GNU Emacs Lisp Reference Manual

For Emacs Version 24.5
Revision 3.1, October 2014

by Bil Lewis, Dan LaLiberte, Richard Stallman,
the GNU Manual Group, et al.

This is edition 3.1 of the GNU Emacs Lisp Reference Manual,
corresponding to Emacs version 24.5.

Copyright (©) 1990-1996, 19982015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with the Invariant Sections being “GNU
General Public License,” with the Front-Cover Texts being “A GNU Manual,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this
GNU manual. Buying copies from the FSF supports it in developing GNU and
promoting software freedom.”

Published by the Free Software Foundation
51 Franklin St, Fifth Floor

Boston, MA 02110-1301

USA

ISBN 1-882114-74-4

Cover art by Etienne Suvasa.

Short Contents

© 00 J O Ot = W N

W W W W W W W W W N N NDNDDNDDNDDNDDNDNDN R = = = = = = = =
0O N O T = W N~ O O© 0 ~J O UL i Wi~ O O© 0 O O i Wi+~ O

Introduction e 1
Lisp Data Types. . .o e e e 7
NUIDETS « oo 30
Strings and Characters. e 43
I35 1] 57
Sequences, Arrays, and VECtOrSt 78
Hash Tables e 88
SYMDOLS . . . e 93
Evaluation. e 100
Control Structures e 109
Variableso 125
FUnCtions. . .. e 150
MaCTOS .« v v et 173
Customization Settings.ottt 180
Loadingo e 197
Byte Compilation e 210
Debugging Lisp Programs i 219
Reading and Printing Lisp Objects 246
Minibuffers e 256
Command Loopt e e 283
Keymaps .« oo 323
Major and Minor Modes 356
Documentationo 404
Fles . oo 412
Backups and Auto-Saving e 449
Buffers. ..o 458
WNAOWS . . o e 473
Frames. . .. 522
PoOSItIONS . . o vttt e 553
Markers . ..o 564
5" TP 572
Non-ASCIT Charactersot e e e e e 626
Searching and Matching i e 649
Syntax Tables e 671
Abbrevs and Abbrev Expansion i 685
ProCesSes . . oottt e 691
Emacs Display oo o e 728

Operating System Interface 806

ToTEOQE g

Preparing Lisp code for distribution 838
Emacs 23 ANtinewso 843
GNU Free Documentation License i, 845
GNU General Public License o i 852
Tips and Conventions.ttt ettt 862
GNU Emacs Internals. i e 874
Standard Errorsot e 895
Standard Keymapso v vt e 898
Standard HooKS i 901

iii

Table of Contents

1 Introduction 1
IO T 1
1.2 Lisp History . ..o 1
1.3 COonVENtIONS . . .ottt e e 2

1.3. 1 Some TermsS . . oottt 2
1.3.2 mil and ..o 2
1.3.3 Evaluation Notation i e 3
1.3.4 Printing Notation.o e e e 3
1.3.50 Error Messages . ..o e 3
1.3.6 Buffer Text Notationo e 3
1.3.7 Format of Descriptions.oo i e 4
1.3.7.1 A Sample Function Description i 4
1.3.7.2 A Sample Variable Description.......... ... i 5

1.4 Version Information 5
1.5 Acknowledgmentst 6

2 Lisp Data Types........cooiiiiiii i 7
2.1 Printed Representation and Read Syntax, 7
2.2 COMIMENTS. « ¢ o ettt ettt ettt et e e e 8
2.3 Programming Types.ttt e 8

2.3. 1 Integer Type .o e 8
2.3.2 Floating-Point Typeo e 8
2.3.3 Character TyPe. ...t 9
2.3.3.1 Basic Char Syntax........ ... 9
2.3.3.2 General Escape Syntax ... 10
2.3.3.3 Control-Character Syntax.oueiiiiiii .. 10
2.3.3.4 Meta-Character SYNtaxoouuitt i e 11
2.3.3.5 Other Character Modifier Bitso i 11
2.3.4 Symbol Type . ..o 11
2.3.5 Sequence TYPesttt 12
2.3.6 Cons Cell and List Typesvvet i e 12
2.3.6.1 Drawing Lists as Box Diagrams............. 13
2.3.6.2 Dotted Pair Notationo 14
2.3.6.3 Association List Type.ot e 15
2.3. 7 ATTAY TyDe . oot 15
2.3.8 SUIINE D€ .« oottt e 16
2.3.8.1 Syntax for Stringso 16
2.3.8.2 Non-ASCII Characters in Strings............coouiiiiiiiieiniieannna.. 16
2.3.8.3 Nonprinting Characters in Strings.......... ..., 17
2.3.8.4 Text Properties in Strings.......... ..o 17
2.3.9 VeCtor Type . ..ottt 18
2.3.10 Char-Table Typeot 18
2.3.11 Bool-Vector Type ..o ooii e 18
2.3.12 Hash Table Typeooi e 19
2.3.13 Function Typeo e 19
2.3. 14 Macro Type . ..o 19
2.3.15 Primitive Function Type ... 19

2.3.16 Byte-Code Function Type e 20

2.3.17 Autoload Type . ..ot 20
2.4 Editing Types . .ottt 20
2.4.1 Buffer Type ..o e 20
2.4.2 MarKer Ty pe ..ottt e 21
2.4.3 WIndow Type . oo 21
244 Frame Type 22
2.4.5 Terminal TyPe ..ot 22
2.4.6 Window Configuration Type...... ..o e 22
2.4.7 Frame Configuration Type.ot e 22
2.4.8 Process Type e 22
2.4.9 Stream Type . ..o 23
2410 Keymap Type. .o 23
2,411 OVerlay Type .o 23
2,412 FOnt Type. .o e 23
2.5 Read Syntax for Circular Objects........ ..o 23
2.6 Type Predicates. e 24
2.7 Equality Predicates. 27
Numbers 30
3.1 Integer BasiCst e 30
3.2 Floating-Point Basics. 31
3.3 Type Predicates for Numbers. ... i 32
3.4 Comparison of NUMDbDEIS e 33
3.5 Numeric CONVETrSIONSottt ettt et ettt e e e e e 34
3.6 Arithmetic Operations.iiit e 35
3.7 Rounding Operations.ouuuuio ittt e 38
3.8 Bitwise Operations on Integersoiiiii i 38
3.9 Standard Mathematical Functions i 41
3.10 Random NUmbeTs.o e 42
Strings and Characters 43
4.1 String and Character Basics e 43
4.2 Predicates for Strings.o 44
4.3 Creating SUrings.ottt e 44
4.4 Modifying Stringsottt e 47
4.5 Comparison of Characters and Strings............. oo, 47
4.6 Conversion of Characters and Strings........... oo i, 49
4.7 Formatting Stringsot 51
4.8 Case Conversion in LiSPuuttt e e 53
4.9 The Case Table 54
Lists .. 57
5.1 Lists and Cons Cells. 57
5.2 Predicates on Listsoou i o7
5.3 Accessing Elements of Lists. ... 58
5.4 Building Cons Cells and Lists. ... e 60
5.5 Modifying List Variables. 63
5.6 Modifying Existing List Structureo i 65
5.6.1 Altering List Elements with setcar........... ..., 65
5.6.2 Altering the CDR of a List ... 67
5.6.3 Functions that Rearrange Listso i 68
5.7 Using LiSts as Sets ...t e 70

5.8 ASSOCIAtION LiSES . .ottt 73

5.9 Property Lists. 76
5.9.1 Property Lists and Association Lists........... .. i i 76
5.9.2 Property Lists Outside Symbols.......... ... i 76

Sequences, Arrays, and Vectors............................. 78

6.1 SEQUEIICES . . . ettt ettt e 78

T ¥ 2 80

6.3 Functions that Operate on Arrays 80

0.4 VO O S . . ottt 82

6.5 Functions for Vectors. e e 82

6.6 Char-Tables. 83

6.7 BoOl-VECtOrS. . oo 85

6.8 Managing a Fixed-Size Ring of Objects, 86

Hash Tables....... ... 88

7.1 Creating Hash Tables. e 88

7.2 Hash Table ACCESS ...t e e e e 90

7.3 Defining Hash CompariSons.o e 90

7.4 Other Hash Table Functions.ot aeen 91

Symbols 93

8.1 Symbol CompPoOnents.ttt 93

8.2 Defining Symbols. 94

8.3 Creating and Interning Symbolso i i 94

8.4 Symbol Properties. 97
8.4.1 Accessing Symbol Properties......... ..o 97
8.4.2 Standard Symbol Properties..... ... 98

Evaluation........ 100

9.1 Kinds of FOTmS. e 100
9.1.1 Self-Evaluating Forms 101
9.1.2 Symbol FOrms 101
9.1.3 Classification of List Forms................ ... 101
9.1.4 Symbol Function Indirection......... i 102
9.1.5 Evaluation of Function Forms....... i i 103
9.1.6 Lisp Macro Evaluationoo o i 103
9.1.7 Special FOorms 104
9.1.8 Autoloading.......c..oiiii 105

