Jump: “You jump on the spot, fruitlessly.”

JumpOver: “You would achieve nothing by this.”

Kiss: “Keep your mind on the game.”

Listen: “You hear nothing unexpected.”

LMode1: “ is now in its normal brief printing mode, which gives long descriptions of places
never before visited and short descriptions otherwise.”

LMode2: “ is now in its verbose mode, which always gives long descriptions of locations
(even if you’ve been there before).”

LMode3: “ is now in its superbrief mode, which always gives short descriptions of locations
(even if you haven’t been there before).”

Lock: 1. “That doesn’t/They don’t seem to be something you can lock.” 2. “That’s/They’re
locked at the moment.” 3. “First you’ll have to close 〈x1〉.” 4. “That doesn’t/Those
don’t seem to fit the lock.” 5. “You lock 〈x1〉.”

Look: 1. “ (on 〈x1〉)” 2. “ (in 〈x1〉)” 3. “ (as 〈x1〉)” 4. “^On 〈x1〉 is/are 〈list〉” 5.
“[On/In 〈x1〉] you/You can also see 〈list〉 [here].” 6. “[On/In 〈x1〉] you/You can see 〈list〉
[here].”

LookUnder: 1. “But it’s dark.” “You find nothing of interest.”

Mild: “Quite.”

ListMiscellany: 1. “ (providing light)” 2. “ (which is/are closed)” 3. “ (closed and
providing light)” 4. “ (which is/are empty)” 5. “ (empty and providing light)” 6.
“ (which is/are closed and empty)” 7. “ (closed, empty and providing light)” 8. “

200

A9 Library message numbers

(providing light and being worn” 9. “ (providing light” 10. “ (being worn” 11. “
(which is/are ” 12. “open” 13. “open but empty” 14. “closed” 15. “closed and
locked” 16. “ and empty” 17. “ (which is/are empty)” 18. “ containing ” 19. “ (on
” 20. “, on top of ” 21. “ (in ” 22. “, inside ”

Miscellany: 1. “(considering the first sixteen objects only)^” 2. “Nothing to do!” 3. “
You have died ” 4. “ You have won ” 5. (The RESTART/RESTORE/QUIT and possibly
FULL and AMUSING query, printed after the game is over.) 6. “[Your interpreter does
not provide undo. Sorry!]” 7. “Undo failed. [Not all interpreters provide it.]” 8. “Please
give one of the answers above.” 9. “^It is now pitch dark in here!” 10. “I beg your
pardon?” 11. “[You can’t “undo” what hasn’t been done!]” 12. “[Can’t “undo” twice in
succession. Sorry!]” 13. “[Previous turn undone.]” 14. “Sorry, that can’t be corrected.”
15. “Think nothing of it.” 16. ““Oops” can only correct a single word.” 17. “It is
pitch dark, and you can’t see a thing.” 18. “yourself” (the short name of the selfobj

object) 19. “As good-looking as ever.” 20. “To repeat a command like “frog, jump”,
just say “again”, not “frog, again”.” 21. “You can hardly repeat that.” 22. “You can’t
begin with a comma.” 23. “You seem to want to talk to someone, but I can’t see whom.”
24. “You can’t talk to 〈x1〉.” 25. “To talk to someone, try “someone, hello” or some
such.” 26. “(first taking not_holding)” 27. “I didn’t understand that sentence.” 28.
“I only understood you as far as wanting to ” 29. “I didn’t understand that number.”
30. “You can’t see any such thing.” 31. “You seem to have said too little!” 32. “You
aren’t holding that!” 33. “You can’t use multiple objects with that verb.” 34. “You
can only use multiple objects once on a line.” 35. “I’m not sure what “〈pronoun〉” refers
to.” 36. “You excepted something not included anyway!” 37. “You can only do that to
something animate.” 38. “That’s not a verb I recognise.” 39. “That’s not something
you need to refer to in the course of this game.” 40. “You can’t see “〈pronoun〉” (〈value〉)
at the moment.” 41. “I didn’t understand the way that finished.” 42. “None/only 〈x1〉
of those is/are available.” 43. “Nothing to do!” 44. “There are none at all available!”
45. “Who do you mean, ” 46. “Which do you mean, ” 47. “Sorry, you can only have
one item here. Which exactly?” 48. “Whom do you want [〈actor〉] to 〈command〉?” 49.
“What do you want [〈actor〉] to 〈command〉?” 50. “Your score has just gone up/down by
〈x1〉 point/points.” 51. “(Since something dramatic has happened, your list of commands
has been cut short.)” 52. “Type a number from 1 to 〈x1〉, 0 to redisplay or press ENTER.”
53. “[Please press SPACE.]”

No: see Yes
NotifyOff: “Score notification off.”

NotifyOn: “Score notification on.”

Objects: 1. “Objects you have handled:^” 2. “None.” 3. “ (worn)” 4. “ (held)” 5. “
(given away)” 6. “ (in 〈x1〉)” [without article] 7. “ (in 〈x1〉)” [with article] 8. “ (inside
〈x1〉)” 9. “ (on 〈x1〉)” 10. “ (lost)”

Open: 1. “That’s/They’re not something you can open.” 2. “It seems/They seem to be
locked.” 3. “That’s/They’re already open.” 4. “You open 〈x1〉, revealing 〈children〉”
5. “You open 〈x1〉.”

Order: “〈x1〉 has/have better things to do.”

Places: “You have visited: ”

Pray: “Nothing practical results from your prayer.”

Prompt: 1. “^>”

Pronouns: 1. “At the moment, ” 2. “means ” 3. “is unset ” 4. “no pronouns are
known to the game.”

201

A9 Library message numbers

Pull: 1. “It is/Those are fixed in place.” 2. “You are unable to.” 3. “Nothing obvious
happens.” 4. “That would be less than courteous.”

Push: see Pull
PushDir: 1. “Is that the best you can think of?” 2. “That’s not a direction.” 3. “Not

that way you can’t.”

PutOn: 1. “You need to be holding 〈x1〉 before you can put it/them on top of something else.”
2. “You can’t put something on top of itself.” 3. “Putting things on 〈x1〉 would achieve
nothing.” 4. “You lack the dexterity.” 5. “(first taking it/them off)^” 6. “There is
no more room on 〈x1〉.” 7. “Done.” 8. “You put 〈x1〉 on ¡second¿.”

Quit: 1. “Please answer yes or no.” 2. “Are you sure you want to quit? ”

Remove: 1. “It is/They are unfortunately closed.” 2. “But it isn’t/they aren’t there now.”
3. “Removed.”

Restart: 1. “Are you sure you want to restart? ” 2. “Failed.”

Restore: 1. “Restore failed.” 2. “Ok.”

Rub: “You achieve nothing by this.”

Save: 1. “Save failed.” 2. “Ok.”

Score: “You have so far/In that game you scored 〈score〉 out of a possible MAX_SCORE, in 〈turns〉
turn/turns”

ScriptOn: 1. “Transcripting is already on.” 2. “Start of a transcript of”

ScriptOff: 1. “Transcripting is already off.” 2. “^End of transcript.”

Search: 1. “But it’s dark.” 2. “There is nothing on 〈x1〉.” 3. “On 〈x1〉 is/are
〈list of children〉.” 4. “You find nothing of interest.” 5. “You can’t see inside, since 〈x1〉
is/are closed.” 6. “〈x1〉 is/are empty.” 7. “In 〈x1〉 is/are 〈list of children〉.”

Set: “No, you can’t set that/those.”

SetTo: “No, you can’t set that/those to anything.”

Show: 1. “You aren’t holding 〈x1〉.” 2. “〈x1〉 is/are unimpressed.”

Sing: “Your singing is abominable.”

Sleep: “You aren’t feeling especially drowsy.”

Smell: “You smell nothing unexpected.”

Sorry: “Oh, don’t apologise.”

Squeeze: 1. “Keep your hands to yourself.” 2. “You achieve nothing by this.”

Strong: “Real adventurers do not use such language.”

Swim: “There’s not enough water to swim in.”

Swing: “There’s nothing sensible to swing here.”

SwitchOff: 1. “That’s/They’re not something you can switch.” 2. “That’s/They’re already
off.” 3. “You switch 〈x1〉 off.”

SwitchOn: 1. “That’s/They’re not something you can switch.” 2. “That’s/They’re already
on.” 3. “You switch 〈x1〉 on.”

Take: 1. “Taken.” 2. “You are always self-possessed.” 3. “I don’t suppose 〈x1〉 would care
for that.” 4. “You’d have to get off/out of 〈x1〉 first.” 5. “You already have that/those.”
6. “That seems/Those seem to belong to 〈x1〉.” 7. “That seems/Those seem to be a part
of 〈x1〉.” 8. “That isn’t/Those aren’t available.” 9. “〈x1〉 isn’t/aren’t open.” 10.
“That’s/They’re hardly portable.” 11. “That’s/They’re fixed in place.” 12. “You’re
carrying too many things already.” 13. “(putting 〈x1〉 into SACK_OBJECT to make room)”

Taste: “You taste nothing unexpected.”

Tell: 1. “You talk to yourself a while.” 2. “This provokes no reaction.”

Touch: 1. “Keep your hands to yourself!” 2. “You feel nothing unexpected.” 3. “If you
think that’ll help.”

202

A9 Library message numbers

Think: “What a good idea.”
Tie: “You would achieve nothing by this.”
ThrowAt: 1. “Futile.” 2. “You lack the nerve when it comes to the crucial moment.”
Turn: see Pull
Unlock: 1. “That doesn’t seem to be something you can unlock.” 2. “It’s/They’re unlocked

at the moment.” 3. “That doesn’t/Those don’t seem to fit the lock.” 4. “You unlock
〈x1〉.”

VagueGo: “You’ll have to say which compass direction to go in.”
Verify: 1. “The game file has verified as intact.” 2. “The game file did not verify properly,

and may be corrupted (or you may be running it on a very primitive interpreter which is
unable properly to perform the test).”

Wait: “Time passes.”
Wake: “The dreadful truth is, this is not a dream.”
WakeOther: “That seems unnecessary.”
Wave: 1. “But you aren’t holding that/those.” 2. “You look ridiculous waving 〈x1〉.”
WaveHands: “You wave, feeling foolish.”
Wear: 1. “You can’t wear that/those!” 2. “You’re not holding that/those!” 3. “You’re

already wearing that/those!” 4. “You put on 〈x1〉.”
Yes: “That was a rhetorical question.”

A10 Entry points and meaningful constants

Entry points are routines which you can provide, if you choose to, and which are called by the
library routines to give you the option of changing the rules. All games must define an Initialise

routine, which is obliged to set the location variable to a room; the rest are optional.

AfterLife When the player has died (a condition signalled by the variable dead-

flag being set to a non-zero value other than 2, which indicates win-
ning), this routine is called: by setting deadflag=0 again it can resur-
rect the player.

AfterPrompt Called just after the prompt is printed: therefore, called after all the
printing for this turn is definitely over. A useful opportunity to use
box to display quotations without them scrolling away.

Amusing Called to provide an ‘afterword’ for players who have won: for in-
stance, it might advertise some features which a successful player might
never have noticed. (But only if you have defined the constant AMUS-

ING_PROVIDED in your own code.)
BeforeParsing Called after the parser has read in some text and set up the buffer

and parse tables, but has done nothing else yet (except to set the word
marker wn to 1). The routine can do anything it likes to these tables,
and can leave the word marker anywhere; there is no meaningful return
value.

ChooseObjects(obj,c) When c is 0, the parser is processing an “all” and has decided to
exclude obj from it; when c is 1, it has decided to include it. Returning

203

A10 Entry points and meaningful constants

1 forces inclusion, returning 2 forces exclusion and returning 0 lets
the parser’s decision stand. When c is 2, the parser wants help in
resolving an ambiguity: using the action_to_be variable the routine
must decide how appropriate obj is for the given action and return a
score of 0 to 9 accordingly. See §29.

DarkToDark Called when a player goes from one dark room into another one; a
splendid excuse to kill the player off.

DeathMessage Prints up “You have died” style messages, for deadflag values of 3 or
more. (If you choose ever to set deadflag to such.)

GamePostRoutine A kind of super-after rule, which applies to all actions in the game,
whatever they are: use only in the last resort.

GamePreRoutine A kind of super-before rule, which applies to all actions in the game,
whatever they are: use only in the last resort.

Initialise A compulsory routine, which must set location and is convenient for
miscellaneous initialising, perhaps for random settings.

InScope An opportunity to place extra items in scope during parsing, or to
change the scope altogether. If et_flag is 1 when this is called, the
scope is being worked out for each_turn reasons; otherwise for every-
day parsing.

LookRoutine Called at the end of every Look description.

NewRoom Called when the room changes, before any description of it is printed.
This happens in the course of ordinary movements or use of PlayerTo,
but may not happen if the game uses move to shift the player object
directly.

ParseNoun(obj) To do the job of parsing the name property (if parse_name hasn’t done
it already). This takes one argument, the object in question, and
returns a value as if it were a parse_name routine.

ParseNumber(text,n) An opportunity to parse numbers in a different (or additional) way.
The text to be parsed is a byte array of length n starting at text.

ParserError(pe) The chance to print different parser error messages (like “I don’t un-
derstand that sentence”). pe is the parser error number (see §29).

PrintRank Completes the printing of the score. You might want to change this,
so as to make the ranks something like “junior astronaut” or “master
catburglar” or whatever suits your game.

PrintVerb(v) A chance to change the verb printed out in a parser question (like
“What do you want to (whatever)?”) in case an unusual verb via
UnknownVerb has been constructed. v is the dictionary address of the
verb. Returns true (or 1) if it has printed something.

PrintTaskName(n) Prints the name of task n (such as “driving the car”).

TimePasses Called after every turn (but not, for instance, after a command like
“score” or “save”). It’s much more elegant to use timers and daemons,
or each_turn routines for individual rooms – using this is a last resort.

UnknownVerb Called by the parser when it hits an unknown verb, so that you can
transform it into a known one.

The following constants, if defined in a game, change settings made by the library. Those described
as “To indicate that...” have no meaningful value; one simply defines them by, e.g., the directive
Constant DEBUG;.

204

A10 Entry points and meaningful constants

AMUSING PROVIDED To indicate that an Amusing routine is provided.
DEBUG To indicate that the special “debugging” verbs are to be included.
Headline Style of game and copyright message.
MAX CARRIED Maximum number of (direct) possessions the player can carry.
MAX SCORE Maximum game score.
MAX TIMERS Maximum number of timers or daemons active at any one time (defaults to

32).
NO PLACES To indicate that the “places” and “objects” verbs should not be allowed.
NUMBER TASKS Number of ‘tasks’ to perform.
OBJECT SCORE Score for picking up a scored object for the first time.
ROOM SCORE Score for visiting up a scored room for the first time.
SACK OBJECT Object which acts as a ‘rucksack’, into which the game automatically tidies

away things for the player.
Story Story name, conventionally in CAPITAL LETTERS.
TASKS PROVIDED To indicate that “tasks” are provided.
WITHOUT DIRECTIONS To indicate that the standard compass directions are to be omitted.

A11 What order the program should be in

This section summarises Inform’s “this has to be defined before that can be” rules.

1. The three library files, Parser, Verblib and Grammar must be included in that order.

(a) Before inclusion of Parser: you must define the constants Story and Headline; the
constant DEBUG must be defined here, if anywhere; similarly for Replace directives;
but you may not yet define global variables, objects or routines. If you are linking in
the library (using USE_MODULES) then you may not use the Attribute or Property
directive in this part of the program.

(b) Between Parser and Verblib: if a ‘sack object’ is to be included, it should be
defined here, and the constant SACK_OBJECT set to it; the LibraryMessages object
should be defined here, if at all; likewise the task_scores array.

(c) Before inclusion of Verblib: the constants

MAX_CARRIED, MAX_SCORE, NUMBER_TASKS, OBJECT_SCORE,
ROOM_SCORE, AMUSING_PROVIDED and TASKS_PROVIDED

must be defined before this (if ever).
(d) Before inclusion of Grammar: Verb and Extend directives cannot be used.
(e) After inclusion of Grammar: It’s too late to define any entry point routines.

2. Any Switches directive must come before the definition of any constants.
3. If an object begins inside another, it must be defined after its parent.
4. Global variables must be declared earlier in the program than the first reference to them.
5. Attributes and classes must be declared earlier than their first usage in an object definition.
6. General parsing and scope routines must be defined before being quoted in grammar

tokens.
7. Nothing can be defined after the End directive.

205

actions byte address

A12 A short Inform lexicon

This brief dictionary of Inform jargon defines terms used in the manual, generally excepting
language features set in computer type. Cross-references are italicised. Everything here is in the
body of the text somewhere and can be found via the index.

action A single attempted action by the player, such as taking a lamp, generated either by the
parser or in code. It is stored as three numbers, the first being the action number, the others
being the noun and second noun (if any: otherwise 0).

action number A number identifying which kind of action is under way, e.g., Take, which can
be written as a constant by prefacing its name with ##.

action routine The routine of code executed when an action has been allowed to take place.
What marks it out as the routine in question is that its name is the name of the action with
Sub appended, as for instance TakeSub.

actor The parser can interpret what the player types as either a request for the player’s own
character to do something, in which case the actor is the player’s object, or to request
somebody else to do something, in which case the actor is the person being spoken to. This
affects the parser significantly because the person speaking and the person addressed may
be able to see different things.

additive An additive property is one whose value accumulates into a list held in a word array,
rather than being over-written as a single value, during inheritance from classes.

Advanced game The default Inform format of story file, also known as Version 5. It can be
extended (see version) if needed. Standard games should no longer be used unless necessary.

alias A single attribute or common property may be used for two different purposes, with
different names, provided care is exercised to avoid clashes: the two names are called aliases.
The library uses this: for instance, time_out is an alias for daemon.

ambiguity Arises when the player has typed something vague like “fish” in circumstances when
many nearby objects might be called that. The parser then resolves this, possibly in con-
junction with the program.

argument A parameter specified in a routine call, such as 7 in the call AwardPoints(7).
array An indexed collection of global variables. There are four kinds, byte arrays ->, word

arrays -->, strings and tables.
assembly language The Z-machine runs a sequence of low-level instructions, or assembly lines

(also called opcodes). These can be programmed directly as Inform statements by prefixing
them with @, but only a few are documented in this manual, in §33, the rest being in the
‘Z-machine Standards Document’.

assembler error A very low-level error caused by a malformed line of assembly language.
assignment A statement which sets the value of a global or local variable, or array entry.
attribute An object can be created as having certain attributes, which are simple off-or-on

states (or flags), which can then be given, tested for or taken away by the program. For
example, light represents the state “is giving off light”.

block of code See code block.
box A rectangle of text, usually displayed in reverse video onto the screen and with text such

as a quotation inside (see §32).
byte An 8-bit cell of memory, capable of holding numbers between 0 and 255.
byte address The whole lower part of the memory map of the Z-machine can be regarded as

a byte array, and a byte address is an index into this. E.g., byte address 0 refers to the
lowest byte in the machine (which always holds the version number). Dictionary words are
internally stored as byte addresses.