0.2 QUOBIIE .« ottt 105

9.3 Backquote 106

0.4 Eval .o 106

10 Control Structures............. ... i, 109
10.1 SeqUENCING. . o ettt et e e e e e e e e e 109
10.2 Conditionals 110

10.2.1 Pattern matching case statement oL 112
10.3 Constructs for Combining Conditions.cooiiiiiiiiiiiiiiiian.. 113
10.4 TBerabion . ..o oot 114
10.5 Nonlocal Exits e 115

10.5.1 Explicit Nonlocal Exits: catch and throw..............., 115

10.5.2 Examples of catch and throw........ ...t 117

10.5.3 BrTOrS. .. 117

10.5.3.1 How to Signal an Error........ ... o i 118
10.5.3.2 How Emacs Processes Errors ... 119
10.5.3.3 Writing Code to Handle Errors.......... ... i, 119
10.5.3.4 Error Symbols and Condition Names 122

10.5.4 Cleaning Up from Nonlocal Exits........... ... i 123

11 Variables 125
11.1 Global Variables 125
11.2 Variables that Never Change e 125
11.3 Local Variables 126
11.4 When a Variable is “Void” e 127
11.5 Defining Global Variables i e 128
11.6 Tips for Defining Variables Robustly i i 130
11.7 Accessing Variable Valueso i 131
11.8 Setting Variable Values. e e 132
11.9 Scoping Rules for Variable Bindings i 133

11.9.1 Dynamic Binding........ ..o 133

11.9.2 Proper Use of Dynamic Binding i i 134

11.9.3 Lexical Bindingouoiiii 135

11.9.4 Using Lexical Bindingo e e 136
11.10 Buffer-Local Variables. e 137

11.10.1 Introduction to Buffer-Local Variables.............. 137

11.10.2 Creating and Deleting Buffer-Local Bindings........................ 138

11.10.3 The Default Value of a Buffer-Local Variable 141
11.11 File Local Variables. e 142
11.12 Directory Local Variables i e 145
11.13 Variable AlIases.ot e 146
11.14 Variables with Restricted Values i 147
11.15 Generalized Variables i 148

11.15.1 The setf Macroottt e 148

11.15.2 Defining new setf forms......... .ot 149

12 Functions......... 150
12.1 What Is a Function? e 150
12.2 Lambda EXpPressionsooi i e e 151

12.2.1 Components of a Lambda Expression...................iiiiiiiiiiiii.. 152

12.2.2 A Simple Lambda Expression Example 152

12.2.3 Other Features of Argument Lists o i, 153

12.2.4 Documentation Strings of Functions.......... L 154
12.3 Naming a Function........ ..o e 154
12.4 Defining FUnctions 155
12.5 Calling Functionso 156

12.6 Mapping Functions. 158

12.7 Anonymous Functions.o.uieiit 159
12.8 Accessing Function Cell Contents.............oo i, 160
12,9 ClOSUTES - ..ttt ettt e et e et e e e e e 161
12.10 Advising Emacs Lisp Functions i 162
12.10.1 Primitives to manipulate advices i 163
12.10.2 Advising Named Functions......... ..., 164
12.10.3 Ways to compose adviCes.ouuutittmtt i 165
12.10.4 Adapting code using the old defadvice............ L. 166
12.11 Declaring Functions Obsolete. 167
12.12 Inline Functions. e e 168
12.13 The declare FOrm.t e 169
12.14 Telling the Compiler that a Function is Defined................ 170
12.15 Determining whether a Function is Safe to Call........... 171
12.16 Other Topics Related to Functions i i i 171
13 MacCros. ... 173
13.1 A Simple Example of & Macro........ ..o 173
13.2 Expansion of a Macro Call 173
13.3 Macros and Byte Compilation. 174
13.4 Defining MacroS. . ..ottt e 175
13.5 Common Problems Using Macros.o, 175
13.5.1 Wrong Timeo 175
13.5.2 Evaluating Macro Arguments Repeatedly...........o 176
13.5.3 Local Variables in Macro Expansionsooiiiiiiiiiiiii .. 177
13.5.4 Evaluating Macro Arguments in Expansion................................ 177
13.5.5 How Many Times is the Macro Expanded?.............. 178
13.6 Indenting MacCroSttt e e e e 179
14 Customization Settings........................ 180
14.1 Common Item Keywords e 180
14.2 Defining Customization GIoupsouiiieiiie i, 182
14.3 Defining Customization Variables............ . .. i i i 183
14.4 Customization Types. e e e 186
14.4.1 Simple Types vttt e 186
14.4.2 Composite TyPes. . oottt 187
14.4.3 Splicing into Listsot 191
14.4.4 Type Keywordso e e 192
14.4.5 Defining New Types. ...t 193
14.5 Applying Customizations.t e 194
14.6 Custom Themes. e 195
15 Loading........ .. 197
15.1 How Programs Do Loading............ .. 197
15.2 Load Suffixeso 199
15.3 Library Search 199
15.4 Loading Non-ASCIT Charactersottt 201
155 Autoload. 201
15.6 Repeated Loading.o e 204
15.7 Featuresottt e 205
15.8 Which File Defined a Certain Symbol o i i, 207
15.9 Unloading.uoii 207

15.10 Hooks for Loading . ..o 208

16 Byte Compilation.............. 210
16.1 Performance of Byte-Compiled Codeo .. 210
16.2 Byte-Compilation Functions........ i 210
16.3 Documentation Strings and Compilation............ o i, 212
16.4 Dynamic Loading of Individual Functions.............o i .. 213
16.5 Evaluation During Compilation........ ... i 213
16.6 Compiler Errors. e 214
16.7 Byte-Code Function Objects e 215
16.8 Disassembled Byte-Code 216

17 Debugging Lisp Programs................................. 219
17.1 The Lisp Debugger. 219

17.1.1 Entering the Debugger on an Error........... i i .. 219
17.1.2 Debugging Infinite Loops. 220
17.1.3 Entering the Debugger on a Function Call 221
17.1.4 Explicit Entry to the Debugger......... . . i 222
17.1.5 Using the Debugger 222
17.1.6 Debugger Commands.uunnt et 223
17.1.7 Invoking the Debugger 224
17.1.8 Internals of the Debugger........ ... i 225
17.2 BEdebug . .o 226
17.2.1 Using Edebug 226
17.2.2 Instrumenting for Edebug 227
17.2.3 Edebug Execution Modes. ... 228
17.2.4 JUMPING .« o oo 229
17.2.5 Miscellaneous Edebug Commands ..., 230
17.2.6 Breakso e 230
17.2.6.1 Edebug Breakpoints....... 230
17.2.6.2 Global Break Conditiono, 231
17.2.6.3 Source Breakpointso.uuiiii i e 231
17.2.7 Trapping Errors 232
17.2.8 Edebug Views. 232
17.2.9 Evaluationo i e 233
17.2.10 Evaluation List Buffer........ ... o 233
17.2.11 Printing in Edebug..... ..o 234
17.2.12 Trace Buffer 235
17.2.13 Coverage Testing.c..uinuin i e 235
17.2.14 The Outside Context. e 236
17.2.14.1 Checking Whether to Stop ... i 236
17.2.14.2 Edebug Display Update ... 236
17.2.14.3 Edebug Recursive Edit o i 237
17.2.15 Edebug and Macros.o 237
17.2.15.1 Instrumenting Macro Calls i, 237
17.2.15.2 Specification List. ... 238
17.2.15.3 Backtracking in Specificationsc i 241
17.2.15.4 Specification Examples 241
17.2.16 Edebug Options.ooiu i e 242
17.3 Debugging Invalid Lisp Syntax 244
17.3.1 Excess Open Parentheses....... ... 244
17.3.2 Excess Close Parentheses.ot 244
174 Test COVETAZE . .« oottt ettt e e e e e e 245

17.5 Profiling 245

18 Reading and Printing Lisp Objects 246
18.1 Introduction to Reading and Printing........... i i 246
18.2 Input Streams.ot 246
18.3 Input Functions. e 248
18.4 OULPUL SErEAIMIS . . oottt ettt e e e e e e 249
18.5 Output FUnctions 251
18.6 Variables Affecting Output.......... i 253

19 Minibuffers.......... 256
19.1 Introduction to Minibuffers......... .. . 256
19.2 Reading Text Strings with the Minibuffer............. 257
19.3 Reading Lisp Objects with the Minibuffer, 260
19.4 Minibuffer History 261
19.5 Initial Inputo 262
19.6 Completionot 263

19.6.1 Basic Completion Functionsooiiiiiiiiiiii ... 263
19.6.2 Completion and the Minibuffer....... L 266
19.6.3 Minibuffer Commands that Do Completion 267
19.6.4 High-Level Completion Functions............ ... oo i i, 269
19.6.5 Reading File Names.........oo i e 270
19.6.6 Completion Variables.o 273
19.6.7 Programmed Completiono 274
19.6.8 Completion in Ordinary Buffers i 276
19.7 Yes-0r-NO QUETIESottt e 277
19.8 Asking Multiple Y-or-N QUeStions.c.ovurrttii i eieeans 278
19.9 Reading a Password. 279
19.10 Minibuffer Commands i 279
19.11 Minibuffer Windows e 280
19.12 Minibuffer Contents. i 281
19.13 Recursive Minibuffers 281
19.14 Minibuffer Miscellany e 282

20 Command Loop............... i 283
20.1 Command Loop OVErviewt e 283
20.2 Defining Commands.ouuuiii e 284

20.2.1 Using interactiveouiiinn i e 284
20.2.2 Code Characters for interactiveooiiiiiiiiteiiii i, 286
20.2.3 Examples of Using interactive..........cuiuiiiiiiiiiiiininienean.. 288
20.2.4 Select among Command Alternativescoiiiiiiiieiiineeann.. 289
20.3 Interactive Callo e 289
20.4 Distinguish Interactive Calls.......... .. i i 290
20.5 Information from the Command Loop ..., 291
20.6 Adjusting Point After Commands i 293
20.7 Input Events. 294
20.7.1 Keyboard Events.coouuuiii 294
20.7.2 Function Keys. e 295
20.7.3 Mouse Events 296
20.7.4 Clck EVents 296
20.7.5 Drag Events. e 298
20.7.6 Button-Down Events....... ... i e 298
20.7.7 Repeat Events 299
20.7.8 Motion Events e 300

20.7.9 Focus BEvents e 300

20.7.10 Miscellaneous System Events.......... ..o 300
20.7.11 Event Examples. 302
20.7.12 Classifying Events.o 302
20.7.13 Accessing Mouse Events....... ... i 304
20.7.14 Accessing Scroll Bar Events 306
20.7.15 Putting Keyboard Events in Strings.............ooiiiiiiiiiiin.. 306
20.8 Reading Input 307
20.8.1 Key Sequence Inputb e 308
20.8.2 Reading One Event..... ... 309
20.8.3 Modifying and Translating Input Events...........o .. 311
20.8.4 Invoking the Input Method i 312
20.8.5 Quoted Character Input........... i 313
20.8.6 Miscellaneous Event Input Features........... 313
20.9 Special Events e 314
20.10 Waiting for Elapsed Time or Inputo i 315
20,11 QUILEIILG v ettt e e 316
20.12 Prefix Command Argumentsottt 317
20.13 Recursive Editing 319
20.14 Disabling Commandsouuiiiit e 320
20.15 Command Historyo e 321
20.16 Keyboard Macrosottt e 321
21 Keymapso 323
211 KeY SEQUENICESttt ettt e et e e e 323
21.2 Keymap Basics.o e 323
21.3 Format of Keymaps 324
21.4 Creating Keymapsottt e 326
21.5 Inheritance and Keymapsooonuuiiii 327
21.6 Prefix Keys . ..o 328
21.7 Active Keymapso 329
21.8 Searching the Active Keymapsot 330
21.9 Controlling the Active Keymaps........ovriiiiii i 331
21,10 Key LooKUD ot 333
21.11 Functions for Key Lookup. e 334
21.12 Changing Key Bindingscoii i e 336
21.13 Remapping Commands.ttt e 338
21.14 Keymaps for Translating Sequences of Events 339
21.14.1 Interaction with normal keymaps........... i 341
21.15 Commands for Binding Keys........ . 341
21.16 Scanning Keymaps.t e 342
2117 Menu Keymapst 344
21.17. 1 Defining Menusootoi i 344
21.17.1.1 Simple Menu [tems. oot 345
21.17.1.2 Extended Menu Items 345
21.17.1.3 Menu Separatorsttt e 347
21.17.1.4 Alias Menu [temst 348
21.17.2 Menus and the MOUSE ooiiiii e 348
21.17.3 Menus and the Keyboard........... ... i i 349
21.17.4 Menu Example. 349
21.17.5 The Menu Bar . ..o e 350
21.17.6 TOOL DATS . ettt 351
21.17.7 Modifying Menusoou it e 354

21.17.8 Easy Menu. e e 354

22 Major and Minor Modes. ..., 356
22. 1 HOOKS. . oot 356
22.1.1 Running Hooks. 356
22.1.2 Setting HoOKS 357
22.2 Major Modes 358
22.2.1 Major Mode COonventions.ouuutuuut i, 358
22.2.2 How Emacs Chooses a Major Mode..............oo i, 361
22.2.3 Getting Help about a Major Mode.........o, 363
22.2.4 Defining Derived Modes . ..ottt 363
22.2.5 Basic Major Modes. 365
22.2.6 Mode HOOKSvu e 365
22.2.7 Tabulated List mode ...t e 366
22.2.8 Generic Modes . ..ot 368
22.2.9 Major Mode Examples 368
22.3 MiINOr Modes.ot 370
22.3.1 Conventions for Writing Minor Modes, 370
22.3.2 Keymaps and Minor Modes 372
22.3.3 Defining Minor Modes.ot 372
22.4 Mode Line Formatb 375
22.4.1 Mode Line BasiCsttt e 375
22.4.2 The Data Structure of the Mode Line............ o i .. 375
22.4.3 The Top Level of Mode Line Control oo .. 376
22.4.4 Variables Used in the Mode Line i i i, 377
22.4.5 Y%-Constructs in the Mode Lineo i, 379
22.4.6 Properties in the Mode Line........... i 380
22.4.7 Window Header Lineso 381
22.4.8 Emulating Mode Line Formatting i i 381
22,5 TIMNENU . o o oot 382
22.6 Font Lock Mode 384
22.6.1 Font Lock Basics 384
22.6.2 Search-based Fontification........... ... i 385
22.6.3 Customizing Search-Based Fontification.............. o 388
22.6.4 Other Font Lock Variables......... ..o i i 389
22.6.5 Levels of Font Locko 390
22.6.6 Precalculated Fontification i 390
22.6.7 Faces for Font Lock 390
22.6.8 Syntactic Font Lock 391
22.6.9 Multiline Font Lock Constructs.......... ..., 392
22.6.9.1 Font Lock Multiline e 393
22.6.9.2 Region to Fontify after a Buffer Change................. 393

22.7 Automatic Indentation of code 394
22.7.1 Simple Minded Indentation Engineo i, 394
22.7.1.1 SMIE Setup and Features ..ot 395
22.7.1.2 Operator Precedence Grammarsoiuutieiiiieenninenennn.. 395
22.7.1.3 Defining the Grammar of a Language............, 396
22.7.1.4 Defining ToKens 397
22.7.1.5 Living With a Weak Parser......... o i i, 398
22.7.1.6 Specifying Indentation Rules......... L 399
22.7.1.7 Helper Functions for Indentation Rules 400
22.7.1.8 Sample Indentation Rules........... ... i i 401
22.7.1.9 Customizing Indentation......... i i 402

22.8 Desktop Save Mode 402

23 Documentation............... L. 404
23.1 Documentation Basics. e 404
23.2 Access to Documentation Strings......... ...t 405
23.3 Substituting Key Bindings in Documentation................. ... o oL 407
23.4 Describing Characters for Help Messagesoviiiiiiiin e 408
23.5 Help Functions. ... 409

24 Files. o 412
24.1 Visiting Files. . ..o 412

24.1.1 Functions for Visiting Files........ ..o i 412
24.1.2 Subroutines of VISItINGoinii 414
24.2 Saving Buffers 415
24.3 Reading from Files. 417
24.4 Writing t0 Fileso 418
245 File LOCKS. . ..ot 419
24.6 Information about Files.......... .o 420
24.6.1 Testing Accessibilityo 420
24.6.2 Distinguishing Kinds of Fileso 422
24.6.3 TIUENAINESottt ettt ettt e e e 423
24.6.4 File Attributesot 424
24.6.5 Extended File Attributes........ ..o 426
24.6.6 Locating Files in Standard Places........ oo, 427
24.7 Changing File Names and Attributes.......... i .. 428
24.8 File NAMES. . ..ot 431
24.8.1 File Name CompoOnents.ottt eens 431
24.8.2 Absolute and Relative File Namesco .. 433
24.8.3 Directory Namesottt 433
24.8.4 Functions that Expand Filenames i i i, 434
24.8.5 Generating Unique File Names o i i, 436
24.8.6 File Name Completiono 437
24.8.7 Standard File Names e 438
24.9 Contents of DIrectories e 439
24.10 Creating, Copying and Deleting Directories............ ... i, 440
24.11 Making Certain File Names “Magic” ... 441
24.12 File Format COnversionuueuuteitt ettt 444
24.12. 1 OVEIVIEW « .ttt ettt et e e e e e e e 445
24.12.2 Round-Trip Specificationo 445
24.12.3 Piecemeal Specification........... ... i 447