206

byte array dictionary

byte array An array indexed with the -> operator whose entries are only 1 byte each: they can
therefore hold numbers between 0 and 255, or ASCII characters, but not strings or object
numbers.

character A single letter ‘A’ or symbol ‘*’, written as a constant using the notation ’A’, and
internally stored as its ASCII code. Can be printed using print (char).

child See object tree.

class A template for an object definition, giving certain properties and attributes which are
inherited by any objects defined as being of this class. Classes also exist as objects in their
own right and belong to a metaclass called Class.

code block A collection of statements can be grouped together into a block using braces { and
} so that they count as a single unit for if statements, what is to be done inside a for loop,
etc.

common property Any property set by the class Object is passed on to every object and is
called a “common property”: for example, description. All others are individual proper-
ties. New properties can be declared as common with the Property directive. They behave
similarly except that: (a) values of common properties can be read even from an object
not providing them, the result being a special default value, which can be altered using
ChangeDefault; (b) they are faster and slightly more economical of memory to use; (c) there
are a limited number of them.

compass The compass object, created by the library but never tangible to the player during
the game, is used to hold the currently valid direction objects.

compiler The Inform program itself, which transmutes Inform programs (or source code) into
the story file which is played with the use of an interpreter at run-time.

condition A state of affairs which either is, or isn’t, true at any given moment, such as x == y,
often written in round brackets (and). The central operator == is also called the condition.
A numerical value given with no operator is considered true if it is non-zero and otherwise
false.

constant An explicitly written-out number, such as 34 or $$10110111; or the internal name of
an object, such as brass_lamp, whose value is its object number; or the internal name of
an array, whose value is its byte address; or a word defined by either the library or Inform
code as meaning a particular value; or a character, written ’X’ and whose value is its ASCII
code; or a dictionary word, written ’word’ and whose value is its byte address; or an action,
written ##Action and whose value is its action number; or a routine written #r$Routine

whose value is its packed address; or the name of a property or attribute or class.

containment See object tree.

cursor An invisible notional position at which text is being printed in the upper window, when
the windows are split; the origin is (1, 1) in the top left.

daemon A routine attached to an object which, once started, is run once during the end se-
quence of every turn until explicitly stopped. Used to manage events happening as time
passes by, or to notice changes in the state of the game which require some activity.

default value See property.

description The usually quite long piece of text attached to an object; if it’s a room, then this
is the long description printed out when the room is first visited; otherwise it will usually be
printed when the object is examined by the player.

dictionary A list kept inside the Z-machine of all the words ordinarily understood by the game,
such as “throw” and “mauve”, usually between about 300 and 2000 words long. Inform
automatically puts this list together from all the name values of objects and all usages of
constants like ’word’. Dictionary words are stored to a resolution of 9 characters (6 for

207

direct containment global variable

Standard games), written ’thus’ (provided they have more than one letter; otherwise #n$x

for the word “x”; except as values of the special name property) and are internally referred
to by numbers which are their byte addresses inside the list.

direct containment See object tree.

direction object An object representing both the abstract idea of a direction and the wall
which is in that direction: for instance, n_obj represents “northness” and the north wall of
the current room. Typing “go north” causes the parser to generate the action Go n_obj. The
current direction objects are exactly those currently inside the compass object and they can
be dynamically changed. The door_dir property of a direction object holds its corresponding
direction property.

direction property The library creates 12 direction properties: n_to, s_to, etc., u_to, d_to,
in_to and out_to. These are used to give map connections from rooms and indicate direc-
tions which doors and direction objects correspond to.

directive A line of Inform code which instructs the compiler to do something, such as to define
a new constant; it takes immediate effect and does not correspond to anything happening
at run-time. These are not normally written inside routines but can be if prefaced by a #

character.

eldest child See object tree.

embedded routine A routine defined as the property value of an object, which is defined
without a name of its own, and which by default returns ‘false’ rather than ‘true’.

encapsulation When an object declares a property as being private, its value is unavailable
anywhere else in the program: it can be read or written to only by that one object itself.
This close concealment of data is called encapsulation.

entry point A routine in an Inform program which is directly called by the library to intervene
in the normal operation of the game (if the routine so wishes). Provision of entry points is
optional, except for Initialise, which must always occur in every game.

error When the compiler finds something in the program which it can’t make sense of, it pro-
duces an error (which will eventually prevent it from generating a story file, so that it cannot
generate an illegal story file which would fail at run-time). If the error is fatal the compiler
stops at once.

examine message See description.

expression A general piece of Inform code which determines a numerical value. It may be
anything from a single constant to a bracketed calculation of variable, property or array
values, such as 3+(day_list-->(calendar.number)).

fake action A form of action which has no corresponding action routine and will have no effect
after the before-processing stage of considering an action is over. A fake action is never
generated by the parser and can only be triggered by a <...> statement. The library makes
use of this but other Inform code is advised not to.

fake fake action A form of action which does have an action routine and is processed exactly
as ordinary actions are, but which is never generated by the parser, only by the program,
which can use it to pass a message to an object.

fatal error An error found by the compiler which causes it to give up immediately; for instance,
a disc being full or memory running out are fatal.

format See version.

function See routine.

fuse See timer.

global variable A variable which can be used by every routine in the program.

208

grammar map

grammar A list of lines which is attached to a particular verb. The parser decodes what the
player has typed by trying to match it against each line in turn of the grammar attached to
the verb which the first word of the player’s input corresponds to.

hardware function A function which is used just like any other routine but which is not
defined anywhere in the library or program: the compiler provides it automatically, usually
converting the apparent call to a routine into a single line of assembly language.

importing When compiling a module, Inform needs to be told of any global variables it is using
which are defined only in the outside program (compiled on a different occasion). Such a
variable is said to be “imported” using the Import global directive.

indirect containment See object tree.

individual property Opposite of common property.

inheritance The process in which property values and attribute settings specified in a class
definition are passed on to an object defined as having that class.

internal name See name.

interpreter A program for some particular model of computer, for example the IBM PC, which
reads in the story file of a game and allows someone to play it. A different interpreter is
needed for each model of computer (though generic source codes exist which make it relatively
easy to produce these).

inventory 1. Verb, imperative: a demand for a list of the items one is holding; 2. noun: the list
itself. (When Crowther and Woods were writing the original ‘Advent’, they were unable to
think of a good imperative verb and fell back on the barely sensible “take inventory”, which
was soon corrupted into the not at all sensible “inventory”, thence “inv” and finally “i”.)

library The ‘operating system’ for the Z-machine: a large segment of Inform code, written out
in three library files, which manages the model world, provides the parser and consults the
game’s program now and then to give it a chance to make interesting things happen.

library files The three files parser, verblib and grammar containing the source code of the
library. These are normally Included in the code for every Inform game.

library routine A routine provided by the library which is ‘open to the public’ in that the
designer’s program is allowed to call and make use of it.

line One possible pattern which the parser might match against what the player has typed
beyond the initial verb word. A grammar line consists of a sequence of tokens, each of which
must be matched in sequence, plus an action which will be generated if the line successfully
matches.

linking The process of assimilating a previously-compiled module into the game now being
compiled, in order to save compilation time.

local variable A variable attached to a particular routine (or, more precisely, a particular call
to a routine: if a routine calls itself, then the parent and child incarnation have independent
copies of the local variables) whose value is inaccessible to the rest of the program. Also used
to hold the arguments of the call.

long A property whose values must always be stored as words, or word arrays, rather than bytes
or byte arrays. A safely ignorable concept since except for Standard games all properties are
long.

logical machine See Z-machine.

low string A string which can be used as the value of a variable string, printed with the @

escape character. Must be declared with Lowstring.

map The geographical design of the game, divided into areas called rooms with connections
between them in different directions. The story file doesn’t contain an explicit map table but
stores the information implicitly in the definition of the room objects.

209

memory map object tree

memory map Internally, the Z-machine contains a large array in whose values the entire story
file and all its data structures are stored. Particular cells low down in this array are indexed
by byte addresses, and routines and strings which are lodged higher up are referred to by
packed addresses. The organisation of this array (which ranges of indices correspond to what)
is called the memory map.

message A way to communicate with an object, specifying the object to call, the property being
addressed (in effect, the “kind of message being sent”) and possibly other parameters. A
single value is returned as a reply.

metaclass There are four fundamental classes of object, such that every object belongs to
exactly one of the four. These are Object, Class, Routine and String, and are called
metaclasses. (Since they are examples of classes, they themselves have metaclass Class.)

meta-verb A verb whose actions are always commands from the player to the game, rather
than requests for something to happen in the model world: for instance, “quit” is meta but
“take” is not.

module A previously-compiled but incomplete segment of game, which is kept in order for it
to be linked into a later compilation. It can be linked many times once created, saving much
compilation time. (For example, almost the whole Library can be reduced to two modules.)

multiple object The parser matches a token with a multiple object when the player has either
explicitly referred to more than one object (e.g. “drop lamp and basket”) or implicitly done
so (e.g. “drop everything” when this amounts to more than 1 item); though the match is
only made if the token will allow it.

names An object has three kinds of name: 1. its internal name, a word such as brass_lamp,
which is a constant referring to it within the program; 2. its short name, such as “dusty old
brass lamp” or “Twopit Room”, which is printed in inventories or before a room description;
3. dictionary words which appear as values of its name property, such as "dusty", "brass",
etc., which the player can type to refer to it.

noun The first parameter (usually an object but possibly a number) which the parser has
matched in a line of grammar is the noun for the action which is generated. It is stored in
the noun variable (not to be confused with the noun token).

object 1. The physical substance of the game’s world is divided up into indivisible objects,
such as ‘a brass lamp’ or ‘a meadow’. These contain each other in a hierarchy called the
object tree. An object may be defined with an initial location (another object) and must
have an internal name and a short name; attached to it throughout the game are variables
called attributes and properties which reflect its current state. The definition of an object
may make it inherit initial settings for this state from one or more classes. 2. More generally,
classes themselves and even routines and strings are abstractly considered objects. Objects
in sense (1) above, “concrete objects”, are members of the metaclass Object, while classes
belong to Class, routines to Routine and strings to String.

object number Objects are automatically numbered from 1 upwards, in order of definition,
and the internal name of an object is in fact a constant whose value is this number.

object tree The hierarchy of containment between objects of metaclass Object, i.e., of con-
cretely existing objects. Each has a ‘parent’, though this may be ‘nothing’ (to indicate that
it is uncontained, as for instance rooms are) and possibly some ‘children’ (the objects directly
contained within it). The ‘child’ of an object is the ‘eldest’ of these children, the one most
recently moved within it or, if none have been moved into it since the start of play, the first
one defined as within it. The ‘sibling’ of this child is then the next eldest, or may be ‘nothing’
if there is no next eldest. Note that if A is inside B which is itself inside C, then C ‘directly
contains’ B but only ‘indirectly contains’ A: and we do not call A one of the children of C.

210

obsolete usage rule

obsolete usage A point in the program using Inform syntax which was correct under some
previous version of the compiler but is no longer correct (usually because there is a neater
way to express the same idea). Inform often allows these but, if so, issues warnings.

opcodes See assembly language.

operator A symbol in an expression which acts on one or more sub-expressions, combining their
values to produce a result. This may be arithmetic, as in + or /, or to do with array or
property value indexing, as in -> or .&. Note that condition operators such as == are not
formally expression operators.

order An instruction by the player for somebody else to do something. For instance, “policeman,
give me your hat” is an order. The order is parsed as if an action but is then processed in
the other person’s object definition.

packed address A number encoding the location of a routine or string within the memory map
of the Z-machine.

parent See object tree.

parser That part of the library which, once per turn, issues the prompt; asks the player to type
something; looks at the initial verb word; tries to match the remaining words against one of
the lines of grammar for this verb and, if successful, generates the resulting action.

player 1. the person sitting at the keyboard at run-time, who is playing the game; 2. his
character inside the model world of the game. (There is an important difference - one has
access to the “undo” verb. The other actually dies.)

private property See encapsulation.

prompt The text printed to invite the player to type: usually just >.

property 1. The value of a variable attached to a particular object, accessible throughout the
program, which can be a single word, an embedded routine or an array of values; 2. a named
class of such variables, such as description, which may or may not be provided by any
given object. Properties can be encapsulated for privacy. All properties are either common
or individual (the latter unless otherwise declared).

provision If a property, such as description, is given in the definition of an object (or in the
definition of a class which the object belongs to) then the object is said to “provide” that
property.

resolution See dictionary.

return value See routine.

room The geography of a game is subdivided into parcels of area called rooms, within which it
is (usually) assumed that the player has no particular location but can reach all corners of
easily and without giving explicit instruction to do so. For instance, “the summit of Scafell
Pike” might be such an area, while “the summit of Ben Nevis” (being a large L-shaped ridge)
would probably be divided into three or four. These rooms fit together into the map and
each is implemented as an object.

room description See description.

routine An Inform program is always executed in routines, each of which is “called” (possibly
with arguments) and must return a particular word value, though this is sometimes disguised
from the programmer because (for example) the statement return; actually returns true

(1) and the statement ExplodeBomb(); makes the call to the routine but throws away the
return value subsequently. Routines are permitted to call themselves (if the programmer
wants to risk it) and have their own local variables. Calling a routine is analogous to sending
a message to an object, and indeed routines are abstractly considered objects in their own
right, belonging to metaclass Routine.

rule Embedded routines given as values of a property like before or after are sometimes loosely

211

run-time turn

called rules, because they encode exceptional rules of the game such as “the 10-ton weight
cannot be picked up”. However, there is no formal concept of ‘rule’.

run-time The time when an interpreter is running the story file, i.e., when someone is actually
playing the game, as distinct from ‘compile-time’ (when the compiler is at work making the
story file). Some errors (such as an attempt to divide a number by zero) can only be detected
at run-time.

scope To say that an object is in scope to a particular actor is roughly to say that it is visible,
and can sensibly be referred to.

second noun The second parameter (usually an object but possibly a number) which the parser
has matched in a line of grammar is the second noun for the action generated. It is stored
in the second variable.

see-through An object is called this if it has transparent, or is an open container, or is a
supporter. Roughly this means ‘if the object is visible, then its children are visible’. (This
criterion is often applied in the scope (and ‘light’) rules inside the library.)

sender When a message is sent from one object to another, the originator is called the “sender”.
Whenever a message is being received, the variable sender holds this object’s identity.

short name See name.

sibling See object tree.

statement A single instruction for the game to carry out at run-time; a routine is a collection
of statements. These include assignments and assembly language but not directives.

status line The region at the top of the screen which, in play, usually shows the current score
and location, and which is usually printed in reversed colours for contrast.

story file The output of the compiler is a single file containing everything about the game pro-
duced, in a format which is standard. To be played, the file must be run with an interpreter.
Thus only one file is needed for every Inform game created, and only one auxiliary program
must be written for every model of computer which is to run such games. In this way story
files are absolutely portable across different computers.

Standard game An old format (version 3) of story file which should no longer be used unless
absolutely necessary (to run on very small computers) since it imposes tiresome restrictions.

string 1. a literal piece of text such as "Mary had a fox" (which is a constant internally
represented by a number, its packed address, and may be created as a low string), abstractly
considered an object of metaclass String; 2. a form of byte array in which the 0th entry holds
the number of entries (so called because such an array is usually used as a list of characters,
i.e. a string variable); 3. see variable string.

switch 1. certain objects are ‘switchable’, meaning they can be turned off or on by the player;
2. options set by the programmer when the compiler starts are called switches; 3. a switch

statement is one which switches execution, like a railway turntable, between different lines
according to the current value of an expression.

synonym Two or more words which refer to the same verb are called synonyms (for example,
“wear” and “don”).

table A form of word array in which the 0th entry holds the number of entries.

timer A routine attached to a particular object which, once set, will be run after a certain
number of turns have passed by. (Sometimes called a ‘fuse’.)

token A particle in a line of grammar, which the parser tries to match with one or more words
from what the player has typed. For instance, the token held can only be matched by an
object the actor is holding.

tree See object tree.

turn The period in play between one typed command and another.

212

untypeable word Z-machine

untypeable word A dictionary word which contains at least one space, full stop or comma and
therefore can never be recognised by the parser as one of the words typed by the player.

variable A named value which can be set or compared so that it varies at run-time. It must
be declared before use (the library declares many such). Variables are either local or global;
entries in arrays (or the memory map) and properties of objects behave like global variables.

variable string (Not the same as a string (3) variable.) There are 32 of these, which can only
be set (to a string (1) which must have been defined as a low string) or printed out (using
the @ escape character).

vehicle An object which the player character can travel around in.
verb 1. a collection of synonymous one-word English verbs for which the parser has a grammar

of possible lines which a command starting with one of these verbs might take; 2. one of the
one-word English verbs.

version The compiler can produce 6 different formats of story file, from Version 3 (or Standard)
to Version 8. By default it produces Version 5 (or Advanced) which is the most portable.

warning When the compiler finds something in the program which it disapproves of (for ex-
ample, an obsolete usage) or thinks might be a mistake, it issues a warning message. This
resembles an error but does not prevent successful compilation; a working story file can still
be produced.

window (Except in Standard games) the screen is divided into two windows, an upper, fixed
window usually containing the status line and the lower, scrolling window usually holding
the text of the game. One can divert printing to the upper window and move a cursor about
in it.

word 1. an English word in the game’s dictionary; 2. almost all numbers are stored in 16-bit
words of memory which unlike bytes can hold any constant value, though they take twice as
much storage space up.

word array An array indexed with the --> operator whose entries are words: they can therefore
hold any constant values.

youngest child See object tree.

Z-machine The imaginary computer which the story file is a program for. One romantically

pretends that this is built from circuitboards and microchips (using terms like ‘hardware’)

though in fact it is merely simulated at run-time by an interpreter running on some (much

more sophisticated) computer. Z is for ‘Zork’.

213

Answers to exercises 1-4

Answers to all the exercises

World is crazier and more of it than we think,
Incorrigibly plural. I peel and portion
A tangerine and spit the pips and feel
The drunkenness of things being various.