25 Backups and Auto-Saving................... 449

25.1 Backup Files. 449
25.1.1 Making Backup Files. 449
25.1.2 Backup by Renaming or by Copying?..........c.ooiiiiiiiiiiiiiiiii... 450
25.1.3 Making and Deleting Numbered Backup Files............. 451
25.1.4 Naming Backup Files..... ... i 452

25.2 AUBO-SAVING . oottt 453

25.3 ReVEIrting ... oot e 456

26 Buffers...... 458
26.1 Buffer Basics.o 458
26.2 The Current Buffer 458
26.3 Buffer Nameso e 460
26.4 Buffer File Name. 461
26.5 Buffer Modification 463
26.6 Buffer Modification Time. ... 464
26.7 Read-Only Buffers 465
26.8 The Buffer Listooo e 466
26.9 Creating Buffers i 468
26.10 Killing Buffers i 469
26.11 Indirect Buffers....... ..o 470
26.12 Swapping Text Between Two Buffers.......... ... o it 471
26.13 The Buffer Gap . ..o e 472

27 WINAOWS ... 473
27.1 Basic Concepts of Emacs Windows 473
27.2 Windows and Frameso e 474
27.3 WINAOW SI2E8 . .ottt ettt e e e et e e e e e e 477
274 Resizing WIndows.t e 480
27.5 Splitting WInAOwSot 483
27.6 Deleting WIndows.t e 485
27.7 Recombining Windowsot e 486
27.8 Selecting WIndowst 490
27.9 Cyclic Ordering of Windows.ouu ittt 492
27.10 Buffers and WIndows 493
27.11 Switching to a Buffer in a Window o i 495
27.12 Choosing a Window for Display ... i 496
27.13 Action Functions for display-buffer...... ...t 498
27.14 Additional Options for Displaying Buffers, 500
27.15 Window Historyo e 502
27.16 Dedicated WINAOWSttt 503
2717 Quitting WIndows e 504
27.18 Windows and Point 506
27.19 The Window Start and End Positionso, 506
27.20 Textual Scrolling.t 509
27.21 Vertical Fractional Scrollingo 512
27.22 Horizontal Scrolling i e 512
27.23 Coordinates and WIndowsoiuiii i 514
27.24 Window Configurationso.uuiiit i 516
27.25 Window Parameterso 518
27.26 Hooks for Window Scrolling and Changes i, 520

28 Frames..... 522
28.1 Creating Frames e e 522
28.2 Multiple TerminalS.ouuiii e 523
28.3 Frame Parameters. i 526

28.3.1 Access to Frame Parameters........... ... i 526
28.3.2 Initial Frame Parameters......... ..ot 527
28.3.3 Window Frame Parameters...............coiiiiiiiiiiniiiiiieee... 528
28.3.3.1 Basic Parameters. ... e 528
28.3.3.2 Position Parameters. ... 528

28.3.3.3 Size Parameters 529

28.3.3.4 Layout Parametersooiiiiii 530
28.3.3.5 Buffer Parameters........ ... 531
28.3.3.6 Window Management Parameters............ 531
28.3.3.7 Cursor Parameterso.iii i 532
28.3.3.8 Font and Color Parameters.............cooiiiiiiiiiiiiiiiiiia.n. 533
28.3.4 Frame Size And Position ... 534
28.3.5 GEOMIEHTY . o ettt et e 536
28.4 Terminal Parameters.ot e 537
28.5 Frame Titleso 537
28.6 Deleting Frames.oooo oo 538
28.7 Finding All Frames.t e 538
28.8 Minibuffers and Frames i 539
28.9 Input Focus.o e 539
28.10 Visibility of Frames e 541
28.11 Raising and Lowering Frameso i 542
28.12 Frame Configurationsot 542
28.13 Mouse Trackingot 543
28.14 Mouse PoSitionooi i 543
28. 15 Pop-Up MenuUSot 544
28.16 Dialog Boxes. 545
28.17 Pointer Shape. 545
28.18 Window System Selectionst 546
28.19 Drag and Drop. 547
28.20 Color Nameso ottt 547
28.21 Text Terminal Colorsottt e e 548
28.22 X ROSOUICES .ottt t ettt et ettt e e e e 549
28.23 Display Feature Testing e 550
29 Positions............. ... 553
20,1 PoOINb .. oo 553
20.2 MObIOM . . ottt 554
29.2.1 Motion by Charactersot e 554
29.2.2 Motion by Words. . ..o 554
29.2.3 Motion to an End of the Buffer........ 555
29.2.4 Motion by Text Lines ..o 556
29.2.5 Motion by Screen Lines........... i 557
29.2.6 Moving over Balanced Expressions..............cooiiiiiiiiiiiiiiii i, 559
29.2.7 Skipping Characters.t e 560
20.3 B CUTSIONS « . ittt ettt ettt e e 561
294 NAITOWIINE . . .ottt ettt et e ettt e e e 562
30 Markers. 564
30.1 Overview of Markers i 564
30.2 Predicates on Markers.t e 565
30.3 Functions that Create Markers i 565
30.4 Information from Markers. 566
30.5 Marker Insertion Typesot 567
30.6 Moving Marker Positions. 567
30.7 The Mark. ..o e e 568
30.8 The Region e 571

31 LeXt. .. 572
31.1 Examining Text Near Point i i 572
31.2 Examining Buffer Contents.......... ... 573
31.3 Comparing Texto 575
314 Inserting Text. 975
31.5 User-Level Insertion Commandsoiiiineii i 577
31.6 Deleting Textt 578
31.7 User-Level Deletion Commands 579
31.8 The Kill Ringottt e e e 581

31.8.1 Kill Ring ComcCepts . .« v vttt et 581
31.8.2 Functions for Killing ... 582
31.8.3 YanKing. e 582
31.8.4 Functions for Yankingooiiiiiii i 583
31.8.5 Low-Level Kill Ringo e 584
31.8.6 Internals of the Kill Ring........ ... o i 585
319 Undo . e 586
31.10 Maintaining Undo Lists 588
BLI1 Fillng . oot 589
31.12 Margins for Fillingo i 591
31.13 Adaptive Fill Mode 592
3114 Auto Filling . ..o 593
3115 Sorting Text 594
31.16 Counting ColumnSttt e 597
3117 Indentationo..o oo e 598
31.17.1 Indentation Primitives o e 598
31.17.2 Indentation Controlled by Major Mode 598
31.17.3 Indenting an Entire Region........ i i 599
31.17.4 Indentation Relative to Previous Lines.............o L. 600
31.17.5 Adjustable “Tab Stops” ..o 601
31.17.6 Indentation-Based Motion Commands................ciiiiiiiiiiien. .. 601
3118 Case CRAN@ESottt et e ettt e e et e 601
31,19 Text Propertiest e 603
31.19.1 Examining Text Properties......... ... i 603
31.19.2 Changing Text Properties 604
31.19.3 Text Property Search Functions........... ... i i 606
31.19.4 Properties with Special Meanings...........o ... 608
31.19.5 Formatted Text Properties......... ... 612
31.19.6 Stickiness of Text Propertieso 613
31.19.7 Lazy Computation of Text Propertieso .. 614
31.19.8 Defining Clickable Text........ooiuiiii e 614
31.19.9 Defining and Using Fields....... ... i 616
31.19.10 Why Text Properties are not Intervals........... oL, 618
31.20 Substituting for a Character Code......o, 618
31.21 RegiSterS. « ot 619
31.22 Transposition of Textt e 620
31.23 Dealing With Compressed Dataoiiiiiiiiii e 621
31.24 Base 64 Encodingo 621
31.25 Checksum/Hash ... 622
31.26 Parsing HTML and XMLo e 622
31.27 Atomic Change GIOUDSttt e 623
31.28 Change HOOKS 624

32 Non-ASCII Characters...................ooiiiiiiiiiii .. 626
32.1 Text Representations.ot 626
32.2 Disabling Multibyte Characters.......... ..o 627
32.3 Converting Text Representations........o i .. 627
32.4 Selecting a Representation i 628
32.5 Character Codest 629
32.6 Character Properties. i 630
327 Character Setst 633
32.8 Scanning for Character Sets.......... ..o e 634
32.9 Translation of Charactersouiiiii e 635
32.10 Coding SYStEIS. « ...ttt t ettt e 636
32.10.1 Basic Concepts of Coding Systems........ ..., 636
32.10.2 Encoding and I/O... ... 637
32.10.3 Coding Systems in LiSpot 638
32.10.4 User-Chosen Coding Systems.o.oiiuiiiiiiiiii i, 640
32.10.5 Default Coding Systemsttt 641
32.10.6 Specifying a Coding System for One Operation 644
32.10.7 Explicit Encoding and Decoding........... ... i 645
32.10.8 Terminal I/O Encodingo 646
3211 Input Methods. ... 647
3212 L0oCales . o oo e 648
33 Searching and Matching................................... 649
33.1 Searching for Stringso.uoiiiii i e e 649
33.2 Searching and Caseoiuuitiii e 651
33.3 Regular EXpressions.o 651
33.3.1 Syntax of Regular Expressions. 651
33.3.1.1 Special Characters in Regular Expressions 652
33.3.1.2 Character Classesouunuuit et 654
33.3.1.3 Backslash Constructs in Regular Expressions.......................... 655
33.3.2 Complex Regexp Example...... ..o e 658
33.3.3 Regular Expression Functions i i 659
33.4 Regular Expression Searching i 660
33.5 POSIX Regular Expression Searching............ i i, 662
33.6 The Match Data e e 663
33.6.1 Replacing the Text that Matched it 663
33.6.2 Simple Match Data ACCESS oii e 664
33.6.3 Accessing the Entire Match Data............. i .. 666
33.6.4 Saving and Restoring the Match Data.........o .. 667
33.7 Search and Replace 667
33.8 Standard Regular Expressions Used in Editing............., 670
34 Syntax Tables....... 671
34.1 Syntax Table Concepts. 671
34.2 Syntax Descriptors 671
34.2.1 Table of Syntax Classesooutiiiii i e 672
34.2.2 Syntax Flags 674
34.3 Syntax Table Functions i 675
34.4 Syntax Properties. 677
34.5 Motion and Syntax.coout i e 678
34.6 Parsing ExXpressionsoouuuio i e 678

34.6.1 Motion Commands Based on Parsing.............. ... il 678

34.6.2 Finding the Parse State for a Positiono 679

34.6.3 Parser State.t 680
34.6.4 Low-Level Parsing......... ..o e 681
34.6.5 Parameters to Control Parsing.......... ... i i 681
34.7 Syntax Table Internals 681
34.8 CategOTiesttt e 682
35 Abbrevs and Abbrev Expansion.......................... 685
35.1 Abbrev Tables 685
35.2 Defining ADDrevso 686
35.3 Saving Abbrevs in Files i 687
35.4 Looking Up and Expanding Abbreviations............. ..., 687
35.5 Standard Abbrev Tables 689
35.6 ADbDbrev Properties e 689
35.7 Abbrev Table Properties 690
36 ProcCesses............ i 691
36.1 Functions that Create Subprocesses 691
36.2 Shell Arguments 692
36.3 Creating a Synchronous Process....... 693
36.4 Creating an Asynchronous Process o i 697
36.5 Deleting Processeso e 698
36.6 Process Information......... ..o i e 699
36.7 Sending Input to Processes. 701
36.8 Sending Signals to Processes 702
36.9 Receiving Output from Processes......... ... 703
36.9.1 Process Buffers. i 704
36.9.2 Process Filter Functions......... i 705
36.9.3 Decoding Process Output 706
36.9.4 Accepting Output from Processes.o 707
36.10 Sentinels: Detecting Process Status Changes............ ..., 707
36.11 Querying Before Exit 708
36.12 Accessing Other Processeso.oiiii e 709
36.13 Transaction QUEUESttt et 711
36.14 Network Connectionsooot i e i e e 711
36.15 INEtWOTK SEIVETSottt ettt et e e e e e e e 714
36.16 Datagrams.o e 714
36.17 Low-Level Network ACCESSottt e e 714
36.17.1 make—NetWOrK-—PrOCESSottt 714
36.17.2 Network Optionst e e 716
36.17.3 Testing Availability of Network Features............, 717
36.18 Misc Network Facilitieso 718
36.19 Communicating with Serial Ports.......... i i 719
36.20 Packing and Unpacking Byte Arrays ... 721
36.20.1 Describing Data Layouto i 721
36.20.2 Functions to Unpack and Pack Bytes........ ... it 723

36.20.3 Examples of Byte Unpacking and Packing 724

37 Emacs Display ... 728
37.1 Refreshing the Screen 728
37.2 Forcing Redisplay 728
37.3 Truncation. 729
37.4 The ECho Area. e e 730

37.4.1 Displaying Messages in the Echo Area.........o .. 730
37.4.2 Reporting Operation Progresso, 731
37.4.3 Logging Messages in *MeSSages®ttt 733
37.4.4 Echo Area Customizationo, 733
37.5 Reporting Warnings.ottt e 734
37.5.1 Warning Basics. ... 734
37.5.2 Warning Variables. 735
37.5.3 Warning Options. e e e 736
37.5.4 Delayed Warningsot 736
37.6 Invisible Text . ..o 737
37.7 Selective DISplayo 739
37.8 Temporary Displays.o 740
379 OVerlays . .o 742
37.9.1 Managing Overlays.ttt e 743
37.9.2 Overlay Properties e 745
37.9.3 Searching for Overlays. ... 748
37.10 Size of Displayed Textot e 749
37.11 Line Helghto 750
37012 FaCES . ottt 751
37.12.1 Face Attributes 751
37.12.2 Defining Facest 754
37.12.3 Face Attribute Functions. ... 756
37.12.4 Displaying Faces 759
37.12.5 Face Remappingc.uuuri e 759
37.12.6 Functions for Working with Faces o oL, 761
37.12.7 Automatic Face Assignment....... 761
37.12.8 Basic Faceso 762
37.12.9 Font Selection.coouiiii i 762
37.12.10 Looking Up Fonts. ... e 764
37.12.11 Fonbsets ..o oot e 764
37.12.12 Low-Level Font Representation.............. 766
ST 13 BTINEES . ottt 768
37.13.1 Fringe Size and Position........ ... i 768
37.13.2 Fringe Indicators. ... 769
37.13.3 Fringe CurSOTSttt e e e e 770
37.13.4 Fringe Bitmapst e 770
37.13.5 Customizing Fringe Bitmaps o i i 771
37.13.6 The Overlay ATTOWouo i e 772
3714 Scroll Bars. ... 772
37.15 Window Dividers e 774
37.16 The display Propertyc..ooiuiimm 774
37.16.1 Display Specs That Replace The Text ..., 775
37.16.2 Specified SPaCES. ..ttt e e 775
37.16.3 Pixel Specification for Spaces.o 776
37.16.4 Other Display Specifications........... ..o 7T
37.16.5 Displaying in the Margins....... ... 778
ST LT IS . ettt e 779
37.17.1 TImage Formats. 779

37.17.2 Tmage Descriptors.ot 780

37.17.3 XBM Iages . . vttt ettt e 782
37174 XPM ImMages . . .ot e et e e e 783
37.17.5 PostScript Imagesot 783
37.17.6 ImageMagick Images i e 783
37.17.7 Other Image Typest e 784
37.17.8 Defining Imagesot 785
37.17.9 Showing Images. 786
37.17.10 Multi-Frame Images.ot e 787
37.17.11 Image Cache.ot 788
BTA8 BubtomsS. ...ttt 789
37.18.1 Button Properties. 789
37.18.2 Button Types. ...t 790
37.18.3 Making Buttons. e 790
37.18.4 Manipulating Buttons........ ..o 791
37.18.5 Button Buffer Commands......... ... 792
37.19 Abstract Display 792
37.19.1 Abstract Display Functions.........o i i 793
37.19.2 Abstract Display Example....... ..o 795
37.20 Blinking Parentheseso i e 797
37.21 Character Display. e e 797
37.21.1 Usual Display Conventionsouuuiiiiiiiiiiinanean, 798
37.21.2 Display Tables 799
37.21.3 Active Display Table i e 800
37.21.4 Glyphs. oo 800
37.21.5 Glyphless Character Display. ...t 801
3722 BEEPDING. vttt 802
37.23 WiIndow SYStEINS. « ...ttt 802
37.24 Bidirectional Displayo 803
38 Operating System Interface............................... 806
38.1 Starting Up Emacs. 806
38.1.1 Summary: Sequence of Actions at Startup............. 806
38.1.2 The Init Fileo e 808
38.1.3 Terminal-Specific Initialization 810
38.1.4 Command-Line Argumentsouuteteit i 810
38.2 Getting Out of Emacs. ... 811
38.2.1 Killing Emacsot e 812
38.2.2 Suspending Emacso.oiii 812
38.3 Operating System Environment i 814
38.4 User Identificationcoiuiii i e 817
38.5 Time of Day ... 818
38.6 Time CONVEISION . . o \v ittt ettt e e et e et e e et e et e 819
38.7 Parsing and Formatting Times i 820
38.8 Processor RUn time 823
38.9 Time Calculations. e 823
38.10 Timers for Delayed Execution.......... ... 824
3811 Tdle THmeTS . o oot ettt e e e e e 825
38.12 Terminal Inputo e 827
38.12.1 Input MoOdeso e 827
38.12.2 Recording Input. 828
38.13 Terminal Outputb.ttt e e e 828
38.14 Sound OUbPUL . ..ottt e 829
38.15 Operating on X11 KeYSYIS . ..o oottt e e e 830