– Louis MacNeice (–), Snow

•1 Change the mushroom’s after rule to:

after

[; Take: if (self hasnt general)

{ give self general;

"You pick the mushroom, neatly cleaving its thin stalk.";

}

"You pick up the slowly-disintegrating mushroom.";

Drop: "The mushroom drops to the ground, battered slightly.";

],

As mentioned above, general is a general-purpose attribute, free for the designer to use. The
‘neatly cleaving’ message can only happen once, because after that the mushroom object must
have general. Note that the mushroom is allowed to call itself self instead of mushroom.

•2

Object medicine "guaranteed child-proof medicine bottle" cupboard

with name "medicine" "bottle",

description "~Antidote only: no preventative effect.~",

openup

[; give self open ~locked; "The bottle cracks open!";

],

has container openable locked;

Any other code in the game can send the message medicine.openup() to crack open the bottle.
For brevity, this solution assumes that the bottle is always visible to the player when it is opened
– if not the printed message will be incongruous.

•3 Briefly: provide a GamePreRoutine which tests to see if second is an object, rather than
nothing or a number. If it is, check whether the object has a second_before rule (i.e. test the
condition (object provides second_before)). If it has, send the second_before message to it,
and return the reply as the return value from GamePreRoutine.

•4 Put any validation rules desired into the GamePreRoutine. For example, the following will
filter out any stray Drop actions for unheld objects:

[GamePreRoutine;

if (action==Drop && noun notin player)

"You aren’t holding ", (the) noun, ".";

rfalse;

];

214

Answers to exercises 5-8

•5

Object orange_cloud "orange cloud"

with name "orange" "cloud",

react_before

[; Look: "You can’t see for the orange cloud surrounding you.";

Go, Exit: "You wander round in circles, choking.";

Smell: if (noun==0) "Cinnamon? No, nutmeg.";

],

has scenery;

•6 Define four objects along the lines of:

Object white_obj "white wall" compass

with name "white" "sac" "wall", article "the", door_dir n_to

has scenery;

and add the following line to Initialise:

remove n_obj; remove e_obj; remove w_obj; remove s_obj;

(We could even alias a new Property called white_to to be n_to, and then enter map directions
in the source code using Mayan direction names.) As a fine point of style, turquoise (yax) is the
world colour for ‘here’, so add a grammar line to make this cause a “look”:

Verb "turquoise" "yax" * -> Look;

•7

[SwapDirs o1 o2 x;

x=o1.door_dir; o1.door_dir=o2.door_dir; o2.door_dir=x;];

[ReflectWorld;

SwapDirs(e_obj,w_obj); SwapDirs(ne_obj,nw_obj); SwapDirs(se_obj,sw_obj);

];

•8 This is a prime candidate for using variable strings @nn. Briefly: at the head of the source,
define

Lowstring east_str "east"; Lowstring west_str "west";

and then add two more routines to the game,

[NormalWorld; String 0 east_str; String 1 west_str;];

[ReversedWorld; String 0 west_str; String 1 east_str;];

where NormalWorld is called in Initialise or to go back to normal, and ReversedWorld when
the reflection happens. Write @00 in place of east in any double-quoted printable string, and
similarly @01 for west. It will be printed as whichever is currently set. (Inform provides up to 32
such variable strings.)

215

Answers to exercises 9-11

•9

Object -> bag "toothed bag"

with name "toothed" "bag",

description "A capacious bag with a toothed mouth.",

before

[; LetGo: "The bag defiantly bites itself

shut on your hand until you desist.";

Close: "The bag resists all attempts to close it.";

],

after

[; Receive:

"The bag wriggles hideously as it swallows ",

(the) noun, ".";

],

has container open;

•10

Object television "portable television set" lounge

with name "tv" "television" "set" "portable",

before

[; SwitchOn: <<SwitchOn power_button>>;

SwitchOff: <<SwitchOff power_button>>;

Examine: <<Examine screen>>;

],

has transparent;

Object -> power_button "power button"

with name "power" "button" "switch",

after

[; SwitchOn, SwitchOff: <<Examine screen>>;

],

has switchable;

Object -> screen "television screen"

with name "screen",

before

[; Examine: if (power_button hasnt on) "The screen is black.";

"The screen writhes with a strange Japanese cartoon.";

];

•11

Object -> glass_box "glass box with a lid"

with name "glass" "box" "with" "lid"

has container transparent openable open;

Object -> steel_box "steel box with a lid"

with name "steel" "box" "with" "lid"

has container openable open;

216

Answers to exercises 12-13

•12 (The describe part of this answer but is only decoration.) Note the careful use of inp1 and
inp2 rather than noun or second: see the note at the end of §9.

Object -> macrame_bag "macrame bag"

with name "macrame" "bag" "string" "net" "sack",

react_before

[; Examine, Search, Listen, Smell: ;

default:

if (inp1>1 && inp1 in self)

print_ret (The) inp1, " is tucked away in the bag.";

if (inp2>1 && inp2 in self)

print_ret (The) inp2, " is tucked away in the bag.";

],

describe

[; print "^A macrame bag hangs from the ceiling, shut tight";

if (child(self)==0) ".";

print ". Inside you can make out ";

WriteListFrom(child(self), ENGLISH_BIT); ".";

],

has container transparent;

Object -> -> "gold watch"

with name "gold" "watch",

description "The watch has no hands, oddly.",

react_before

[; Listen: if (noun==0 or self) "The watch ticks loudly.";];

•13 The “plank breaking” rule is implemented here in its door_to routine. Note that this returns
‘true’ after killing the player.

Object -> PlankBridge "plank bridge"

with description "Extremely fragile and precarious.",

name "precarious" "fragile" "wooden" "plank" "bridge",

when_open

"A precarious plank bridge spans the chasm.",

door_to

[; if (children(player)~=0)

{ deadflag=1;

"You step gingerly across the plank, which bows under

your weight. But your meagre possessions are the straw

which breaks the camel’s back! There is a horrid crack...";

}

print "You step gingerly across the plank, grateful that

you’re not burdened.^";

if (location==NearSide) return FarSide; return NearSide;

],

door_dir

[; if (location==NearSide) return s_to; return n_to;

217

Answers to exercises 14-17

],

found_in NearSide FarSide,

has static door open;

There might be a problem with this solution if your game also contained a character who wandered
about, and whose code was clever enough to run door_to routines for any doors it ran into. If
so, door_to could perhaps be modified to check that the actor is the player.

•14

Object -> cage "iron cage"

with name "iron" "cage" "bars" "barred" "iron-barred",

when_open

"An iron-barred cage, large enough to stoop over inside,

looms ominously here.",

when_closed "The iron cage is closed.",

inside_description "You stare out through the bars.",

has enterable container openable open transparent static;

•15 Change the car’s before to

before

[; Go: if (noun==e_obj)

{ print "The car will never fit through your front door.^";

return 2;

}

if (car has on) "Brmm! Brmm!";

print "(The ignition is off at the moment.)^";

],

•16 Insert these lines into the before rule for PushDir:

if (second==u_obj) <<PushDir self n_obj>>;

if (second==d_obj) <<PushDir self s_obj>>;

•17

Object -> bible "black Tyndale Bible"

with name "bible" "black" "book",

initial "A black Bible rests on a spread-eagle lectern.",

description "A splendid foot-high Bible, which must have survived

the burnings of 1520.",

before

[w x; Consult:

wn = consult_from; w = NextWord();

switch(w)

{ ’matthew’: x="Gospel of St Matthew";

’mark’: x="Gospel of St Mark";

218

Answers to exercises 18-19

’luke’: x="Gospel of St Luke";

’john’: x="Gospel of St John";

default: "There are only the four Gospels.";

}

if (consult_words==1)

"You read the ", (string) x, " right through.";

w = TryNumber(wn);

if (w==-1000)

"I was expecting a chapter number in the ",

(string) x, ".";

"Chapter ", (number) w, " of the ", (string) x,

" is too sacred for you to understand now.";

];

•18 Note that whether reacting before or after, the psychiatrist does not cut any actions short,
because react_before and react_after both return false.

Object -> psychiatrist "bearded psychiatrist"

with name "bearded" "doctor" "psychiatrist" "psychologist" "shrink",

initial "A bearded psychiatrist has you under observation.",

life

[; "He is fascinated by your behaviour, but makes no attempt to

interfere with it.";

],

react_after

[; Insert: print "~Subject puts ", (name) noun, " in ",

(name) second, ". Interesting.~^^";

Look: print "~Pretend I’m not here,~ says the psychiatrist.^";

],

react_before

[; Take, Remove: print "~Subject feels lack of ", (the) noun,

". Suppressed Oedipal complex? Mmm.~^";

],

has animate;

•19 Add the following lines, after the inclusion of Grammar:

[SayInsteadSub; "[To talk to someone, please type ~someone, something~

or else ~ask someone about something~.]";];

Extend "answer" replace * topic -> SayInstead;

Extend "tell" replace * topic -> SayInstead;

A slight snag is that this will throw out “nigel, tell me about the grunfeld defence” (which the
library will normally convert to an Ask action, but can’t if the grammar for “tell” is missing). To
avoid this, you could (instead of making the above directives) Replace the TellSub routine (see
§21) by the SayInsteadSub one.

219

Answers to exercises 20-22

•20 There are several ways to do this. The easiest is to add more grammar to the parser and
let it do the hard work:

Object -> computer "computer"

with name "computer",

orders

[; Theta: print_ret "~Theta now set to ", noun, ".~";

default: print_ret "~Please rephrase.~";

],

has talkable;

...

[ThetaSub; "You must tell your computer so.";];

Verb "theta" * "is" number -> Theta;

•21 Obviously, a slightly wider repertoire of actions might be a good idea, but:

Object -> Charlotte "Charlotte"

with name "charlotte" "charlie" "chas",

grammar

[; give self ~general;

wn=verb_wordnum;

if (NextWord()==’simon’ && NextWord()==’says’)

{ give self general;

verb_wordnum=verb_wordnum+2;

}

],

orders

[i; if (self hasnt general) "Charlotte sticks her tongue out.";

WaveHands: "Charlotte waves energetically.";

default: "~Don’t know how,~ says Charlotte.";

],

initial "Charlotte wants to play Simon Says.",

has animate female proper;

(The variable i isn’t needed yet, but will be used by the code added in the answer to the next
exercise.)

•22 First add a Clap verb (this is easy). Then give Charlotte a number property (initially 0,
say) and add these three lines to the end of Charlotte’s grammar routine:

self.number=TryNumber(verb_wordnum);

if (self.number~=-1000)

{ action=##Clap; noun=0; second=0; rtrue; }

Her orders routine now needs a local variable called i, and the new clause:

Clap: if (self.number==0) "Charlotte folds her arms.";

for (i=0:i<self.number:i++)

{ print "Clap! ";

if (i==100)

220

Answers to exercises 23-24

print "(You must be regretting this by now.) ";

if (i==200)

print "(What a determined girl she is.) ";

}

if (self.number>100)

"^^Charlotte is a bit out of breath now.";

"^^~Easy!~ says Charlotte.";

•23 The interesting point here is that when the grammar property finds the word “take”, it
accepts it and has to move verb_wordnum on by one to signal that a word has been parsed
succesfully.

Object -> Dan "Dyslexic Dan"

with name "dan" "dyslexic",

grammar

[; if (verb_word == ’take’) { verb_wordnum++; return ’drop’; }

if (verb_word == ’drop’) { verb_wordnum++; return ’take’; }

],

orders

[i;

Take: "~What,~ says Dan, ~ you want me to take ",

(the) noun, "?~";

Drop: "~What,~ says Dan, ~ you want me to drop ",

(the) noun, "?~";

Inv: "~That I can do,~ says Dan. ~I’m empty-handed.~";

No: "~Right you be then.~";

Yes: "~I’ll be having to think about that.~";

default: "~Don’t know how,~ says Dan.";

],

initial "Dyslexic Dan is here.",

has animate proper;

•24 Suppose Dan’s grammar (but nobody else’s) for the “examine” verb is to be extended. His
grammar routine should also contain:

if (verb_word == ’examine’ or ’x’)

{ verb_wordnum++; return -’danx,’; }

(Note the crudity of this: it looks at the actual verb word, so you have to check any synonyms
yourself.) The verb “danx,” must be declared later:

Verb "danx," * "conscience" -> Inv;

and now “Dan, examine conscience” will send him an Inv order: but “Dan, examine cow pie” will
still send Examine cow_pie as usual.

221

Answers to exercises 25-26

•25

[PrintTime x; print (x/60), ":", (x%60)/10, (x%60)%10;];

Object -> alarm_clock "alarm clock"

with name "alarm" "clock",

number 480,

description

[; print "The alarm is ";

if (self has general) print "on, "; else print "off, but ";

"the clock reads ", (PrintTime) the_time,

" and the alarm is set for ", (PrintTime) self.number, ".";

],

react_after

[; Inv: if (self in player) { new_line; <<Examine self>>; }

Look: if (self in location) { new_line; <<Examine self>>; }

],

daemon

[; if (the_time >= self.number && the_time <= self.number+3

&& self has general) "^Beep! Beep! The alarm goes off.";

],

grammar [; return ’alarm,’;],

orders

[; SwitchOn: give self general; StartDaemon(self); "~Alarm set.~";

SwitchOff: give self ~general; StopDaemon(self); "~Alarm off.~";

SetTo: self.number=noun; <<Examine self>>;

default: "~Commands are on, off or a time of day only, pliz.~";

],

life

[; Ask, Answer, Tell:

"[Try ~clock, something~ to address the clock.]";

],

has talkable;

and add a new verb to the grammar:

Verb "alarm," * "on" -> SwitchOn

* "off" -> SwitchOff

* TimeOfDay -> SetTo;

(using the TimeOfDay token from the exercises of §27). Note that since the word “alarm,” can’t
be matched by anything the player types, this verb is concealed from ordinary grammar. The
orders we produce here are not used in the ordinary way (for instance, the action SwitchOn with
no noun or second would never ordinarily be produced by the parser) but this doesn’t matter: it
only matters that the grammar and the orders property agree with each other.

•26

Object -> tricorder "tricorder"

with name "tricorder",

grammar [; return ’tc,’;],

orders

222

Answers to exercises 27-28

[; Examine: if (noun==player) "~You radiate life signs.~";

print "~", (The) noun, " radiates ";

if (noun hasnt animate) print "no ";

"life signs.~";

default: "The tricorder bleeps.";

],

life

[; Ask, Answer, Tell: "The tricorder is too simple.";

],

has talkable;

...

Verb "tc," * noun -> Examine;

•27

Object replicator "replicator"

with name "replicator",

grammar [; return ’rc,’;],

orders

[; Give:

if (noun in self)

"The replicator serves up a cup of ",

(name) noun, " which you drink eagerly.";

"~That is not something I can replicate.~";

default: "The replicator is unable to oblige.";

],

life

[; Ask, Answer, Tell: "The replicator has no conversation skill.";

],

has talkable;

Object -> "Earl Grey tea" with name "earl" "grey" "tea";

Object -> "Aldebaran brandy" with name "aldebaran" "brandy";

Object -> "distilled water" with name "distilled" "water";

...

Verb "rc," * held -> Give;

The point to note here is that the held token means ‘held by the replicator’ here, as the actor

is the replicator, so this is a neat way of getting a ‘one of the following phrases’ token into the
grammar.

•28 This is similar to the previous exercises. One creates an attribute called crewmember and
gives it to the crew objects: the orders property is

orders

[; Examine:

if (parent(noun)==0)

"~", (name) noun,

" is no longer aboard this demonstration game.~";

"~", (name) noun, " is in ", (name) parent(noun), ".~";

223

Answer to exercise 29

default: "The computer’s only really good for locating the crew.";

],

and the grammar simply returns ’stc,’ which is defined as

[Crew i;

switch(scope_stage)

{ 1: rfalse;

2: objectloop (i has crewmember) PlaceInScope(i); rtrue;

}

];

Verb "stc," * "where" "is" scope=Crew -> Examine;

An interesting point is that the scope routine doesn’t need to do anything at stage 3 (usually
used for printing out errors) because the normal error-message printing system is never reached.
Something like “computer, where is Comminder Doto” causes a ##NotUnderstood order.

•29

Object Zen "Zen" Flight_Deck

with name "zen" "flight" "computer",

initial "Square lights flicker unpredictably across a hexagonal

fascia on one wall, indicating that Zen is on-line.",

grammar [; return -’zen,’;],

orders

[; Show: "The main screen shows a starfield,

turning through ", noun, " degrees.";

Go: "~Confirmed.~ The ship turns to a new bearing.";

SetTo: if (noun==0) "~Confirmed.~ The ship comes to a stop.";

if (noun>12) "~Standard by ", (number) noun,

" exceeds design tolerances.~";

"~Confirmed.~ The ship’s engines step to

standard by ", (number) noun, ".";

Take: if (noun~=force_wall) "~Please clarify.~";

"~Force wall raised.~";

Drop: if (noun~=blasters) "~Please clarify.~";

"~Battle-computers on line.

Neutron blasters cleared for firing.~";

NotUnderstood: "~Language banks unable to decode.~";

default: "~Information. That function is unavailable.~";

],

has talkable proper static;

Object -> force_wall "force wall" with name "force" "wall" "shields";

Object -> blasters "neutron blasters" with name "neutron" "blasters";

...

Verb "zen," * "scan" number "orbital" -> Show

* "set" "course" "for" Planet -> Go

* "speed" "standard" "by" number -> SetTo

* "raise" held -> Take

* "clear" held "for" "firing" -> Drop;

224

Answers to exercises 30-31

Dealing with Ask, Answer and Tell are left to the reader.

•30

[InScope;

if (action_to_be == ##Examine or ##Show or ##ShowR)

PlaceInScope(noslen_maharg);

if (scope_reason == TALKING_REASON)

PlaceInScope(noslen_maharg);

];

Note that ShowR is a variant form of Show in which the parameters are ‘the other way round’: thus
“show maharg the phaser” generates ShowR maharg phaser internally, which is then converted to
the more usual Show phaser maharg.