38.16 Batch Modeo 830

38.17 Session Managemmentu ettt e e e e e 830
38.18 Desktop Notificationsooti i 831
38.19 Notifications on File Changes i 834
38.20 Dynamically Loaded Libraries. 836
39 Preparing Lisp code for distribution..................... 838
39.1 Packaging Basics........oouiiiiii i 838
39.2 Simple Packages 839
39.3 Multi-file Packages 840
39.4 Creating and Maintaining Package Archives 841
Appendix A Emacs 23 Antinews 843
A.1 OId Lisp Features in Emacs 23 e 843
Appendix B GNU Free Documentation License 845
Appendix C GNU General Public License 852
Appendix D Tips and Conventions.......................... 862
D.1 Emacs Lisp Coding Conventionseuiueiittintineniinieneenne.. 862
D.2 Key Binding Conventionsttt 864
D.3 Emacs Programming Tipsuuetiiiiiiiii e 865
D.4 Tips for Making Compiled Code Fast i, 866
D.5 Tips for Avoiding Compiler Warningsc.o.eeiueiniineneniennn. 867
D.6 Tips for Documentation Strings......... ...t 867
D.7 Tips on Writing Commentsttt e 870
D.8 Conventional Headers for Emacs Libraries...................ooo o it 871
Appendix E GNU Emacs Internals 874
E.1 Building Emacs. ... 874
E.2 Pure Storage. 875
E.3 Garbage Collectiono i 876
Eid Memory Usage. . ..ottt et e e 880
E.5 G Dialect 880
E.6 Writing Emacs Primitives. 880
E.7 Object Internalsoo 884
E.7.1 Buffer Internalso e 885

E.7.2 Window Internals. o 889

E.7.3 Process Internals.......... .. i 892

E.8 G Integer TyPes . ..ottt et 893
Appendix F Standard Errors................................ 895
Appendix G Standard Keymaps............................. 898
Appendix H Standard Hooks................................ 901

Chapter 1: Introduction 1

1 Introduction

Most of the GNU Emacs text editor is written in the programming language called Emacs Lisp.
You can write new code in Emacs Lisp and install it as an extension to the editor. However,
Emacs Lisp is more than a mere “extension language”; it is a full computer programming
language in its own right. You can use it as you would any other programming language.

Because Emacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and so on.
Emacs Lisp is closely integrated with the editing facilities; thus, editing commands are functions
that can also conveniently be called from Lisp programs, and parameters for customization are
ordinary Lisp variables.

This manual attempts to be a full description of Emacs Lisp. For a beginner’s introduction to
Emacs Lisp, see An Introduction to Emacs Lisp Programming, by Bob Chassell, also published
by the Free Software Foundation. This manual presumes considerable familiarity with the use
of Emacs for editing; see The GNU Emacs Manual for this basic information.

Generally speaking, the earlier chapters describe features of Emacs Lisp that have counter-
parts in many programming languages, and later chapters describe features that are peculiar to
FEmacs Lisp or relate specifically to editing.

This is edition 3.1 of the GNU Emacs Lisp Reference Manual, corresponding to Emacs version
24.5.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless. There
are a few topics that are not covered, either because we consider them secondary (such as most
of the individual modes) or because they are yet to be written. Because we are not able to deal
with them completely, we have left out several parts intentionally.

The manual should be fully correct in what it does cover, and it is therefore open to criticism
on anything it says—from specific examples and descriptive text, to the ordering of chapters
and sections. If something is confusing, or you find that you have to look at the sources or
experiment to learn something not covered in the manual, then perhaps the manual should be
fixed. Please let us know.

As you use this manual, we ask that you mark pages with corrections so you can later look
them up and send them to us. If you think of a simple, real-life example for a function or group
of functions, please make an effort to write it up and send it in. Please reference any comments
to the chapter name, section name, and function name, as appropriate, since page numbers
and chapter and section numbers will change and we may have trouble finding the text you are
talking about. Also state the version of the edition you are criticizing,.

Please send comments and corrections using M-x report-emacs-bug.

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950s at the Massachusetts
Institute of Technology for research in artificial intelligence. The great power of the Lisp language
makes it ideal for other purposes as well, such as writing editing commands.

Dozens of Lisp implementations have been built over the years, each with its own idiosyn-
crasies. Many of them were inspired by Maclisp, which was written in the 1960s at MI'T’s Project
MAC. Eventually the implementers of the descendants of Maclisp came together and developed
a standard for Lisp systems, called Common Lisp. In the meantime, Gerry Sussman and Guy
Steele at MIT developed a simplified but very powerful dialect of Lisp, called Scheme.

Chapter 1: Introduction 2

GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many features of Common Lisp
have been omitted or simplified in order to reduce the memory requirements of GNU Emacs.
Sometimes the simplifications are so drastic that a Common Lisp user might be very confused.
We will occasionally point out how GNU Emacs Lisp differs from Common Lisp. If you don’t
know Common Lisp, don’t worry about it; this manual is self-contained.

A certain amount of Common Lisp emulation is available via the c1-1ib library. See Section
“Overview” in Common Lisp Extensions.

Emacs Lisp is not at all influenced by Scheme; but the GNU project has an implementation
of Scheme, called Guile. We use it in all new GNU software that calls for extensibility.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” refer to those
routines in Lisp that convert textual representations of Lisp objects into actual Lisp objects,
and vice versa. See Section 2.1 [Printed Representation], page 7, for more details. You, the
person reading this manual, are thought of as “the programmer” and are addressed as “you”.
“The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code are formatted like this: (1ist 1 2 3). Names that represent metasyn-
tactic variables, or arguments to a function being described, are formatted like this: first-number.

1.3.2 nil and t

In Emacs Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When used
as a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the same
object, the symbol nil. The different ways of writing the symbol are intended entirely for human
readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to determine which
representation was actually written by the programmer.

In this manual, we write () when we wish to emphasize that it means the empty list, and
we write nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo () ; Emphasize the empty list
(setq foo-flag nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol t
always has the value t.

In Emacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt to
change their values results in a setting-constant error. See Section 11.2 [Constant Variables],
page 125.

booleanp object [Function]
Return non-nil if object is one of the two canonical boolean values: t or nil.

Chapter 1: Introduction 3

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always produces a
result, which is a Lisp object. In the examples in this manual, this is indicated with ‘=":
(car (1 2))
=1
You can read this as “(car ’ (1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show the
result of the expansion with ‘=’. We may or may not show the result of the evaluation of the
expanded form.

(third ’(a b c))
— (car (cdr (cdr ’(a b c))))
= C

To help describe one form, we sometimes show another form that produces identical results.

The exact equivalence of two forms is indicated with ‘=".

(make-sparse-keymap) = (list ’keymap)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute example
code in a Lisp Interaction buffer (such as the buffer *scratch#), the printed text is inserted
into the buffer. If you execute the example by other means (such as by evaluating the function
eval-region), the printed text is displayed in the echo area.

Examples in this manual indicate printed text with ‘ -’, irrespective of where that text goes.
The value returned by evaluating the form follows on a separate line with ‘=",
(progn (prinl ’foo) (princ "\n") (prinl ’bar))
- foo
- bar
= bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area. We show
the error message on a line starting with ’. Note that * ” itself does not appear in
the echo area.

(+ 23 ’x)

Wrong type argument: number-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples describe modifications to the contents of a buffer, by showing the “before” and
“after” versions of the text. These examples show the contents of the buffer in question between
two lines of dashes containing the buffer name. In addition, ‘x’ indicates the location of point.
(The symbol for point, of course, is not part of the text in the buffer; it indicates the place
between two characters where point is currently located.)

—————————— Buffer: foo ----------
This is the xcontents of foo.
—————————— Buffer: foo --—————--—-

(insert "changed ")

= nil
—————————— Buffer: foo - ————————-
This is the changed *contents of foo.
—————————— Buffer: foo --————————-

Chapter 1: Introduction 4

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described in this
manual in a uniform format. The first line of a description contains the name of the item followed
by its arguments, if any. The category—function, variable, or whatever—is printed next to the
right margin. The description follows on succeeding lines, sometimes with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of argument names. These names are also used in the body of the
description, to stand for the values of the arguments.