•31 Martha and the sealed room are defined as follows:

Object sealed_room "Sealed Room"

with description

"I’m in a sealed room, like a squash court without a door,

maybe six or seven yards across",

has light;

Object -> ball "red ball" with name "red" "ball";

Object -> martha "Martha"

with name "martha",

orders

[r; r=parent(self);

Give:

if (noun notin r) "~That’s beyond my telekinesis.~";

if (noun==self) "~Teleportation’s too hard for me.~";

move noun to player;

"~Here goes...~ and Martha’s telekinetic talents

magically bring ", (the) noun, " to your hands.";

Look:

print "~", (string) r.description;

if (children(r)==1) ". There’s nothing here but me.~";

print ". I can see ";

WriteListFrom(child(r),CONCEAL_BIT+ENGLISH_BIT);

".~";

default: "~Afraid I can’t help you there.~";

],

life

[; Ask: "~You’re on your own this time.~";

Tell: "Martha clucks sympathetically.";

Answer: "~I’ll be darned,~ Martha replies.";

],

has animate female concealed proper;

225

Answers to exercises 32-34

but the really interesting part is the InScope routine to fix things up:

[InScope actor;

if (actor==martha) PlaceInScope(player);

if (actor==player && scope_reason==TALKING_REASON)

PlaceInScope(martha);

rfalse;

];

Note that since we want two-way communication, the player has to be in scope to Martha too:
otherwise Martha won’t be able to follow the command “martha, give me the fish”, because “me”
will refer to something beyond her scope.

•32 Just test if HasLightSource(gift)==1.

•33 We could solve this using a daemon, but for the sake of demonstrating a feature of thedark
we won’t. In Initialise, write thedark.initial = GoMothGo; and add the routine:

[GoMothGo;

if (moth in player)

{ remove moth;

"As your eyes try to adjust, you feel a ticklish sensation

and hear a tiny fluttering sound.";

}

];

•34 This is a crude implementation, for brevity (the real Zork thief has an enormous stock of
attached messages). A life routine is omitted, and of course this particular thief steals nothing.
See ‘The Thief’ for a much fuller, annotated implementation.

Object -> thief "thief"

with name "thief" "gentleman" "mahu" "modo",

each_turn "^The thief growls menacingly.",

daemon

[i p j n k;

if (random(3)~=1) rfalse;

p=parent(thief);

objectloop (i in compass)

{ j=p.(i.door_dir);

if (j ofclass Object && j hasnt door) n++;

}

if (n==0) rfalse;

k=random(n); n=0;

objectloop (i in compass)

{ j=p.(i.door_dir);

if (j ofclass Object && j hasnt door) n++;

if (n==k)

{ move self to j;

if (p==location) "^The thief stalks away!";

if (j==location) "^The thief stalks in!";

226

Answer to exercise 35

rfalse;

}

}

],

has animate;

(Not forgetting to StartDaemon(thief) at some point, for instance in the game’s Initialise

routine.) So the thief walks at random but never via doors, bridges and the like (because these
may be locked or have rules attached); it’s only a first approximation, and in a good game one
should occasionally see the thief do something surprising, such as open a secret door. As for the
name, note that ‘The Prince of darkness is a gentleman. Modo he’s called, and Mahu’ (William
Shakespeare, King Lear III iv).

•35 We shall use a new property called weight and decide that any object which doesn’t provide
any particular weight will weigh 10 units. Clearly, an object which contains other objects will
carry their weight too, so:

[WeightOf obj t i;

if (obj provides weight) t = obj.weight; else t = 10;

objectloop (i in obj) t = t + WeightOf(i);

return t;

];

Once every turn we shall check how much the player is carrying and adjust a measure of the
player’s fatigue accordingly. There are many ways we could choose to calculate this: for the sake
of example we’ll define two constants:

Constant CARRYING_STRENGTH = 500;

Constant HEAVINESS_THRESHOLD = 100;

Initially the player’s strength will be the maximum possible, which we’ll set to 500. Each turn
the amount of weight being carried is substracted from this, but 100 is also added on (without
exceeding the maximum value). So if the player carries more than 100 units, then her strength
declines, but by dropping things to get the weight below 100 she can allow it to recover. If she
drops absolutely everything, her entire strength will recuperate in at most 5 turns. Exhaustion
sets in if her strength reaches 0, and at this point she is forced to drop something, which gives
her strength a slight boost. Anyway, here’s an implementation of all this:

Object weight_monitor

with players_strength,

warning_level 5,

activate

[; self.players_strength = CARRYING_STRENGTH; StartDaemon(self);

],

daemon

[w s b bw;

if (location ~= Weights_Room) { StopDaemon(self); return; }

s = self.players_strength

- WeightOf(player) + HEAVINESS_THRESHOLD;

if (s<0) s=0; if (s>CARRYING_STRENGTH) s=CARRYING_STRENGTH;

self.players_strength = s;

if (s==0)

227

Answers to exercises 36-37

{ bw=-1;

objectloop(b in player)

if (WeightOf(b) > bw) { bw = WeightOf(b); w=b; }

self.players_strength = self.players_strength + bw;

print "^Exhausted with carrying so much, you decide

to discard ", (the) w, ": "; <<Drop w>>;

}

w=s/100; if (w==self.warning_level) return;

self.warning_level = w;

switch(w)

{ 3: "^You are feeling a little tired.";

2: "^You possessions are weighing you down.";

1: "^Carrying so much weight is wearing you out.";

0: "^You’re nearly exhausted enough to drop everything

at an inconvenient moment.";

}

];

Notice that items are actually dropped with Drop actions: one of them might be, say, a wild boar,
which would bolt away into the forest when released. The daemon tries to drop the heaviest item.
(Obviously a little improvement would be needed if the game contained, say, an un-droppable but
very heavy ball and chain.) Finally, of course, at some point the weight monitor has to be sent
an activate message to get things going.

•36 See the next answer.

•37

Object tiny_claws "sound of tiny claws" thedark

with article "the",

name "tiny" "claws" "sound" "of" "scuttling" "scuttle"

"things" "creatures" "monsters" "insects",

initial "Somewhere, tiny claws are scuttling.",

before

[; Listen: "How intelligent they sound, for mere insects.";

Touch, Taste: "You wouldn’t want to. Really.";

Smell: "You can only smell your own fear.";

Attack: "They easily evade your flailing about in the dark.";

default: "The creatures evade you, chittering.";

],

each_turn [; StartDaemon(self);],

number 0,

daemon

[; if (location~=thedark) { self.number=0; StopDaemon(self); rtrue; }

switch(++(self.number))

{ 1: "^The scuttling draws a little nearer, and your breathing

grows loud and hoarse.";

2: "^The perspiration of terror runs off your brow. The

creatures are almost here!";

3: "^You feel a tickling at your extremities and kick outward,

228

Answers to exercises 38-41

shaking something chitinous off. Their sound alone

is a menacing rasp.";

4: deadflag=1;

"^Suddenly there is a tiny pain, of a hypodermic-sharp fang

at your calf. Almost at once your limbs go into spasm,

your shoulders and knee-joints lock, your tongue swells...";

}

];

•38 Either set a daemon to watch for the_time suddenly dropping, or put such a watch in the
game’s TimePasses routine.

•39 A minimal solution is as follows:

Constant SUNRISE 360; ! i.e., 6 am

Constant SUNSET 1140; ! i.e., 7 pm

Attribute outdoors; ! Give this to external locations

Attribute lit; ! And this to artificially lit ones

Global day_state = 2;

[TimePasses f obj;

if (the_time >= SUNRISE && the_time < SUNSET) f=1;

if (day_state == f) rfalse;

objectloop (obj)

{ if (obj has lit) give obj light;

if (obj has outdoors && obj hasnt lit)

{ if (f==0) give obj ~light; else give obj light;

}

}

if (day_state==2) { day_state = f; return; }

day_state = f; if (location hasnt outdoors) return;

if (f==1) "^The sun rises, illuminating the landscape!";

"^As the sun sets, the landscape is plunged into darkness.";

];

In the Initialise routine, set the time (using SetTime) and then call TimePasses to set all the
light attributes accordingly. Note that with this system, there’s no need to set light at all:
that’s automatic.

•40 Because you don’t know what order daemons will run in. A ‘fatigue’ daemon which makes
the player drop something might come after the ‘mid-air’ daemon has run for this turn. Whereas
each_turn happens after daemons and timers have run their course, and can fairly assume no
further movements will take place this turn.

•41 It would have to provide its own code to keep track of time, and it can do this by providing
a TimePasses() routine. Providing “time” or even “date” verbs to tell the player would also be
a good idea.

229

Answers to exercises 42-46

•42 Two reasons. Firstly, there are times when we want to be able to trap orders to other people,
which react_before does not. Secondly, the player’s react_before rule is not necessarily the
first to react. In the case of the player’s deafness, a cuckoo may have already used react_before

to sing. But it would have been safe to use GamePreRoutine, if a little untidy (because a rule
about the player would not be part of the player’s definition, which makes for confusing source
code). See §9 for the exact sequence of events when actions are processed.

•43

orders

[; if (gasmask hasnt worn) rfalse;

if (actor==self && action~=##Answer or ##Tell or ##Ask) rfalse;

"Your speech is muffled into silence by the gas mask.";

],

•44 The common man’s wayhel was a lowly mouse. Since we think much more highly of the
player:

Object hog "Warthog" Caldera

with name "wart" "hog" "warthog", description "Muddy and grunting.",

number 0,

initial "A warthog snuffles and grunts about in the ash.",

orders

[; Go, Look, Examine, Eat, Smell, Taste, Touch: rfalse;

default: "Warthogs can’t do anything as tricky as that!";

],

has animate proper;

and we just ChangePlayer(warthog);. Note that the same orders routine applies to the player-
as-human typing “warthog, listen” as to the player-as-warthog typing just “listen”.

•45

orders

[; if (player==self)

{ if (actor~=self)

"You only become tongue-tied and gabble.";

rfalse;

}

Attack: "The Giant looks at you with doleful eyes.

~Me not be so bad!~";

default: "The Giant is unable to comprehend your instructions.";

],

•46 Give the “chessboard” room a short_name routine (it probably already has one, to print
names like “Chessboard d6”) and make it change the short name to “the gigantic Chessboard” if
and only if action is currently set to ##Places.

230

Answers to exercises 47-51

•47 Put the following definition between inclusion of “Parser” and “Verblib”:

Object LibraryMessages

with before

[; Prompt: if (turns==1)

print "What should you, the detective, do now?^>";

else

print "What next?^>";

rtrue;

];

•48 See the Inform Translator’s Manual. One must provide a new grammar file (generating the
same actions but from different syntax), tables showing how pronouns, possessives and articles
work in the new language, a sheaf of translated library messages and so on. But it can be done.

•49 Simply define the following (for accusative, nominative and capitalised nominative pronouns,
respectively):

[PronounAcc i;

if (i hasnt animate) print "it";

else { if (i has female) print "her"; else print "him"; }];

[PronounNom i;

if (i hasnt animate) print "it";

else { if (i has female) print "she"; else print "he"; }];

[CPronounNom i;

if (i hasnt animate) print "It";

else { if (i has female) print "She"; else print "He"; }];

•50 Use the invent routine to signal to short_name and article routines to change their usual
habits:

invent

[; if (inventory_stage==1) give self general;

else give self ~general;

],

short_name

[; if (self has general) { print "box"; rtrue; }],

article

[; if (self has general) { print "that hateful"; rtrue; }

else print "a";],

•51 This answer is cheating, as it needs to know about the library’s lookmode variable (set to 1
for normal, 2 for verbose or 3 for superbrief). Simply include:

[TimePasses;

if (action~=##Look && lookmode==2) <Look>;

];

231

Answers to exercises 52-53

•52

[DoubleInvSub i count1 count2;

print "You are carrying ";

objectloop (i in player)

{ if (i hasnt worn) { give i workflag; count1++; }

else { give i ~workflag; count2++; }

}

if (count1==0) print "nothing.";

else

WriteListFrom(child(player),

FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT + WORKFLAG_BIT);

if (count2==0) ".";

print ". In addition, you are wearing ";

objectloop (i in player)

{ if (i hasnt worn) give i ~workflag; else give i workflag;

}

WriteListFrom(child(player),

ENGLISH_BIT + RECURSE_BIT + WORKFLAG_BIT);

".";

];

•53

Class Letter

with list_together

[; if (inventory_stage==1)

{ print "the letters ";

if (~~(c_style & ENGLISH_BIT)) c_style = c_style + ENGLISH_BIT;

if (~~(c_style & NOARTICLE_BIT)) c_style = c_style + NOARTICLE_BIT;

if (c_style & NEWLINE_BIT) c_style = c_style - NEWLINE_BIT;

if (c_style & INDENT_BIT) c_style = c_style - INDENT_BIT;

}

else print " from a Scrabble set";

],

short_name

[; if (listing_together ofclass Letter) rfalse;

print "letter ", (object) self, " from a Scrabble set"; rtrue;

],

article "the";

and then as many letters as desired, along the lines of

Letter -> "X" with name "x";

232

Answers to exercises 54-55

•54

Class Coin

with name "coin" "coins//p",

description "A round unstamped disc, presumably local currency.",

list_together "coins",

plural

[; print (string) (self.&name)-->0;

if (~~(listing_together ofclass Coin)) print " coins";

],

short_name

[; if (listing_together ofclass Coin)

{ print (string) (self.&name)-->0; rtrue; }

],

article

[; if (listing_together ofclass Coin) print "one"; else print "a";

];

Class Gold_coin class Coin with name "gold";

Class Silver_coin class Coin with name "silver";

Class Bronze_coin class Coin with name "bronze";

SilverCoin -> "silver coin";

... and so on

•55 Firstly, a printing rule to print the state of coins. Coin-objects will have a property called
way_up which is always either 1 or 2:

[Face x; if (x.way_up==1) print "Heads"; else print "Tails";];

There are two kinds of coin but we’ll implement them with three classes: Coin and two sub-
categories, GoldCoin and SilverCoin. Since the coins only join up into trigrams when present in
groups of three, we need a routine to detect this:

[CoinsTogether cla i x y;

objectloop (i ofclass cla)

{ x=parent(i);

if (y==0) y=x; else { if (x~=y) return 0; }

}

return y;

];

Thus CoinsTogether(cla) decides whether all objects of class cla are in the same place. (cla
will always be either GoldCoin or SilverCoin.) We must now write the class definitions:

Class Coin

with name "coin" "coins//p",

way_up 1, article "the",

after

[; Drop, PutOn:

self.way_up = random(2); print (Face) self;

if (CoinsTogether(self.which_class))

233

Answer to exercise 55

{ print ". The ";

if (self.which_class == GoldCoin)

print "gold"; else print "silver";

" trigram is now ", (Trigram) self.which_class;

}

".";

];

[CoinLT k i c;

if (inventory_stage==1)

{ if (self.which_class == GoldCoin)

print "the gold"; else print "the silver";

print " coins ";

k=CoinsTogether(self.which_class);

if (k==location k has supporter)

{ objectloop (i ofclass self.which_class)

{ print (name) i;

switch(++c)

{ 1: print ", "; 2: print " and ";

3: print " (showing the trigram ",

(Trigram) self.which_class, ")";

}

}

rtrue;

}

if (~~(c_style & ENGLISH_BIT)) c_style = c_style + ENGLISH_BIT;

if (~~(c_style & NOARTICLE_BIT)) c_style = c_style + NOARTICLE_BIT;

if (c_style & NEWLINE_BIT) c_style = c_style - NEWLINE_BIT;

if (c_style & INDENT_BIT) c_style = c_style - INDENT_BIT;

}

rfalse;

];

Class GoldCoin class Coin

with name "gold", which_class GoldCoin,

list_together [; return CoinLT();];

Class SilverCoin class Coin

with name "silver", which_class SilverCoin,

list_together [; return CoinLT();];

(There are two unusual points here. Firstly, the CoinsLT routine is not simply given as the common
list_together value in the coin class since, if it were, all six coins would be grouped together:
we want two groups of three, so the gold and silver coins have to have different list_together

values. Secondly, if a trigram is together and on the floor, it is not good enough to simply append
text like “showing Tails, Heads, Heads (change)” at inventory_stage 2 since the coins may be
listed in a funny order: for example, in the order snake, robin, bison. In that event, the order the
coins are listed in doesn’t correspond to the order their values are listed in, which is misleading.
So instead CoinsLT takes over entirely at inventory_stage 1 and prints out the list of three itself,
returning true to stop the list from being printed out by the library as well.) To resume: whenever

234

Answers to exercises 56-57

coins are listed together, they are grouped into gold and silver. Whenever trigrams are visible
they are to be described by either Trigram(GoldClass) or Trigram(SilverClass):

Array gold_trigrams --> "fortune" "change" "river flowing" "chance"

"immutability" "six stones in a circle"

"grace" "divine assistance";

Array silver_trigrams --> "happiness" "sadness" "ambition" "grief"

"glory" "charm" "sweetness of nature"

"the countenance of the Hooded Man";

[Trigram cla i k state;

objectloop (i ofclass cla)

{ print (Face) i; if (k++<2) print ","; print " ";

state=state*2 + (i.way_up-1);

}

if (cla == GoldCoin) i=gold_trigrams; else i=silver_trigrams;

print "(", (string) i-->state, ")";

];

(These interpretations of the coins are quite bogus.) Finally, we have to make the six actual coins:

GoldCoin -> "goat" with name "goat";

GoldCoin -> "deer" with name "deer";

GoldCoin -> "chicken" with name "chicken";

SilverCoin -> "robin" with name "robin";

SilverCoin -> "snake" with name "snake";

SilverCoin -> "bison" with name "bison";

•56

parse_name

[i j w; if (self has general) j=’red’; else j=’green’;

w=NextWord();

while (w==j or ’fried’)

{ w=NextWord(); i++;

}

if (w==’tomato’) return i+1;

return 0;

],

•57

Object -> "/?%?/ (the artiste formally known as Princess)"

with name "princess" "artiste" "formally" "known" "as",

short_name

[; if (self hasnt general) { print "Princess"; rtrue; }

],

react_before

[; Listen: print_ret (name) self, " sings a soft siren song.";

],

235

Answer to exercise 58

initial

[; print_ret (name) self, " is singing softly.";

],

parse_name

[x n; if (self hasnt general)

{ if (NextWord()==’princess’) return 1;

return 0;

}

x=WordAddress(wn);

if (x->0 == ’/’ && x->1 == ’?’ && x->2 == ’%’

&& x->3 == ’?’ && x->4 == ’/’)

{ while (wn<=parse->1 && WordAddress(wn++)<x+5) n++;

return n;

}

return -1;

],

life

[; Kiss: give self general; self.life = NULL;

"In a fairy-tale transformation, the Princess

steps back and astonishes the world by announcing

that she will henceforth be known as ~/?%?/~.";

],

has animate proper female;

•58 Something to note here is that the button can’t be called just “coffee” when the player’s
holding a cup of coffee: this means the game responds sensibly to the sequence “press coffee” and
“drink coffee”. Also note the way itobj is set to the delivered drink, so that “drink it” works
nicely.

Object -> drinksmat "drinks machine",

with name "drinks" "machine",

initial

"A drinks machine here has buttons for Cola, Coffee and Tea.",

has static;

Object -> thebutton "drinks machine button"

has scenery

with parse_name

[i flag type;

for (: flag == 0: i++)

{ flag = 1;

switch(NextWord())

{ ’button’, ’for’: flag = 0;

’coffee’: if (type == 0) { flag = 0; type = 1; }

’tea’: if (type == 0) { flag = 0; type = 2; }

’cola’: if (type == 0) { flag = 0; type = 3; }

}

}

if (type==drink.number && i==2 && type~=0 && drink in player)

236

Answer to exercise 59

return 0;

self.number=type; return i-1;

],

number 0,

before

[; Push, SwitchOn:

if (self.number == 0)

"You’ll have to say which button to press.";

if (parent(drink) ~= 0) "The machine’s broken down.";

drink.number = self.number; move drink to player; itobj = drink;

print_ret "Whirr! The machine puts ", (a) drink, " into your \

glad hands.";

Attack: "The machine shudders and squirts cola at you.";

Drink: "You can’t drink until you’ve worked the machine.";

];

Object drink "drink"

with parse_name

[i flag type;

for (: flag == 0: i++)

{ flag = 1;

switch(NextWord())

{ ’drink’, ’cup’, ’of’: flag = 0;

’coffee’: if (type == 0) { flag = 0; type = 1; }

’tea’: if (type == 0) { flag = 0; type = 2; }

’cola’: if (type == 0) { flag = 0; type = 3; }

}

}

if (type ~= 0 && type ~= self.number) return 0;

return i-1;

],

short_name

[; print "cup of ";

switch (self.number)

{ 1: print "coffee"; 2: print "tea"; 3: print "cola"; }

rtrue;

],

number 0,

before

[; Drink: remove self;

"Ugh, that was awful. You crumple the cup and responsibly \

dispose of it.";

];

•59 Create a new property adjective, and move names which are adjectives to it: for instance,

name "tomato" "vegetable", adjective ’fried’ ’green’ ’cooked’,

237

Answers to exercises 60-63

(Recall that dictionary words can only be written in " quotes for the name property.) Then (using
the same IsAWordIn routine),

[ParseNoun obj n m;

while (IsAWordIn(NextWord(),obj,adjective) == 1) n++; wn--;

while (IsAWordIn(NextWord(),obj,noun) == 1) m++;

if (m==0) return 0; return n+m;

];

•60

[ParseNoun obj;

if (NextWord() == ’object’ && TryNumber(wn) == obj) return 2;

wn--; return -1;

];

•61

[ParseNoun;

if (WordLength(wn)==1 && WordAddress(wn)->0 == ’#’) return 1;

return -1;

];

•62

[ParseNoun;

if (WordLength(wn)==1 && WordAddress(wn)->0 == ’#’) return 1;

if (WordLength(wn)==1 && WordAddress(wn)->0 == ’*’)

{ parser_action = ##PluralFound; return 1; }

return -1;

];

•63 The trick is to convert “fly in amber” into “fly fly amber” (a harmless name) before the
parser gets under way.

[BeforeParsing i j;

for (i=parse->1,j=2:j<i:j++)

{ wn=j-1;

if (NextWord()==’fly’ && NextWord()==’in’ && NextWord()==’amber’)

parse-->(j*2-1) = ’fly’;

}

];

238

Answers to exercises 64-66

•64

Global c_warned = false;

Class Cherub

with parse_name

[i j flag;

for (flag=true:flag:flag=false)

{ j=NextWord();

if (j==’cherub’ or j==self.name) flag=true;

if (j==’cherubs’ && (~~c_warned))

{ c_warned=true;

parser_action=##PluralFound; flag=true;

print "(I’ll let this go once, but the plural of cherub is cherubim.)^";

}

if (j==’cherubim’)

{ parser_action=##PluralFound; flag=true; }

i++;

}

return i-1;

];

Then again, Shakespeare even wrote “cherubins” in ‘Twelfth Night’, so who are we to censure?

•65 Because the parser might go on to reject the line it’s working on: for instance, if the player
typed “shazam splurge” then the message “Shazam!” followed by a parser complaint will be
somewhat unedifying.

•66 The scheme will work like this: any room that ought to have a name should have a
place_name property set to a dictionary word; say, the Bedquilt cave could be called ’bedquilt’.
Clearly you should only be allowed to type this from adjacent rooms. So we’ll implement the
following: you can only move by name to those rooms listed in the current room’s to_places

property. For instance, the Soft Room might have to_places set to

to_places Bedquilt Slab_Room Twopit_Room;

Now the code: if the player’s verb is not otherwise understood, we’ll check it to see if it’s a place
name of a nearby room, and if so store that room’s object number in goto_room, converting the
verb to ’go#room’ (which we’ll deal with below).

Global goto_room;

[UnknownVerb word p i;

p = location.&to_places; if (p==0) rfalse;

for (i=0:(2*i)<location.#to_places:i++)

if (word==(p-->i).place_name)

{ goto_room = p-->i; return ’go#room’;

}

rfalse;

];

[PrintVerb word;

if (word==’go#room’)

{ print "go to ", (name) goto_room; rtrue; }

rfalse;

];

239

Answers to exercises 67-68

(The supplied PrintVerb is icing on the cake: so the parser can say something like “I only
understood you as far as wanting to go to Bedquilt.” in reply to, say, “bedquilt the nugget”.) It
remains only to create the dummy verb:

[GoRoomSub;

if (goto_room hasnt visited) "But you have never been there.";

PlayerTo(goto_room);

];

Verb "go#room" * -> GoRoom;

Note that if you don’t know the way, you can’t go there! A purist might prefer instead to not
recognise the name of an unvisited room, back at the UnknownVerb stage, to avoid the player being
able to deduce names of nearby rooms from this ‘error message’.

•67

Object -> genies_lamp "brass lamp"

with name "brass" "lamp",

before

[; Rub: if (self hasnt general) give self general;

else give self ~general;

"A genie appears from the lamp, declaring:^^

~Mischief is my sole delight:^

If white means black, black means white!~^^

She vanishes away with a vulgar wink.";

];

Object -> white_stone "white stone" with name "white" "stone";

Object -> black_stone "black stone" with name "black" "stone";

...

[BeforeParsing;

if (genies_lamp hasnt general) return;

for (wn=1::)

{ switch(NextWordStopped())

{ ’white’: parse->(wn*2-3) = ’black’;

’black’: parse->(wn*2-3) = ’white’;

-1: return;

}

}

];

•68

Constant MAX_FOOTNOTES 10;

Array footnotes_seen -> MAX_FOOTNOTES;

Global footnote_count;

[Note n i pn;

for (i=0:i<footnote_count:i++)

if (n==footnotes_seen->i) pn=i;

if (footnote_count==MAX_FOOTNOTES) "** MAX_FOOTNOTES exceeded! **";

240

Answers to exercises 69-70

if (pn==0) { pn=footnote_count++; footnotes_seen->pn=n; }

print " [",pn+1,"]";

];

[FootnoteSub n;

if (noun>footnote_count)

"No footnote [", noun, "] has been mentioned.";

if (noun==0) "Footnotes count upward from 1.";

n=footnotes_seen->(noun-1);

print "[",noun,"] ";

switch(n)

{ 0: "This is a footnote.";

1: "D.G.REG.F.D is inscribed around English coins.";

2: "~Jackdaws love my big sphinx of quartz~, for example.";

}

];

Verb "footnote" "note" * number -> Footnote;

And then you can code, for instance,

print "Her claim to the throne is in every pocket ", (Note) 1,

", her portrait in every wallet.";

•69 The general parsing routine needed is:

[FrenchNumber n;

switch(NextWord())

{ ’un’, ’une’: n=1;

’deux’: n=2;

’trois’: n=3;

’quatre’: n=4;

’cinq’: n=5;

default: return -1;

}

parsed_number = n; return 1;

];

•70 First we must decide how to store floating-point numbers internally: in this case we’ll simply
store 100x to represent x, so that “5.46” will be parsed as 546.

[DigitNumber n type x;

x = NextWordStopped(); if (x==-1) return -1; wn--;

if (type==0)

{ x = WordAddress(wn);

if (x->n>=’0’ && x->n<=’9’) return (x->n) - ’0’;

return -1;

}

if (x==’nought’ or ’oh’) { wn++; return 0; }

x = TryNumber(wn++); if (x==-1000 x>=10) x=-1; return x;

241

Answer to exercise 71

];

[FloatingPoint a x b w d1 d2 d3 type;

a = TryNumber(wn++);

if (a==-1000) return -1;

w = NextWordStopped(wn); if (w==-1) return a*100;

x = NextWordStopped(wn); if (x==-1) return -1; wn--;

if (w==’point’) type=1;

else

{ if (WordAddress(wn-1)->0~=’.’ WordLength(wn-1)~=1)

return -1;

}

d1 = DigitNumber(0,type);

if (d1==-1) return -1;

d2 = DigitNumber(1,type); d3 = DigitNumber(2,type);

b=d1*10; if (d2>=0) b=b+d2; else d3=0;

if (type==1)

{ x=1; while (DigitNumber(x,type)>=0) x++; wn--;

}

else wn++;

parsed_number = a*100 + b;

if (d3>=5) parsed_number++;

return 1;

];

•71 Again, the first question is how to store the number dialled: in this case, into a string

array. The token is:

Constant MAX_PHONE_LENGTH = 30;

Array dialled_number string MAX_PHONE_LENGTH;

[PhoneNumber f a l ch pp i;

pp=1; if (NextWordStopped()==-1) return 0;

do

{ a=WordAddress(wn-1); l=WordLength(wn-1);

for (i=0:i<l:i++)

{ ch=a->i;

if (ch<’0’ ch>’9’)

{ if (ch~=’-’) { f=1; if (i~=0) return -1; } }

else

{ if (pp<MAX_PHONE_LENGTH)

dialled_number->(pp++)=ch-’0’;

}

}

} until (f==1 NextWordStopped()==-1);

if (pp==1) return -1;

dialled_number->0 = pp-1;

return 0;

];

242

Answer to exercise 72

To demonstrate this in use,

[DialPhoneSub i;

print "You dialled <";

for (i=1:i<=dialled_number->0:i++) print dialled_number->i;

">";

];

Verb "dial" * PhoneNumber -> DialPhone;

•72 The time of day will be returned as a number in the usual Inform time format: as hours
times 60 plus minutes (on the 24-hour clock, so that the ‘hour’ part is between 0 and 23).

Constant TWELVE_HOURS = 720;

[NumericTime hr mn word x;

if (hr>=24) return -1;

if (mn>=60) return -1;

x=hr*60+mn; if (hr>=13) return x;

x=x%TWELVE_HOURS; if (word==’pm’) x=x+TWELVE_HOURS;

if (word~=’am’ or ’pm’ && hr==12) x=x+TWELVE_HOURS;

return x;

];

[MyTryNumber wordnum i j;

i=wn; wn=wordnum; j=NextWordStopped(); wn=i;

switch(j)

{ ’twenty-five’: return 25;

’thirty’: return 30;

default: return TryNumber(wordnum);

}

];

[TimeOfDay i j k flag loop ch hr mn;

i=NextWord();

switch(i)

{ ’midnight’: parsed_number=0; return 1;

’midday’, ’noon’: parsed_number=TWELVE_HOURS; return 1;

}

! Next try the format 12:02

j=WordAddress(wn-1); k=WordLength(wn-1);

flag=0;

for (loop=0:loop<k:loop++)

{ ch=j->loop;

if (ch==’:’ && flag==0 && loop~=0 && loop~=k-1) flag=1;

else { if (ch<’0’) flag=-1; if (ch>’9’) flag=-1; }

}

if (k<3) flag=0; if (k>5) flag=0;

if (flag==1)

{ for (loop=0:j->loop~=’:’:loop++, hr=hr*10)

hr=hr+j->loop-’0’;

hr=hr/10;

243

Answer to exercise 73

for (loop++:loop<k:loop++, mn=mn*10)

mn=mn+j->loop-’0’;

mn=mn/10;

j=NextWordStopped();

parsed_number=NumericTime(hr, mn, j);

if (parsed_number<0) return -1;

if (j~=’pm’ or ’am’) wn--;

return 1;

}

! Next the format "half past 12"

j=-1; if (i==’half’) j=30; if (i==’quarter’) j=15;

if (j<0) j=MyTryNumber(wn-1); if (j<0) return -1;

if (j>=60) return -1;

k=NextWordStopped();

if (k==-1)

{ hr=j; if (hr>12) return -1; jump TimeFound; }

if (k==’o^clock’ or ’am’ or ’pm’)

{ hr=j; if (hr>12) return -1; jump TimeFound; }

if (k==’to’ or ’past’)

{ mn=j; hr=MyTryNumber(wn);

if (hr<=0)

{ switch(NextWordStopped())

{ ’noon’, ’midday’: hr=12;

’midnight’: hr=0;

default: return -1;

}

}

if (hr>=13) return -1;

if (k==’to’) { mn=60-mn; hr=hr-1; if (hr==-1) hr=23; }

wn++; k=NextWordStopped();

jump TimeFound;

}

hr=j; mn=MyTryNumber(--wn);

if (mn<0) return -1; if (mn>=60) return -1;

wn++; k=NextWordStopped();

.TimeFound;

parsed_number = NumericTime(hr, mn, k);

if (parsed_number<0) return -1;

if (k~=’pm’ or ’am’ or ’o^clock’) wn--;

return 1;

];

•73 Here goes: we could implement the buttons with five separate objects, essentially duplicates
of each other. (And by using a class definition, this wouldn’t look too bad.) But if there were 500
slides this would be less reasonable.

[ASlide w n;

if (location~=Machine_Room) return -1;

244

Answers to exercises 74-75

w=NextWord(); if (w==’slide’) w=NextWord();

switch(w)

{ ’first’, ’one’: n=1;

’second’, ’two’: n=2;

’third’, ’three’: n=3;

’fourth’, ’four’: n=4;

’fifth’, ’five’: n=5;

default: return -1; ! Failure!

}

w=NextWord(); if (w~=’slide’) wn--; ! (Leaving word counter at the

! first misunderstood word)

parsed_number=n;

return 1; ! Success!

];

Global slide_settings --> 5; ! A five-word array

[SetSlideSub;

slide_settings-->(noun-1) = second;

print_ret "You set slide ", (number) noun,

" to the value ", second, ".";

];

[XSlideSub;

print_ret "Slide ", (number) noun, " currently stands at ",

slide_settings-->(noun-1), ".";

];

Extend "set" first

* ASlide "to" number -> SetSlide;

Extend "push" first

* ASlide "to" number -> SetSlide;

Extend "examine" first

* ASlide -> XSlide;

•74 (See the Parser file.) NextWord roughly returns parse-->(w*2-1) (but it worries a bit about
commas and full stops).

[WordAddress w; return buffer + parse->(w*4+1);];

[WordLength w; return parse->(w*4);];

•75 (Cf. the blackboard code in ‘Toyshop’.)

Global from_char; Global to_char;

[QuotedText i j f;

i = parse->((++wn)*4-3);

if (buffer->i==’"’)

{ for (j=i+1:j<=(buffer->1)+1:j++)

if (buffer->j==’"’) f=j;

if (f==0) return -1;

from_char = i+1; to_char=f-1;

245

Answers to exercises 76-80

if (from_char>to_char) return -1;

while (f> (parse->(wn*4-3))) wn++; wn++;

return 0;

}

return -1;

];

Note that in the case of success, the word marker wn is moved beyond the last word accepted (since
the Z-machine automatically tokenises a double-quote as a single word). The text is treated as
though it were a preposition, and the positions where the quoted text starts and finishes in the
raw text buffer are recorded, so that an action routine can easily extract the text and use it
later. (Note that "" with no text inside is not matched by this routine but only because the last
if statement throws out that one case.)

•76

[NeverMatch; return -1;];

•77 Perhaps to arrange better error messages when the text has failed all the ‘real’ grammar
lines of a verb (see ‘Encyclopaedia Frobozzica’ for an example).

•78 (See the NounDomain specification in §A9.) This routine passes on any REPARSE_CODE, as it
must, but keeps a matched object in its own third variable, returning the ‘skip this text’ code to
the parser. Thus the parser never sees any third parameter.

Global third;

[ThirdNoun x;

x=NounDomain(player,location,0);

if (x==REPARSE_CODE) return x; if (x==0) return -1; third = x;

return 0;

];

•79

Global scope_count;

[PrintIt obj; print_ret ++scope_count, ": ", (a) obj, " (", obj, ")";];

[ScopeSub; LoopOverScope(PrintIt);

if (scope_count==0) "Nothing is in scope.";

];

Verb meta "scope" * -> Scope;

•80

[MegaExam obj; print "^", (a) obj, ": "; <Examine obj>;];

[MegaLookSub; <Look>; LoopOverScope(MegaExam);];

Verb meta "megalook" * -> MegaLook;

246

Answers to exercises 81-82

•81 A slight refinement of such a “purloin” verb is already defined in the library (if the constant
DEBUG is defined), so there’s no need. But here’s how it could be done:

[Anything i;

if (scope_stage==1) rfalse;

if (scope_stage==2)

{ objectloop (i ofclass Object) PlaceInScope(i); rtrue; }

"No such in game.";

];

(This disallows multiple matches for efficiency reasons – the parser has enough work to do with
such a huge scope definition as it is.) Now the token scope=Anything will match anything at all,
even things like the abstract concept of ‘east’.

•82 Note the sneaky way looking through the window is implemented, and that the ‘on the other
side’ part of the room description isn’t printed in that case.