The appearance of the keyword &optional in the argument list indicates that the subsequent
arguments may be omitted (omitted arguments default to nil). Do not write &optional when
you call the function.

The keyword &rest (which must be followed by a single argument name) indicates that any
number of arguments can follow. The single argument name following &rest receives, as its
value, a list of all the remaining arguments passed to the function. Do not write &rest when
you call the function.

Here is a description of an imaginary function foo:

foo integerl &optional integer2 &rest integers [Function]
The function foo subtracts integerl from integer2, then adds all the rest of the arguments
to the result. If integer2 is not supplied, then the number 19 is used by default.

(foo 1 5 3 9)
= 16
(foo 5)
= 14

More generally,

(foo w x y...)

+ Cxw y...)

By convention, any argument whose name contains the name of a type (e.g., integer, integerl
or buffer) is expected to be of that type. A plural of a type (such as buffers) often means a list
of objects of that type. An argument named object may be of any type. (For a list of Emacs
object types, see Chapter 2 [Lisp Data Types|, page 7.) An argument with any other sort of
name (e.g., new-file) is specific to the function; if the function has a documentation string, the
type of the argument should be described there (see Chapter 23 [Documentation], page 404).

See Section 12.2 [Lambda Expressions|, page 151, for a more complete description of argu-
ments modified by &optional and &rest.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands are
simply functions that may be called interactively; macros process their arguments differently
from functions (the arguments are not evaluated), but are presented the same way.

The descriptions of macros and special forms use a more complex notation to specify optional
and repeated arguments, because they can break the argument list down into separate arguments
in more complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-
args...’ stands for zero or more arguments. Parentheses are used when several arguments are
grouped into additional levels of list structure. Here is an example:

Chapter 1: Introduction 5

count-loop (var [from to [inc]]) body. .. [Special Form]
This imaginary special form implements a loop that executes the body forms and then in-
crements the variable var on each iteration. On the first iteration, the variable has the value
from; on subsequent iterations, it is incremented by one (or by inc if that is given). The loop
exits before executing body if var equals to. Here is an example:

(count-loop (i 0 10)
(prinl i) (princ " ")
(prinl (aref vector 1i))
(terpri))

If from and to are omitted, var is bound to nil before the loop begins, and the loop exits if
var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)
(if (pending)
(fixit)
(setq done t)))
In this special form, the arguments from and to are optional, but must both be present or
both absent. If they are present, inc may optionally be specified as well. These arguments
are grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can be bound (or set) to an object. The object to which a variable is
bound is called a value; we say also that variable holds that value. Although nearly all variables
can be set by the user, certain variables exist specifically so that users can change them; these
are called user options. Ordinary variables and user options are described using a format like
that for functions, except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

electric-future-map [Variable]
The value of this variable is a full keymap used by Electric Command Future mode. The
functions in this map allow you to edit commands you have not yet thought about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Option’.

1.4 Version Information

These facilities provide information about which version of Emacs is in use.

emacs-version &optional here [Command]
This function returns a string describing the version of Emacs that is running. It is useful to
include this string in bug reports.
(emacs-version)
= "GNU Emacs 23.1 (i686-pc-linux-gnu, GTK+ Version 2.14.4)
of 2009-06-01 on cyd.mit.edu"
If here is non-nil, it inserts the text in the buffer before point, and returns nil. When this
function is called interactively, it prints the same information in the echo area, but giving a
prefix argument makes here non-nil.

emacs-build-time [Variable]
The value of this variable indicates the time at which Emacs was built. It is a list of four
integers, like the value of current-time (see Section 38.5 [Time of Day], page 818).

emacs-build-time
= (20614 63694 515336 438000)

Chapter 1: Introduction 6

emacs-version [Variable]
The value of this variable is the version of Emacs being run. It is a string such as "23.1.1".
The last number in this string is not really part of the Emacs release version number; it
is incremented each time Emacs is built in any given directory. A value with four numeric
components, such as "22.0.91.1", indicates an unreleased test version.

emacs-major-version [Variable]
The major version number of Emacs, as an integer. For Emacs version 23.1, the value is 23.

emacs-minor-version [Variable]
The minor version number of Emacs, as an integer. For Emacs version 23.1, the value is 1.

1.5 Acknowledgments

This manual was originally written by Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M.
Stallman and Chris Welty, the volunteers of the GNU manual group, in an effort extending over
several years. Robert J. Chassell helped to review and edit the manual, with the support of the
Defense Advanced Research Projects Agency, ARPA Order 6082, arranged by Warren A. Hunt,
Jr. of Computational Logic, Inc. Additional sections have since been written by Miles Bader,
Lars Brinkhoff, Chong Yidong, Kenichi Handa, Lute Kamstra, Juri Linkov, Glenn Morris, Thien-
Thi Nguyen, Dan Nicolaescu, Martin Rudalics, Kim F. Storm, Luc Teirlinck, and Eli Zaretskii,
and others.

Corrections were supplied by Drew Adams, Juanma Barranquero, Karl Berry, Jim Blandy,
Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard Davis, Lawrence R. Dodd,
Peter Doornbosch, David A. Duff, Chris Eich, Beverly Erlebacher, David Eckelkamp, Ralf
Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric Hanchrow, Jesper Harder, George
Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson, Jak Kirman, Bob Knighten, Frederick
M. Korz, Joe Lammens, Glenn M. Lewis, K. Richard Magill, Brian Marick, Roland McGrath,
Stefan Monnier, Skip Montanaro, John Gardiner Myers, Thomas A. Peterson, Francesco Po-
torti, Friedrich Pukelsheim, Arnold D. Robbins, Raul Rockwell, Jason Rumney, Per Starbéck,
Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean White,
Eduard Wiebe, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

For a more complete list of contributors, please see the relevant change log entries in the
Emacs source repository.

Chapter 2: Lisp Data Types 7

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our purposes, a
type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar structures
and may usually be used in the same contexts. Types can overlap, and objects can belong to
two or more types. Consequently, we can ask whether an object belongs to a particular type,
but not for “the” type of an object.

A few fundamental object types are built into Emacs. These, from which all other types are
constructed, are called primitive types. Each object belongs to one and only one primitive type.
These types include integer, float, cons, symbol, string, vector, hash-table, subr, and byte-code
function, plus several special types, such as buffer, that are related to editing. (See Section 2.4
[Editing Types], page 20.)

Each primitive type has a corresponding Lisp function that checks whether an object is a
member of that type.

Lisp is unlike many other languages in that its objects are self-typing: the primitive type of
each object is implicit in the object itself. For example, if an object is a vector, nothing can
treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the type
is known by the compiler but not represented in the data. Such type declarations do not exist
in Emacs Lisp. A Lisp variable can have any type of value, and it remembers whatever value
you store in it, type and all. (Actually, a small number of Emacs Lisp variables can only take
on values of a certain type. See Section 11.14 [Variables with Restricted Values], page 147.)

This chapter describes the purpose, printed representation, and read syntax of each of the
standard types in GNU Emacs Lisp. Details on how to use these types can be found in later
chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp printer
(the function prini) for that object. Every data type has a unique printed representation. The
read syntax of an object is the format of the input accepted by the Lisp reader (the function
read) for that object. This is not necessarily unique; many kinds of object have more than one
syntax. See Chapter 18 [Read and Print], page 246.

In most cases, an object’s printed representation is also a read syntax for the object. However,
some types have no read syntax, since it does not make sense to enter objects of these types
as constants in a Lisp program. These objects are printed in hash notation, which consists of
the characters ‘#<’, a descriptive string (typically the type name followed by the name of the
object), and a closing ‘>’. For example:

(current-buffer)
= #<buffer objects.texi>

Hash notation cannot be read at all, so the Lisp reader signals the error invalid-read-syntax
whenever it encounters ‘#<’.

In other languages, an expression is text; it has no other form. In Lisp, an expression is
primarily a Lisp object and only secondarily the text that is the object’s read syntax. Often
there is no need to emphasize this distinction, but you must keep it in the back of your mind,
or you will occasionally be very confused.

When you evaluate an expression interactively, the Lisp interpreter first reads the textual

representation of it, producing a Lisp object, and then evaluates that object (see Chapter 9
[Evaluation], page 100). However, evaluation and reading are separate activities. Reading

Chapter 2: Lisp Data Types 8

returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 18.3 [Input Functions|, page 248, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’) starts
a comment if it is not within a string or character constant. The comment continues to the end
of line. The Lisp reader discards comments; they do not become part of the Lisp objects which
represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The Emacs Lisp byte compiler uses this in its
output files (see Chapter 16 [Byte Compilation], page 210). It isn’t meant for source files,
however.