Property far_side;

Class Window_Room

with description

"This is one end of a long east/west room.",

before

[; Examine, Search: ;

default:

if (inp1~=1 && noun~=0 && noun in self.far_side)

print_ret (The) noun, " is on the far side of

the glass.";

if (inp2~=1 && second~=0 && second in self.far_side)

print_ret (The) second, " is on the far side of

the glass.";

],

after

[; Look:

if (ggw has general) rfalse;

print "^The room is divided by a great glass window";

if (location.far_side hasnt light) " onto darkness.";

print ", stretching from floor to ceiling.^";

if (Locale(location.far_side,

"Beyond the glass you can see",

"Beyond the glass you can also see")~=0) ".";

],

has light;

Window_Room window_w "West of Window"

with far_side window_e;

Window_Room window_e "East of Window"

with far_side window_w;

Object ggw "great glass window"

with name "great" "glass" "window",

before

247

Answer to exercise 83

[place; Examine, Search: place=location;

if (place.far_side hasnt light)

"The other side is dark.";

give self general;

PlayerTo(place.far_side,1); <Look>; PlayerTo(place,1);

give self ~general;

give place.far_side ~visited; rtrue;

],

found_in window_w window_e,

has scenery;

A few words about inp1 and inp2 are in order. noun and second can hold either objects or
numbers, and it’s sometimes useful to know which. inp1 is equal to noun if that’s an object, or 1
if that’s a number; likewise for inp2 and second. (In this case we’re just being careful that the
action SetTo eggtimer 35 wouldn’t be stopped if object 35 happened to be on the other side of
the glass.) We also need:

[InScope actor;

if (actor in window_w && window_e has light) ScopeWithin(window_e);

if (actor in window_e && window_w has light) ScopeWithin(window_w);

rfalse;

];

•83 For good measure, we’ll combine this with the previous rule about moved objects being in
scope in the dark. The following can be inserted into the ‘Shell’ game:

Object coal "dull coal" Blank_Room

with name "dull" "coal";

Object Dark_Room "Dark Room"

with description "An empty room with a west exit.",

each_turn

[; if (self has general) self.each_turn=0;

else "^You hear the breathing of a dwarf.";

],

w_to Blank_Room;

Object -> light_switch "light switch"

with name "light" "switch",

initial "On one wall is the light switch.",

after

[; SwitchOn: give Dark_Room light;

SwitchOff: give Dark_Room ~light;

],

has switchable static;

Object -> diamond "shiny diamond"

with name "shiny" "diamond"

has scored;

Object -> dwarf "dwarf"

with name "voice" "dwarf",

life

248

Answer to exercise 84

[; Order: if (action==##SwitchOn && noun==light_switch)

{ give Dark_Room light general;

give light_switch on; "~Right you are, squire.~";

}

],

has animate;

[InScope person i;

if (parent(person)==Dark_Room)

{ if (person==dwarf Dark_Room has general)

PlaceInScope(light_switch);

}

if (person==player && location==thedark)

objectloop (i near player)

if (i has moved i==dwarf)

PlaceInScope(i);

rfalse;

];

Note that the routine puts the light switch in scope for the dwarf – if it didn’t, the dwarf would
not be able to understand “dwarf, turn light on”, and that was the whole point.

•84 In the Initialise routine, move newplay somewhere and ChangePlayer to it, where:

Object newplay "yourself"

with description "As good-looking as ever.", number 0,

add_to_scope nose,

capacity 5,

before

[; Inv: if (nose has general) print "You’re holding your nose. ";

Smell: if (nose has general)

"You can’t smell a thing with your nose held.";

],

has concealed animate proper transparent;

Object nose "nose"

with name "nose", article "your",

before

[; Take: if (self has general)

"You’re already holding your nose.";

if (children(player) > 1) "You haven’t a free hand.";

give self general; player.capacity=1;

"You hold your nose with your spare hand.";

Drop: if (self hasnt general) "But you weren’t holding it!";

give self ~general; player.capacity=5;

print "You release your nose and inhale again. ";

<<Smell>>;

],

has scenery;

249

Answers to exercises 85-86

•85

Object steriliser "sterilising machine"

with name "washing" "sterilising" "machine",

add_to_scope top_of_wm go_button,

before

[; PushDir: AllowPushDir(); rtrue;

Receive:

if (receive_action==##PutOn)

<<PutOn noun top_of_wm>>;

SwitchOn: <<Push go_button>>;

],

after

[; PushDir: "It’s hard work, but the steriliser does roll.";

],

initial

[; print "There is a sterilising machine on casters here (a kind of

chemist’s washing machine) with a ~go~ button. ";

if (children(top_of_wm)~=0)

{ print "On top";

WriteListFrom(child(top_of_wm), ISARE_BIT + ENGLISH_BIT);

print ". ";

}

if (children(self)~=0)

{ print "Inside";

WriteListFrom(child(self), ISARE_BIT + ENGLISH_BIT);

print ". ";

}

],

has static container open openable;

Object top_of_wm "top of the sterilising machine",

with article "the",

has static supporter;

Object go_button "~go~ button"

with name "go" "button",

before [; Push, SwitchOn: "The power is off.";],

has static;

•86 The label object itself is not too bad:

Object -> label "red sticky label"

with name "red" "sticky" "label",

number 0,

before

[; PutOn, Insert:

if (self.number~=0)

{ print "(first removing the label from ",

(the) self.number, ")^"; self.number=0; move self to player;

250

Answer to exercise 87

}

if (second==self) "That would only make a red mess.";

self.number=second; remove self;

print_ret "You affix the label to ", (the) second, ".";

],

react_after

[x; x=self.number; if (x==0) rfalse;

Look: if (x in location)

print "^The red sticky label is stuck to ", (the) x, ".^";

Inv: if (x in player)

print "^The red sticky label is stuck to ", (the) x, ".^";

],

each_turn

[; if (parent(self)~=0) self.number=0;];

Note that label.number holds the object the label is stuck to, or 0 if it’s unstuck: and that when
it is stuck, it is removed from the object tree. It therefore has to be moved into scope, so we need
the rule: if the labelled object is in scope, then so is the label.

Global disable_self;

[InScope actor i1 i2;

if (label.number==0) rfalse; if (disable_self==1) rfalse;

disable_self=1;

i1 = TestScope(label, actor);

i2 = TestScope(label.number, actor);

disable_self=0;

if (i1~=0) rfalse;

if (i2~=0) PlaceInScope(label);

rfalse;

];

This routine has two interesting points: firstly, it disables itself while testing scope (since otherwise
the game would go into an endless recursion), and secondly it only puts the label in scope if it
isn’t already there. This is just a safety precaution to prevent the label reacting twice to actions
(and isn’t really necessary since the label can’t already be in scope, but is included for the sake
of example).

•87 Firstly, create an attribute is_key and give it to all the keys in the game. Then:

Global assumed_key;

[DefaultLockSub;

print "(with ", (the) assumed_key, ")^"; <<Lock noun assumed_key>>;

];

[DefaultLockTest i count;

if (noun hasnt lockable) rfalse;

objectloop (i in player)

if (i has is_key) { count++; assumed_key = i; }

if (count==1) rtrue; rfalse;

];

Extend "lock" first * noun = DefaultLockTest -> DefaultLock;

251

Answers to exercises 88-91

(and similar code for “unlock”). Note that “lock strongbox” is matched by this new grammar
line only if the player only has one key: the DefaultLock strongbox action is generated: which
is converted to, say, Lock strongbox brass_key.

•88

Array quote_done -> 50;

Global next_quote = -1;

[Quote i;

if (quote_done->i==0) { quote_done->i = 1; next_quote = i; }

];

[AfterPrompt;

switch(next_quote)

{ 0: box "His stride is wildernesses of freedom:"

"The world rolls under the long thrust of his heel."

"Over the cage floor the horizons come."

""

"-- Ted Hughes, ~The Jaguar~";

1: ...

}

next_quote = -1;

];

•89 Note the magic line of assembly code here, which only works for Advanced games:

[GiveHint hint keypress;

print (string) hint; new_line; new_line;

@read_char 1 0 0 keypress;

if (keypress == ’H’ or ’h’) rfalse;

rtrue;

];

And a typical menu item using it:

if (menu_item==1)

{ print "(Press ENTER to return to menu, or H for another hint.)^^";

if (GiveHint("(1/3) What kind of bird is it, exactly?")==1) return 2;

if (GiveHint("(2/3) Magpies are attracted by shiny items.")==1) return 2;

"(3/3) Wave at the magpie with the kitchen foil.";

}

•90 By encoding the character into a byte array and using @save and @restore. The numbers
in this array might contain the character’s name, rank and abilities, together with some coding
system to show what possessions the character has (a brass lamp, 50 feet of rope, etc.)

•91 Note that we wait for a space character (32) or either kind of new-line which typical ASCII
keyboards produce (10 or 13), just to be on the safe side:

[TitlePage i;

@erase_window -1; print "^^^^^^^^^^^^^";

252

Answers to exercises 92-93

i = 0->33; if (i==0) i=80; i=(i-50)/2;

style bold; font off; spaces(i);

print " RUINS^";

style roman; print "^^"; spaces(i);

print " [Please press SPACE to begin.]^";

font on;

box "And make your chronicle as rich with praise"

"As is the ooze and bottom of the sea"

"With sunken wreck and sumless treasures."

""

"-- William Shakespeare, ~Henry V~ I. ii. 163";

do { @read_char 1 0 0 i; } until (i==32 or 10 or 13);

@erase_window -1;

];

•92 First put the directive Replace DrawStatusLine; before including the library; define the
global variable invisible_status somewhere. Then give the following redefinition:

[DrawStatusLine i width posa posb;

if (invisible_status==1) return;

@split_window 1; @set_window 1; @set_cursor 1 1; style reverse;

width = 0->33; posa = width-26; posb = width-13;

spaces (width-1);

@set_cursor 1 2; PrintShortName(location);

if (width > 76)

{ @set_cursor 1 posa; print "Score: ", sline1;

@set_cursor 1 posb; print "Moves: ", sline2;

}

if (width > 63 && width <= 76)

{ @set_cursor 1 posb; print sline1, "/", sline2;

}

@set_cursor 1 1; style roman; @set_window 0;

];

•93 First put the directive Replace DrawStatusLine; before including the library. Then add
the following routine anywhere after treasures_found, an ‘Advent’ variable, is defined:

[DrawStatusLine;

@split_window 1; @set_window 1; @set_cursor 1 1; style reverse;

spaces (0->33)-1;

@set_cursor 1 2; PrintShortName(location);

if (treasures_found > 0)

{ @set_cursor 1 50; print "Treasure: ", treasures_found;

}

@set_cursor 1 1; style roman; @set_window 0;

];

253

Answers to exercises 94-95

•94 Replace with the following. (Note the use of @@92 as a string escape, to include a literal
backslash character, and @@124 for a vertical line.)

Constant U_POS 28; Constant W_POS 30; Constant C_POS 31;

Constant E_POS 32; Constant IN_POS 34;

[DrawStatusLine i;

@split_window 3; @set_window 1; style reverse; font off;

@set_cursor 1 1; spaces (0->33)-1;

@set_cursor 2 1; spaces (0->33)-1;

@set_cursor 3 1; spaces (0->33)-1;

@set_cursor 1 2; print (name) location;

@set_cursor 1 51; print "Score: ", sline1;

@set_cursor 1 64; print "Moves: ", sline2;

if (location ~= thedark)

{ ! First line

if (location.u_to ~= 0) { @set_cursor 1 U_POS; print "U"; }

if (location.nw_to ~= 0) { @set_cursor 1 W_POS; print "@@92"; }

if (location.n_to ~= 0) { @set_cursor 1 C_POS; print "@@124"; }

if (location.ne_to ~= 0) { @set_cursor 1 E_POS; print "/"; }

if (location.in_to ~= 0) { @set_cursor 1 IN_POS; print "I"; }

! Second line

if (location.w_to ~= 0) { @set_cursor 2 W_POS; print "-"; }

@set_cursor 2 C_POS; print "o";

if (location.e_to ~= 0) { @set_cursor 2 E_POS; print "-"; }

! Third line

if (location.d_to ~= 0) { @set_cursor 3 U_POS; print "D"; }

if (location.sw_to ~= 0) { @set_cursor 3 W_POS; print "/"; }

if (location.s_to ~= 0) { @set_cursor 3 C_POS; print "@@124"; }

if (location.se_to ~= 0) { @set_cursor 3 E_POS; print "@@92"; }

if (location.out_to ~= 0){ @set_cursor 3 IN_POS; print "O"; }

}

@set_cursor 1 1; style roman; @set_window 0; font on;

];

•95 The tricky part is working out the number of characters in the location name, and this is
where @output_stream is so useful. This time Replace with:

Array printed_text table 64;

[DrawStatusLine i j;

i = 0->33; if (i==0) i=80;

font off;

@split_window 1; @buffer_mode 0; @set_window 1;

style reverse; @set_cursor 1 1; spaces(i);

printed_text-->0 = 64;

@output_stream 3 printed_text;

print (name) location;

@output_stream -3;

j=(i-(printed_text-->0))/2;

254

Answer to exercise 96

@set_cursor 1 j; print (name) location; spaces(j-1);

style roman;

@buffer_mode 1; @set_window 0; font on;

];

Note that the table can hold 128 characters (plenty for this purpose), and that these are stored
in printed_text->2 to printed_text->129; the length printed is held in printed_text-->0.
(‘Trinity’ actually does this more crudely, storing away the width of each location name.)

•96 The following implementation is limited to a format string 2 × 64 = 128 characters long,
and six subsequent arguments. %d becomes a decimal number, %e an English one; %c a character,
%% a (single) percentage sign and %s a string.

Array printed_text table 64;

Array printf_vals --> 6;

[Printf format p1 p2 p3 p4 p5 p6 pc j k;

printf_vals-->0 = p1; printf_vals-->1 = p2; printf_vals-->2 = p3;

printf_vals-->3 = p4; printf_vals-->4 = p5; printf_vals-->5 = p6;

printed_text-->0 = 64; @output_stream 3 printed_text;

print (string) format; @output_stream -3;

j=printed_text-->0;

for (k=2:k<j+2:k++)

{ if (printed_text->k == ’%’)

{ switch(printed_text->(++k))

{ ’%’: print "%";

’c’: print (char) printf_vals-->pc++;

’d’: print printf_vals-->pc++;

’e’: print (number) printf_vals-->pc++;

’s’: print (string) printf_vals-->pc++;

default: print "<** Unknown printf escape **>";

}

}

else print (char) printed_text->k;

}

];

255

Index

*, 172.
++, 18.
--, 18.
-->, 38.
->, 153.
/, 157.
::, 57.
=, 16.
@, 32, 175.
@@, 175.

‘A Nasal Twinge’, 167, 249,
250.

‘A Scenic View’, 102.
Abbreviate, 75.
abbreviations, 72, 174.
absent, 187.
“abstract” verb, 171.
accented characters, 32.
accusative pronoun, 137, 231.
Ace of Hearts, 40.
‘Acheton’, 9.
Achieved, 196.
Achieved(task), 131.
Acorn Risc PC 700, 65.
acquisitive bag, 104, 216.
action to be, 152, 169.
actions, 92.

creation of, 95.
defined in Library, 198.
diversion of, 101.
groups of, 94.
how the parser chooses, 152.
in debugging suite, 198.
list of group 1, 198.
of the five senses, 101.
sequence of processing, 96.
statements to cause, 93.
validation (exercise), 97,

214.
“actions” verb, 171.
actor, 163.
actor, 152, 165.
acute accents, 32.

adaptive hints, 177.
add to scope, 105, 166, 190.
additive, 91.
(address), 34.
AddToScope, 196.
adjectives, 148, 237.
Advanced games, 173.
‘Advent’, 8, 73, 91, 97, 102,

105, 107, 108, 120, 122,
123, 126, 129, 155, 156,
172, 177, 181, 209, 253.

‘Adventureland’, 8, 105, 126,
142.

AEsop, 32.
after, 85, 100, 190.
AfterLife, 129, 203.
AfterPrompt, 176, 203.
AfterRoutines, 95.
alarm clock, 119, 222.
Aldebaran brandy, 119.
‘Alice Through The Looking-

–Glass’, 8, 91, 105, 111,
120, 148, 156.

‘Alice’, 8.
“all”, 169.
AllowPushDir, 110, 196.
altar, 109.
ambiguity, 169.
ambiguous inputs, 168.
Amusing, 203.
AMUSING PROVIDED, 130.
ancient honeycomb, 91.
Andrew Clover, 120, 126, 136,

161.
Andrew Plotkin, 181.
animals, 116.
animate, 137, 188.
Answer, 114.
appallingly convenient verb,

158.
archaeological dig, 125.
“Area 400”, 139.
@aread, 179.
arguments, 19.
arithmetic expressions, 16.
array bounds, 40.
array of names, 145.
arrays, 38.

arrays as property values, 50.
article, 138, 190.
articles, 191.
artiste formerly known as

Princess, 147, 235.
Arvo Pärt, 31.
Ask, 114.
asking questions, 164.
assembly language, 177.

tracing switches, 72.
assignments, 18.
associativity, 182.
at character, 175.
Attack, 114.
Attribute, 52, 69.
attribute, definition of, 52.
attributes, 85.

defined in library, 187.
maximum number of, 174.

audibility, 124.
autosearch, 190.
Aviary, 54.

background colour, 179.
background daemon, 123.
backslash character, 175.
bag of six coins, 149.
‘Balances’, 8, 91, 105, 111,

116, 120, 126, 129, 136,
142, 145, 148, 150, 151,
154, 156, 167, 169.

ball and chain, 228.
ball of pumice, 111, 218.
banana, 158.
base (of numbers), 14.
battery power, 108.
beach full of stones, 61.
before, 191.
BeforeParsing, 151, 203, 240.
Beretta pistol, 115.
“Beware of the Dog”, 176.
‘Beyond Zork’, 175.
Bible, 113, 218.
binary numbers, 14.
birds of prey, 54.
Bitwise operators, 19.
Black Forest gateau, 169.
“black” and “white”, 156, 240.

256

blackboard, 245.
Blake’s 7, 118, 224.
blindfold Adventure, 135.
Blofeld, Ernst Stavro, 115.
Blorple, 95.
blue liquid, 139.
boldface, 177.
Bond, James, 115.
Boris J. Parallelopiped, 68.
bounds of arrays, 40.
box, 30, 176.
brackets (arithmetic), 17.
brain transference machine,

128.
break, 25.
bridge which collapses, 107,

217.
“brief”, 198.
broth (smell of), 101.
buffer, 161, 246.
@buffer mode, 179.
built-in functions, 35.
byte arrays, 38.

c style, 144.
C. P. Snow, 121.
C. S. Lewis, 98, 123.
‘Café Inform’, 147.
caged animals, 159.
call, 60.
Cambridge University, 9.
campaigns and scenarios, 181,

252.
cannon-fire, 128.
cant go, 100, 191.
capacity, 103, 128, 191.
Captain Picard, 120, 225.
cartoon, 216.
carved inscriptions, 99.
case sensitivity, 34.
case sensitivity of dictionary,

146, 173.
catachrestic words, 145.
@catch, 180.
CDefArt, 196.
cedilla accents, 32.
“ceiling”, 196.
centred status line, 181, 254.

Chambers English Dictionary,
145.

ChangeDefault, 134, 196.
ChangePlayer, 128, 141, 196.
changing articles, 138.
changing library messages,

134.
changing room, 127.
changing scope, 165.
changing short names, 138.
changing the player, 128.
changing the prompt, 135, 231.
(char), 34.
character (in sense of text), 14.
character graphic, 175.
characters, 207.
Charlotte’s game, 118, 220.
chemical reaction, 138.
cherubim, 151, 239.
chessboard, 132, 230.
child, 46, 172.
children, 46, 172.
ChooseObjects, 169, 203.
‘Christminster’, 120.
circumflex accents, 32.
clapping game, 118, 220.
Class, 45, 53.
class, definition of, 45.

and additive properties, 91.
and subclasses, 91.
inheritance rules, 91.

clearing the screen, 179.
closing credits, 130.
clothing, 188.
clues, 176.
code blocks, 23.
coding mazes, 102.
coiled snake, 116.
coins (in I Ching trigrams),

145, 233.
coins (listed together), 145,

233.
‘Colossal Cave’, 155.
colours, 179.
command buffer, 146.
command line, 65.
command line syntax, 65.
comments, 11.

common properties, 62.
communications badge, 119,

223.
‘companion volumes’, 9.
compass, 102, 196.
compass rose, 181, 254.
compilation, 10.
compiler switches, 71.
component parts of objects,

166.
computer (voice-activated),

117, 220.
“computer, 143”, 114.
concealed, 141, 163, 188.
conditional compilation, 67.
conditions, 20.
conditions as values, 22.
Connie Booth, 175.
constant, 14.
Constant, 38.
consult from, 112.
consult words, 112.
container, 103, 188.
continue, 25.
copyright, 8.
copyright message, 84.
cow pie, 221.
crashing the interpreter, 171.
creating data structures, 37.
creating objects, 61.
creature token, 157.

crowns, 150.
Crowther and Woods, 156.
cubes of integers, 20.
cuckoo, 230.
cultural value, 90.
‘Curses’, 73, 128, 174, 230.
cursor keys, 180.

daemon, 123, 191.
daemons, 123.

clash with timers, 124.
maximum number active,

124.
running order, 229.
starting and stopping, 123.

Dalek, 95.
darkness, 121.

257

abolition of, 121.
affecting scope, 163.
changing scope within, 166,

248.
moving through, 122.
nightfall, 125, 229.
special object, 122.
when it occurs, 121.

DarkToDark, 122, 204.
dartboard, 96.
data structures, 36.
David M. Baggett, 129, 159.
David Seal, 9.
David Wagner, 102.
daylight, 125, 229.
deadflag, 86, 129.
deafness, a period of, 128.
death, 129.

and resurrection, 129.
DeathMessage, 129, 204.
DEBUG, 72, 170.
debugging, 170.

information file, 72, 171.
referring to objects by num-

ber, 148, 238.
suite of verbs, 171.
switches to help assembly

language debugging, 72.
tracing calls to every routine

in game, 72.
using Infix, 72, 171.

‘debugging code’, 172.
debugging suite actions, 198.
decimal numbers, 14.
decimal places, 160.
declared but not used, 13.
decrement, 18.
DefArt, 196.
Default, 67, 99.
defined constants, 38.
deleting objects, 61.
“delores, yes”, 116.
Dennis Spooner, 107.
describe, 108, 140, 141, 191.
description, 191.
desiccated priest, 115.
desktop (RISC OS), 65.
diaereses, 32.

dictionary, 207.
characters which can be part

of words in, 146.
maximum size of, 173.
resolution and case sensitiv-

ity, 173.
tokenisation using, 180.
untypeable words in, 146.

dictionary of Mayan glyphs,
113.

dictionary, as a data structure,
40.

directions, 99, 163.
compiling without the usual,

102.
direction objects, 102, 196,

215.
direction properties, 190.

directives, 37.
Array, 38.
Attribute, 52.
Class, 53.
Constant, 38.
Extend, 154.
Global, 38.
Object, 46.
Property, 63.
Release, 42.
Serial, 42.
summary table of, 185.
Verb, 153.

dirty tricks, 177.
disambiguation, 169, 251.
diverting actions, 101.
divided room, 166, 247.
division, 16.
division by zero, 17.
do, 25.
Doctor Who, 107.
DoMenu, 176, 196.
Don Woods, 9.
Donna Tartt, 92.
door, 105, 188.
door dir, 105, 106, 192.
door to, 105, 192.
doors, 105.

trapping movement through,
107.

two-way, 106.
Dorothy Parker, 176.
double inventory, 144, 232.
double spacing, 72.
double-quote, 246.
drawings, 175.
DrawStatusLine, 175, 253.
‘drunk player object’, 128.
dummy verb, 240.
dye, 138.
Dylan Thurston, 40.
dynamic memory allocation,

174.
Dyslexic Dan, 118, 221.

each turn, 124, 192.
EACHTURN REASON, 166.
Earl Grey tea, 119.
earshot, 124.
east lintel, 99.
eating edible things for prefer-

ence, 169.
eating worms, 49.
‘economy’ mode, 72.
edible, 188.
eight-foot pumice ball, 111,

218.
Elizabeth Eisenstein, 111.
else, 23.
Elsinore, 12.
embedded routines, 51.
“employ” verb, 158.
encapsulation, 44.
encapsulation, setting up, 51.
‘Enchanter’, 105.
‘Enchanter’ trilogy, 136.
@encode text, 180.
‘Encyclopaedia Frobozzica’,

113, 120, 246.
Endif, 67.
English verb words, 152.
EnglishNumber, 196.
Enter, 107.
enterable, 109, 188.
entry points, 203.
epigrams, 176.
@erase window, 179.
Ernst Stavro Blofeld, 115.

258

error, 74.

error messages, 13.

fatal errors, 74.

memory allocation, 73, 75.

error messages (list of), 74.

error numbers used by parser,
168.

escape character, 32.

escape characters, 175.

etype, 117.

“examine” v. “read”, 113.

exchanges of cards, 41.

exercises, 8.

“fly in amber”, 148, 238.

“lock” and “unlock” infer-
ring keys, 169, 251.

“megalook” verb, 163, 246.

“scope” verb, 163, 246.

acquisitive bag, 104, 216.

action validation, 97, 214.

alarm clock, 119, 222.

bearded psychiatrist, 116,
219.

before on second noun, 96,
214.

cage to open and enter, 109,
218.

car that won’t go east, 110,
218.

Charlotte playing Simon
Says, 118, 220.

Charlotte’s clapping game,
118, 220.

cherubim plural, 151, 239.

chessboard of rooms, 132,
230.

communications badge, 119,
223.

computer (voice-activated),
117, 220.

double inventory, 144, 232.

drinks machine, 147, 236.

dwarf breathing in dark,
166, 248.

Dyslexic Dan, 118, 221.

exchanging “east”/“west”,
102, 215.

extensions for one actor
only, 119, 221.

floating-point numbers, 160,
241.

footnotes, 159, 240.

genie muddling black and
white, 156, 240.

Giant with conscience, 129,
230.

glass and steel boxes, 104,
217.

I Ching coins, 145, 233.

implementing parser primi-
tives, 161, 245.

Invisiclues hints, 177, 252.

long time-scale game, 125,
229.

low numbers in French, 160,
241.

macramé bag, 105, 217.

Martha the telepath, 120,
225.

Mayan directions, 102, 215.

mid-air location, 125, 229.

midnight, 125, 229.

moving to a room by typing
its name, 156, 239.

mushroom picking, 87, 214.

nightfall and daybreak, 125,
229.

nose attached to player, 167,
249.

opening medicine bottle, 89,
214.

orange cloud surrounding
player, 102, 215.

ornate box (inventory in-
side), 140, 231.

parsing adjectives, 148, 237.

parsing any quoted text,
161, 245.

parsing times of day, 161,
243.

pet moth escapes in the
dark, 122, 226.

phone numbers, 160, 242.

Picard and Maharg, 120,
225.

plank bridge, 107, 217.

player reacting before, 128,
230.

printf routine, 181, 255.

printing pronouns, 137, 231.

pushing pumice ball uphill,
111, 218.

putting everything in scope,
165, 247.

quotations in boxes, 176,
252.

red sticky label, 167, 250.

referring to objects by num-
ber, 148, 238.

reflecting the map east-west,
102, 215.

removing conversation ac-
tions, 117, 219.

replicator, 119, 223.

room divided by glass win-
dow, 166, 247.

saving the character, 181,
252.

Scrabble pieces, 144, 232.

scuttling claws, 124, 228.

silencing player, 128, 230.

spaceship control panel, 161,
244.

status line invisible, 181,
253.

status line showing treasure,
181, 253.

status line with centred
room, 181, 254.

status line with compass
rose, 181, 254.

sterilising machine, 167, 250.

television set, 104, 216.

the artiste formerly known
as Princess, 147, 235.

the player’s wayhel, 129,
230.

thief who wanders, 123, 226.

third noun for parser, 162,
246.

three denominations of coin,
145, 233.

title page, 181, 252.

259

tokens which never match,
162, 246.

tomato in red or green, 147,
235.

tricorder, 119, 222.
troll afraid of the dark, 122,

226.
Tyndale’s Bible, 113, 218.
varying the prompt, 135,

231.
very verbose mode, 142, 231.
weight–watching daemon,

123, 227.
wild-card for a single object,

148, 238.
wild-card for multiple ob-

jects, 148, 238.
Zen flight computer, 119,

224.
exotic forms of death, 129.
expressions, 16.
Extend, 154.
extensions for one actor only,

119, 221.
extensions of the library, 133.
external program, 69.

factorials, 23.
Fake Action, 96.
fake actions, 150.

defined in library, 199.
fake fake actions, 119.
false, 14, 20.
“*”, 148, 238.
“#”, 148, 238.
Consult action, 111.
IsAWordIn (example), 148.
fatal error, 74.
fatigue daemon, 227.
Fawlty Towers, 175.
female, 138, 188.
filename translation, 65.
first, 155.
five senses, 101.
fixed-pitch font, 175.
flag variables, 22.
flexible verbs, 156.
flight computer, 118, 224.

floating objects, 127, 187.
floating-point numbers, 160,

241.
“floor”, 196.
fluorescent jellyfish, 122.
fly in amber, 148, 238.
‘focus’ of game, 128.
‘Follow my leader’, 120.
“follower.h”, 120.
font, 31, 175.
foodstuffs, 144.
footnotes, 159, 240.
for, 25.
foreground colour, 179.
foreign languages, 135.
formatted text, 179.
found in, 101, 127, 192.
four Gospels, 113, 218.
Frank Booth, 39.
Frankenstein, 128.
“free” verb, 159.
‘Freefall’, 181.
French numbers, 160, 241.
fried green tomato, 145.
Frotz, 177, 178.
ftp site, 8.

maximum number of, 174.
function keys, 180.
functions, 19.

child, 46.
children, 46.
indirect, 35.
metaclass, 46.
parent, 46.
random, 35.
sibling, 46.

functions, built-in, 35.
fuses, 124.

G. K. Chesterton, 137.
Game Over choice, 135.
game transcript, 176.
GamePostRoutine, 204.
GamePreRoutine, 96, 204.
Gareth Rees, 8, 113, 120, 137,

145.
gas mask, 128, 230.
gender in parsing, 138.

general, 85, 188.
general parsing routines, 160,

197.
genie, 156, 240.
gentleman thief, 123, 226.
Geoffrey’s book, 139.
George Bernard Shaw, 162.
German ‘sz’, 32.
giant magnet, 115.
Giant with a conscience, 129,

230.
girl playing Simon Says, 118,

220.
Give, 114.
glass box, 104.
glass window, 166, 247.

maximum number of, 174.
glue, 18.
glyphs, 112.
Go, 100, 110.
goldfish bowl, 122.
“gonear” verb, 171.
Gotham City, 107.
“goto” verb, 171.
Graham Nelson, 8.
grammar, 152.
Grammar, 83, 118, 192.

definition of verbs, 153.
extension of, 154.
limits on, 173.
lines of, 152.
replacement of, 155.
summary of rules about,

186.
tokens of, 156.

Grantland Rice, 130.
grave accents, 32.
grouping of non-identical items

in lists, 144.
groups of actions, 94.

group 1, 198.
group 2, 199.
group 3, 199.

grues, 164.
Gustave Flaubert, 10.

hacker and urchin, 116.
Hamlet, 12.

260

hanging elses, 24.
has, 52, 87.
‘has light’, 121.
HasLightSource, 121, 196.
heaps of food, 144.
hearing (sense), 101.
held token, 157.

Hello World, 11.
help information, 65.
herobj, 168.
hexadecimal numbers, 14.
hexadecimal, printing out, 34.
himobj, 168.
“his”, 137.
hissing snake, 116.
hole in wall, 148.
holy searchlight, 107.
home page, 8.
honeycomb, 91.
horrid sludge, 139.

I Ching, 145, 233.
IBM PC, ugliness of, 179.
Icelandic characters, 32.
ICL, 64.
identifiers, 15.
Ifdef, 67.
Iffalse, 67.
Ifndef, 67.
Ifnot, 67.
Iftrue, 67.
implicit taking, 158.
in scope, 162.
Include, 66.
increment, 18.
InDefArt, 196.
indefinite article, 138.
indexed variables, 38.
indirect, 35, 171.
‘indistinguishable’, 149.
individual properties, 62.
Infix, 72, 171.
“Infoclues”, 177.
Infocom, Inc., 9.
Inform Command Language

(ICL), 64.
Inform home page, 8, 136.
InfoTaskForce, 177.

inheritance, 52.

initial, 85, 127, 192.

initial possessions, 126.

Initialise, 84, 125, 126, 203,
204.

inp1, 93, 248.

inp2, 93, 248.

@input stream, 180.

InScope, 204, 226.

inside description, 109.

inside description, 192.

instances, 52.

internal text format, 180.

interpreter, 11.

interpreters, 177.

invent, 139, 193.

inventories, 139.

inventory stage, 139, 144.

inversion, 30.

invisible status line, 181, 253.

“Invisiclues”, 176, 177, 252.

irregular nouns, 191.

item name, 177.

item width, 177.

itobj, 168.

Ivan O. Ideas, 130.

jackdaws, 241.

James Bond, 115.

James Shirley, 92.

Japanese cartoon, 216.

Jean de la Bruyère, 126.

Jean Frederic Waldeck, 113.

Jekyll and Hyde, 69.

‘Jigsaw’, 73.

Joachim Baumann, 181.

John Christopher, 98.

John Cleese, 175.

John Donne, 9.

Jonathan Thackray, 9.

jump, 28.

“junior astronaut”, 204.

keep silent, 95.

kestrels, 54.

keyboard, 179.

keyboard buffer, 146.

keyboard input (direct access
to), 36.

King of Spades, 40.
Kiss, 114.
‘Knight of Ages’, 125.

label, red sticky, 167, 250.
676 labelled buttons, 154.
labels (in programs), 29.
lamp (of genie), 156, 240.
large memory, 73.
last, 155.
last resort, 135.
left/right associativity, 182.
legibility, 113.
LetGo, 104.
library routines, 196.
LibraryMessages, 97, 134.
life, 114, 193.
ligatures, 32.
light, 121.
light, 188.

daylight, 125, 229.
when it occurs, 121.

light switch, 166, 248.
limitations, 173.
line of sight, 124.
lines, 152.
Link, 69.
linking, 69.
linking the library, 69.
"linklpa.h", 69.
"linklv.h", 70.
‘List Property’, 144.
list style, 142.
list together, 193.
literal characters, 175.
little red car, 110, 218.
local variables, 15.
Locale, 142, 197.
location, 127.
“lock” and “unlock” disam-

biguation, 169, 251.
lockable, 188.
locked, 103, 188.
Long Count, 164.
long description, 141.
long jump, 180.

261

Look, 140.
“look inside”, 104.
LookRoutine, 141, 204.
LoopOverScope, 197.
LOOPOVERSCOPE REASON, 166.
Lord Byron, 83.
Louis MacNeice, 7, 214.
low mist, 101.
low numbers in French, 160,

241.
Lowstring, 215.
Ludwig Wittgenstein, 114,

137.

Macbeth, 126.
macramé bag, 105, 217.
magpie, 49.
Mahu, 227.
mainframe ‘Adventure’, 8.
making grammar, 95.
male, 138, 188.
Manga, 216.
map, 105.
map connection, 99.
Marc Blank, 105, 109.
Martha, 120, 225.
“master catburglar”, 204.
matchbook, 140.
Max Beerbohm, 162.
MAX CARRIED, 130.
MAX SCORES, 131.
MAX TIMERS, 124.
Mayan dictionary, 113.
Mayan directions, 102, 215.
“me”, 128.
meadow example, 46.
medicine bottle, 89.
medieval French, 135.
“megalook” verb, 163, 246.
members, 52.
memory, 73.

compiler settings, 73.
dynamic allocation, 174.
maximum size of game, 173.
small, large or huge, 73.
typical consumption of by

compiler, 73.
memory settings, 64.

menu item, 177.
menu of text options, 176.
message, 44.
Message, 68.
message numbers, 135.
messages, 54.

call, 60.
copy, 61.
create, 61.
destroy, 61.
parrot example, 89.
print, 60.
print to array, 60.
recreate, 61.
remaining, 61.
to routines, strings and

classes, 60.
“messages”, 55.
“messages” verb, 171.
meta, 153.
‘meta’ actions, 94.
metaclass, 210.
metaclass, 45.
metaclass, definition of, 45.
Metropolitan Museum, 90.
Michel de Montaigne, 113.
microphones, 117.
mid-air location, 125.
midnight, 125.
Modo, 227.
Modular extensions, 133.
modules, 69.
Molière, 151.
Monty Python’s Flying Circus,

103.
moved, 166, 189.
moving room, 127.
Mrofni, 120, 225.
multiexcept token, 157.

multiheld token, 157.
multiple inheritance, 54.
mummified priest, 115.
‘Museum of Inform’, 8.
mushroom, 84.
“myself”, 128.

nagual, 129, 230.
name, 50, 99, 145, 194.

named rooms, 156, 239.
names per object (limit), 174.
Naming of Cats, 145.
narrow inventory, 143.
neo-Platonist philosophy, 123.
NetHack, 178.
neuter, 138, 189.
New Testament, 113, 218.
NewRoom, 127, 204.
NextWord, 146, 160, 161, 197,

245.
NextWordStopped, 160, 197.
nightfall, 125, 229.
@nn, 215.
NO PLACES, 132.
nominative pronoun, 137, 231.
normal rules, 187.
NormalWorld, 215.
‘northness’, 196.
nose, 167, 249.
Noslen Maharg, 120, 225.
nothing, 45, 172.
notify mode, 132.
“notify” verb, 132.
NotUnderstood, 116, 117.
noun, 100.
noun token, 157.
NounDomain, 197, 246.
NULL, 87.
number, 85, 194.
number base, 14.
number puzzle, 28.
NUMBER TASKS, 131.
number token, 157.

number-parsing, 159.
numbers, 13.

Object, 45, 87.
object 31, 148.
object orientation, 10.

virtue of, 44.
OBJECT SCORE, 131.
object tree, 45.

setting up initial state, 46.
ObjectIsUntouchable, 197.
ObjectIsUntouchable(obj),

164.
objects, 44, 84.

262

child, sibling and parent of,
46.

creation and deletion during
play, 61.

defined in library, 196.
definite articles of, 138.
direction and compass ob-

jects, 102.
duplicate and plural, 149.
encapsulation of, 51.
giving attributes to, 52.
giving properties to, 49.
grouping of in lists, 144.
indefinite articles of, 138.
inheritance from classes, 52.
inventory entries of, 139.
listed in room descriptions,

141.
maximum number of, 174.
maximum number of names

for, 174.
metaclass of, 45.
moving around the tree, 47.
names of, 145.
philosophy of, 57.
printing lists of, 142.
referred to by number, 148,

238.
removing from tree, 48.
sending messages to, 54.
short names of, 137.
the four kinds of, 44.

“objects” verb, 132.
obsolete interpreters, 181.
obsolete usages, 82.
Occitan, 135.
Octagonal Room, 56.
ofclass, 54.
‘offers light’, 121.
OffersLight, 121, 197.
ogre with limited patience,

124.
Oliver Goldsmith, 173.
on, 107, 189.
“on”, “at” or “in”, 160.
once-only rules, 87.
only, 155.
open, 103, 189.

openable, 103, 189.
operands, 16.
operator precedence, 17.
operators, 16.

full table of, 182.
orange cloud, 102, 215.
Order, 114.
orders, 116, 128, 193.
ornate box, 140, 231.
other four senses, 101.
“out” verb, 110.
@output stream, 180.

//p, 150.
P. David Lebling, 103, 105,

109, 119.
pack of cards, shuffling, 40.
packing case, 104.
pairs of verbs to separate, 155.
Palladas of Alexandria, 64.
parent, 46, 172.
parentheses, 17.
parrot, 89.
parse, 161.
parse name, 147, 150, 163,

194.
parsed number, 160, 187.
ParseNoun, 148, 204.
ParseNumber, 159, 204.
parser, 146.
Parser, 83.

breaking up text into word
stream, 146.

error numbers, 168.
parsing quoted strings, 161,

245.
parsing the player’s ques-

tions, 164.
tidying up questions asked

by, 156.
tracing and levels, 172.

parser one, parser two,

parser action, 150.
ParserError, 168, 204.

text buffer holding com-
mands, 146, 161.

PARSING REASON, 166.
path variables, 64.

peculiar book, 139.
Pepper Room, 92.
Percy Bysshe Shelley, 123.
perfectionism, 99.
persona of player, 128.
pet moth, 122, 226.
philosophy of objects, 57.
phone number, 146.
phone number parsing, 160,

242.
pidgin English, 142.
pinfocom, 177.
PlaceInScope, 165, 197.
“places” verb, 132.
plagiarism, 130.
plank bridge, 107, 217.
platinum pyramid, 140.
Plato, 123.
player’s origin, 126.
player-object, 196.
PlayerTo, 127, 197.
plural, 149, 194.
plural markings on words, 150.
plural objects, 149.
pluralname, 138, 189.
“pluralobj.h”, 136.
portability, 10.
precedence of class inheritance,

91.
precedence of operators, 17.
prepositions, 157.
pretty flag, 176.
priest, 114.
Prince of darkness, 227.
Princess, 147, 235.
print, 60, 100.
print (a) obj, 137.
print (address), 172.
print (name) obj, 137.
print (string), 172.
print (The) obj, 137.
print object, 138, 172.
print to array, 60.
printf exercise, 181, 255.
printing hexadecimal numbers,

34.
printing output, 29.
printing routines, 137.

263

printing rules, 34.
PrintRank, 131, 204.
PrintShortName, 197.
PrintTaskName, 131, 204.
PrintVerb, 156, 204.
private, 51.
procedural language, 10.
prompt, 135, 176, 231.
pronouns, 116, 137, 168, 231.
PronounValue, 168.
proper, 138, 189.
proper noun, 138.
properties, 85.

additive, 91.
common vs individual, 62.
defined in library, 190.
defining new common, 134.
definition of, 49.
encapsulation of, 51.
holding arrays, 50.
holding routines, 51, 89.
maximum number of com-

mon, 174.
Property, 69.
proportional font, 175.
provides, 49, 51.
pumice ball, 111, 218.
punctuation in dictionary

words, 146.
“purloin” verb, 165, 171, 247.
purple liquid, 139.
PushDir, 110.
pygmy statuette, 90.

questionable practices, 82.
questions, asking yes or no,

175.
questions, parsing the player’s,

164.
quit, 28.
quotation marks (continental

European), 32.
quotations beautiful, 176.
quoted text, 246.
“quotes off” verb, 176.

R. B. Sheridan, 132.
radio, 124.

radix, 14.
random, 35, 171.
“random” verb, 171.
raw text, 161.
reached, statement which can-

not be, 33.
react after, 115, 194.
REACT AFTER REASON, 166.
react before, 101, 115, 194.
REACT BEFORE REASON, 166.
read, 36, 43.
@read char, 180.
“read” v. “examine”, 113.
reading books, 111.
real location, 127.
real time, 179.
reasons for scope searching,

166.
Receive, 104.
receive action, 104.
receiving messages, 55.
“recording” verb, 171.
recursion, 23.
recursion (limit), 174.
red sticky label, 167, 250.
red-tailed parrot, 89.
reflecting the map, 102, 215.
remainder, 16.
removing conversation actions,

117, 219.
removing rules, 87.
REPARSE CODE, 197, 246.
Replace, 135, 155.
replacing grammar, 155.
“replay” verb, 171.
replicator, 119, 223.
resolution, 146, 173.
resolving ambiguity, 169.
@restore, 181.
restoring data, 181.
resurrection, 129.
return values, 19.
reverse, 154, 186.
reverse video, 177.
ReversedWorld, 215.
Richard Barnett, 102.
ring accents, 32.
‘Robots’, 181.

role-playing games, 181, 252.
roman text, 177.
‘Romeo and Juliet’, 30.
room descriptions, 108, 140.
room divided in half, 166, 247.
ROOM SCORE, 131.
Rosencrantz, 12.
Routine, 45.
routines, 19.

as property values, 89.
maximum depth of recur-

sion, 174.
simple example of, 86.
tracing calls to, 172.

routines as property values,
51.

“routines” verb, 171.
Royal Society For Putting

Things On Top Of Other
Things, 103.

rucksack, 158.
‘Ruins’, 8, 83, 87, 88, 89, 90,

92, 98, 101, 103, 104, 105,
107, 109, 110, 112, 114,
124, 126, 130, 131, 181,
218, 228, 252.

run-time crashes, 17, 171.
run-time format, 173.
running out of memory, 75.

SACK OBJECT, 130.
Sam Hulick, 125.
satchel, 130.
@save, 180.
saving data, 180.
saving the character, 181, 252.
scenery, 99, 141, 189.
scenery penalised, 169.
scope, 162.

addition to, 105, 166.
looping over, 163.
testing, 163.

scope reason, 120, 124, 166.
scope stage, 164.
“scope” verb, 171.
“scope” verb exercise, 163,

246.
ScopeWithin, 197.

264

score notification, 132.
“score” verb, 153.
scored, 189.
scoring in ‘Ruins’, 90.
scoring systems, 130.
Scott Adams, 8, 142.
Scrabble pieces, 144, 232.
screen, 120, 225.
script of player’s commands,

180.
scrolling screen, 176.
scuttling claws, 124, 228.
sealed room, 120, 225.
Search, 94, 104.
searchlight, 107.
second, 100.
‘see-through’, 162.
self, 53, 56.
selfobj, 196.
semicolons, 11.
sender, 56.
senses, 101.
@set colour, 179.
@set cursor, 179.
@set window, 179.
SetTime, 125, 197.
shaft of sunlight, 99.
“shazam” verb, 156.
‘Shell’, 83.
shopping mall, 135.
short name, 138, 195.
short name indef, 195.
Show, 114.
“showobj” verb, 171.
ShowR, 225.
“showverb”, 153.
“showverb” verb, 171.
Shrine, 114, 116.
shuffling a pack of cards, 40.
sibling, 46.
silence, imposition on player,

128, 230.
silent actions, 95.
Simon Says, 118, 220.
‘Skyfall’ setup file, 66.
slash accents, 32.
small memory, 73.
small prime numbers, 39.

Smalltalk-80, 45, 57, 59.
“smartcantgo.h”, 102.
smell (sense), 101.
snake, 116.
“snavig” spell, 128.
sodium lamp, 108.
‘Sorcerer’, 126, 170.
sound of scuttling claws, 124,

228.
source-level debugger, 171.
Space Invaders, 178.
spaces, 30.
spaceship control panel, 161,

244.
Spanish punctuation, 32.
special number, 114.
special objects, 196.
special token, 157.

speckled mushroom, 84.
‘Spellbreaker cubes’, 150.
‘Spellbreaker’, 102, 128, 198.
spiny trees, 100.
@split window, 179.
Square Chamber, 99.
squawking, 89.
St John Passion, 31.
St Peter, 151.
stack frame, 180.
stack usage (limit), 174.
Standard games, 173.
Standard interpreters, 181.
Star Trek: The Next Genera-

tion, 119, 120, 222, 223,
225.

‘Starcross’, 117, 118, 220.
Starship Enterprise, 120, 225.
StartDaemon, 123, 197.
StartTimer, 124, 197.
statement cannot be reached,

33, 81.
statements, 12.

box, 30.
do...until..., 26.
font, 31.
for, 26.
give, 52.
if, 21.
if...else..., 24.

inversion, 30.
jump, 29.
move, 47.
new line, 30.
objectloop, 48.
print, 12, 33.
quit, 29.
read, 36, 42.
remove, 48.
restore, 29.
return, 20.
save, 29.
spaces, 30.
style, 31.
summary table of, 184.
switch...default..., 25.
while, 26.

static, 106, 189.
statistics, 72.
status line, 175, 253.
Statusline, 125.
stealing actions, 101.
steel box, 104.
steel grate, 106.
Stephen Fry, 57.
sterilising machine, 167, 250.
stone altar, 109.
stone door, 105.
stone-cut steps, 87, 88.
StopDaemon, 123, 198.
StopTimer, 124, 198.
story files, 7.
stream of words, 146.
stream running through forest,

124.
streams of input/output, 180.
string, 39, 45, 215.
(string), 34.
strings of characters, 39.
structures of data, 36.
Stub, 68.
style, 31, 177.
style of list, 142.
sub-objects, 105, 166.
subclasses, 54.
summary of grammar, 186.
sunrise and sunset, 125, 229.
“superbrief”, 198.

265

superclass operator, 57.
superclass, definition of, 57.
supporter, 103, 109, 189.
supporting scenery, 141.
switch, 23.
switchable, 107, 189.
Switches, 71.
switches (command line), 64.
switches (on command line),

71.
sword, 124.
synonyms, 152.
System file, 68, 82, 133.

T. S. Eliot, 145.
table, 39.
“take all”, 169.
“take” verb, 153.
talkable, 117, 189.
TALKING REASON, 120, 166.
talking, preventing player

from, 128, 230.
tape recorders, 117.
tapestry and key, 87.
task scores, 131.
TASKS PROVIDED, 131.
taste (sense), 101.
team of four adventurers, 128.
Ted Hughes, 252.
tedium of magpies, the, 52.
telegraphese, 142.
telekinesis, 120, 225.
telepathic contact, 120, 225.
telephone number parsing,

160, 242.
teleportation, 127.
television set, 104, 216.
Tell, 114.
temperature dial, 166.
Tera, 9.
TestScope, 198.
TESTSCOPE REASON, 166.
text buffer (of buffer), 146.
text buffer (of parser), 161.
text buffers, 39.
text cursor, 179.
text formatting, 179.
text of a command, 146.

text style, 177.
‘The Legend Lives’, 159.
The Prisoner, 110.
The quick brown fox jumped

over the lazy dog, 241.
the Sun, 101.
‘The Thief’, 120, 145, 226.
‘The Witness’, 135.
thedark, 127, 196.
TheSame, 150.
thief in ‘Zork’, 123, 124, 226.
third parameter for parser,

162, 246.
three denominations of coin,

145, 233.
@throw, 180.
“throw rock at dalek”, 95.
ThrowAt, 96, 114.
ThrownAt, 96.
tidying-up operations, 123.
tilde, 52.
tilde accents, 32.
time left, 195.
time of day, 125.
time of day (parsing), 161,

243.
time out, 124, 195.
time sequence, 125.
timed input, 179.
TimePasses, 204.
timers, 124.

clash with daemons, 124.
maximum number active,

124.
starting and stopping, 124.

“timers” verb, 171.
‘timewait.h’, 126, 161.
Timothy Anderson, 109.
title page, 181, 252.
TitlePage, 127.
toadstool poisoning, 86.
token for ‘any object’, 247.
token never matching any-

thing, 162, 246.
@tokenise, 180.
tokenising, 179, 246.
tokens, 152, 156, 197.
tomato, 145.

Tony Harrison, 64.
too many errors, 74.
toothed bag, 104, 216.
topic token, 160.

Torbjørn Andersson, 181.
touch (sense), 101.
touchability, 163.
‘Toyshop’, 8, 91, 102, 105, 120,

126, 130, 131, 140, 245.
“trace” verb, 171.
tracing a routine, 172.
tracing routines, actions, dae-

mons and timers, 171.
tracing the parser, 172.
transcript, 176, 179, 180.
translating Inform to foreign

languages, 135.
transparent, 104, 116, 189.
treasure class, 90.
treasures on status line, 181,

253.
treating name as a word array,

145.
“tree” verb, 171.
tricorder, 119, 222.
trigrams, 145, 233.
‘Trinity’, 102, 181, 255.
troll, 122.
true, 14, 20.
TryNumber, 146, 198.
two-way door, 106.
txd (disassembler), 171.

UHS format hints, 177.
umlaut accents, 32.
unary minus, 18.
underlining, 177.
“undo” verb, 174, 177.
UnknownVerb, 156, 204.
UnsignedCompare, 198.
until, 25.
untouchability, 164.
untypeable verbs, 119.
untypeable words, 146.
upper-level window, 179.
urchin and hacker, 116.
“use” verb, 158.

266

vague obj, 168.
vague word, 168.
values as conditions, 22.
vampire, 125.
variable strings, 215.
variables, 13.
variables (concept of), 15.
vehicles, 110.
Verb, 153.
verb num, 118.
verb word, 152, 169.
VerbLib, 83.
verbose mode, 142.
“verbose”, 141.
“verbose”, 198.
verbs (Inform and English),

152.
versions of the Z-machine, 173.
very verbose mode, 142, 232.
visited, 189.
VN ****, 68.
vocabulary size (limit), 173.
voice-activated computers,

117.
vowel-contraction, 191.
VT100, 177.

W. H. Auden, 105.
W. S. Gilbert, 142.
WakeOther, 114.
Waldeck’s Mayan dictionary,

113.
walking into walls, 134.
walls, 196.
‘wandering monsters’, 123.
warning, 74.
warning messages, 13.
warning messages (list), 80.
warthog, 230.
washing-machine, 166.
weights, 123.
weird thing, 147.
‘welcome’ message, 84.
“what is a grue”, 164.
“What next?”, 135, 231.
when closed, 106, 195.
when off, 195.
when on, 195.

when open, 106, 195.
while, 25.
white space, 11.
“white” and “black”, 156, 240.
wide inventory, 143.
wild boar, 228.
wild-card, 148, 238.
Will Crowther, 9.
William J. Clinton, 32.
William Shakespeare, 30, 126,

162, 227, 239, 253.
William Tyndale, 113, 218.
window 0, 179.
wingspan, 49.
with, 49, 87.
with key, 103, 195.
WITHOUT DIRECTIONS, 102.
‘Witness’, 135, 231.
wizened man, 146.
woodpecker, 170.
word array, 145.
word arrays, 38.
word breaking, 146, 179.
word stream, 146.
WordAddress, 146, 161, 198,

245.
WordLength, 146, 161, 198,

245.
workflag, 189.
world colours, 102, 215.
World Wide Web, 8.
worn, 189.
WriteListFrom, 142, 198.

“xyzzy” verb, 154.

yes or no questions, primitive
routine to ask, 43.

YesOrNo, 175, 198.
“you don’t need to refer to”,

99.

Z-encoded text, 180.
testing, 181.

Zen, 117, 224.
“zero”, 159.
Zip, 177, 178.
‘Zork I’, 124.

‘Zork’, 120, 123.
ZRegion, 198.
zterp, 177.

267

	Contents
	Introduction
	Book one: Programming
	The Inform Programming language
	1. The language of routines
	2. The language of data structures
	3. The language of objects

	Using the Compiler
	4. The language of Inform
	5. Compiler options and memory settings
	6. All the Inform error messages

	Book two: Designing
	Fundamentals
	7. Getting started
	8. Introducing messages and classes
	9. Actions and reactions

	The Model World
	10. Places, scenery, directions and the map
	11. Containers, supporters and sub-objects
	12. Doors
	13. Switchable objects
	14. Things to enter, travel in and push around
	15. Reading matter and consultation
	16. Living creatures and conversation
	17. The light and the dark
	18. Daemons and the passing of time
	19. Starting, moving, changing and killing the player
	20. Miscellaneous constants and scoring
	21. Extending and redefining the Library

	Describing and Parsing
	22. Describing objects and rooms
	23. Listing and grouping objects
	24. How nouns are parsed
	25. Plural names for duplicated objects
	26. How verbs are parsed
	27. Tokens of grammar
	28. Scope and what you can see
	29. Helping the parser out of trouble

	Testing and Hacking
	30. Debugging verbs and tracing
	31. Limitations on the run-time format
	32. Boxes, menus and drawings
	33. Descending into assembly language

	Appendix: Tables and summaries
	A1. Inform operators
	A2. Inform statements
	A3. Inform directives
	A4. Grammar
	A5. Library attributes
	A6. Library properties
	A7. Library-defined objects and routines
	A8. Library actions
	A9. Library message numbers
	A10. Entry points and meaningful constants
	A11. What order the program should be in
	A12. A short Inform lexicon

	Answers to all the exercises
	Index