See Section D.7 [Comment Tips|, page 870, for conventions for formatting comments.

2.3 Programming Types

There are two general categories of types in Emacs Lisp: those having to do with Lisp program-
ming, and those having to do with editing. The former exist in many Lisp implementations, in
one form or another. The latter are unique to Emacs Lisp.

2.3.1 Integer Type

The range of values for an integer depends on the machine. The minimum range is —536,870,912
to 536,870,911 (30 bits; ie., —22 to 22 — 1) but many machines provide a wider range.
Emacs Lisp arithmetic functions do not check for integer overflow. Thus (1+ 536870911) is
—536,870,912 if Emacs integers are 30 bits.

The read syntax for integers is a sequence of (base ten) digits with an optional sign at the
beginning and an optional period at the end. The printed representation produced by the Lisp
interpreter never has a leading ‘+’ or a final .’.

-1 ; The integer —1.

1 ; The integer 1.

1. ; Also the integer 1.
+1 ; Also the integer 1.

As a special exception, if a sequence of digits specifies an integer too large or too small to be
a valid integer object, the Lisp reader reads it as a floating-point number (see Section 2.3.2
[Floating-Point Type|, page 8). For instance, if Emacs integers are 30 bits, 536870912 is read
as the floating-point number 536870912.0.

See Chapter 3 [Numbers], page 30, for more information.

2.3.2 Floating-Point Type

Floating-point numbers are the computer equivalent of scientific notation; you can think of
a floating-point number as a fraction together with a power of ten. The precise number of
significant figures and the range of possible exponents is machine-specific; Emacs uses the C
data type double to store the value, and internally this records a power of 2 rather than a
power of 10.

The printed representation for floating-point numbers requires either a decimal point (with
at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘+15e2’, ‘15.0e+2’,
‘+1500000e-3’, and ‘. 15e4’ are five ways of writing a floating-point number whose value is 1500.
They are all equivalent.

Chapter 2: Lisp Data Types 9

See Chapter 3 [Numbers], page 30, for more information.

2.3.3 Character Type

A character in Emacs Lisp is nothing more than an integer. In other words, characters are rep-
resented by their character codes. For example, the character 4 is represented as the integer 65.

Individual characters are used occasionally in programs, but it is more common to work with
strings, which are sequences composed of characters. See Section 2.3.8 [String Type|, page 16.

Characters in strings and buffers are currently limited to the range of 0 to 4194303—twenty
two bits (see Section 32.5 [Character Codes|, page 629). Codes 0 through 127 are ASCII codes;
the rest are non-ASCII (see Chapter 32 [Non-ASCII Characters|, page 626). Characters that
represent keyboard input have a much wider range, to encode modifier keys such as Control,
Meta and Shift.

There are special functions for producing a human-readable textual description of a character
for the sake of messages. See Section 23.4 [Describing Characters|, page 408.

2.3.3.1 Basic Char Syntax

Since characters are really integers, the printed representation of a character is a decimal number.
This is also a possible read syntax for a character, but writing characters that way in Lisp
programs is not clear programming. You should always use the special read syntax formats that
Emacs Lisp provides for characters. These syntax formats start with a question mark.

The usual read syntax for alphanumeric characters is a question mark followed by the char-
acter; thus, ‘?A’ for the character 4, ‘?B’ for the character B, and ‘?a’ for the character a.

For example:
7Q = 81 ?7q = 113

You can use the same syntax for punctuation characters, but it is often a good idea to add
a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For example, ‘?\ (’
is the way to write the open-paren character. If the character is ‘\’, you must use a second ‘\’
to quote it: ‘?\\’.

You can express the characters control-g, backspace, tab, newline, vertical tab, formfeed,
space, return, del, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\s’, ‘?\r’, ‘?\d’, and
‘?\e’, respectively. (‘?\s’ followed by a dash has a different meaning—it applies the “super”
modifier to the following character.) Thus,

Na = 7 ; control-g, C-g

?\b = 8 ; backspace, BS, C-h

Nt = 9 ; tab, TAB, C-i

?\n = 10 ; newline, C-j

\v = 11 ; vertical tab, C-k

\f = 12 ; formfeed character, C-1
?\r = 13 ; carriage return, RET, C-m
\e = 27 ; escape character, ESC, C-[
?\s = 32 ; Space character, SPC
2\\ = 92 ; backslash character, \
7\d = 127 ; delete character, DEL

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an “escape character”; this terminology has nothing to do with the
character ESC. ‘\s’ is meant for use in character constants; in string constants, just write the
space.

A backslash is allowed, and harmless, preceding any character without a special escape mean-
ing; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most characters.

Chapter 2: Lisp Data Types 10

However, you should add a backslash before any of the characters ‘O\|;? “"#.,’ to avoid confus-
ing the Emacs commands for editing Lisp code. You can also add a backslash before whitespace
characters such as space, tab, newline and formfeed. However, it is cleaner to use one of the
easily readable escape sequences, such as ‘\t’ or ‘\s’, instead of an actual whitespace character
such as a tab or a space. (If you do write backslash followed by a space, you should write an
extra space after the character constant to separate it from the following text.)

2.3.3.2 General Escape Syntax

In addition to the specific escape sequences for special important control characters, Emacs
provides several types of escape syntax that you can use to specify non-ASCII text characters.

Firstly, you can specify characters by their Unicode values. ?\unnnn represents a character
with Unicode code point ‘U+nnnn’, where nnnn is (by convention) a hexadecimal number with
exactly four digits. The backslash indicates that the subsequent characters form an escape
sequence, and the ‘u’ specifies a Unicode escape sequence.

There is a slightly different syntax for specifying Unicode characters with code points higher
than U+ffff: ?\UOOnnnnnn represents the character with code point ‘U+nnnnnn’, where nnnnnn
is a six-digit hexadecimal number. The Unicode Standard only defines code points up to
‘U+10ffff’, so if you specify a code point higher than that, Emacs signals an error.

Secondly, you can specify characters by their hexadecimal character codes. A hexadecimal
escape sequence consists of a backslash, ‘x’, and the hexadecimal character code. Thus, ‘?\x41’
is the character 4, ‘?\x1’ is the character C-a, and 7\xe0 is the character ‘a’. You can use any
number of hex digits, so you can represent any character code in this way.

Thirdly, you can specify characters by their character code in octal. An octal escape sequence
consists of a backslash followed by up to three octal digits; thus, ‘?\101’ for the character A,
“?2\001’ for the character C-a, and ?\002 for the character C-b. Only characters up to octal
code 777 can be specified this way.

These escape sequences may also be used in strings. See Section 2.3.8.2 [Non-ASCII in
Strings|, page 16.

2.3.3.3 Control-Character Syntax

Control characters can be represented using yet another read syntax. This consists of a question
mark followed by a backslash, caret, and the corresponding non-control character, in either
upper or lower case. For example, both ‘?\"I’" and ‘?\"1i’ are valid read syntax for the character
C-1i, the character whose value is 9.
Instead of the ‘°’) you can use ‘C-’; thus, ‘?\C-1’ is equivalent to ‘?\"I’ and to ‘“?\"1i”:
?\"I = 9 7\C-I = 9
In strings and buffers, the only control characters allowed are those that exist in ASCII; but
for keyboard input purposes, you can turn any character into a control character with ‘C-’. The
character codes for these non-ASCII control characters include the 226 bit as well as the code
for the corresponding non-control character. Ordinary text terminals have no way of generating

non-ASCII control characters, but you can generate them straightforwardly using X and other
window systems.

For historical reasons, Emacs treats the DEL character as the control equivalent of ?:
?2\"7 = 127 ?2\C-7 = 127

As a result, it is currently not possible to represent the character Control-?, which is a mean-
ingful input character under X, using ‘\C-’. It is not easy to change this, as various Lisp files
refer to DEL in this way.

(~)

For representing control characters to be found in files or strings, we recommend the
syntax; for control characters in keyboard input, we prefer the ‘C-’ syntax. Which one you use

Chapter 2: Lisp Data Types 11

does not affect the meaning of the program, but may guide the understanding of people who
read it.

2.3.3.4 Meta-Character Syntax

A meta character is a character typed with the META modifier key. The integer that represents
such a character has the 227 bit set. We use high bits for this and other modifiers to make
possible a wide range of basic character codes.

In a string, the 27 bit attached to an ASCII character indicates a meta character; thus, the
meta characters that can fit in a string have codes in the range from 128 to 255, and are the meta
versions of the ordinary ASCII characters. See Section 20.7.15 [Strings of Events], page 306, for
details about META-handling in strings.

The read syntax for meta characters uses ‘\M-’. For example, ‘?\M-A’ stands for M-A. You
can use ‘\M-’ together with octal character codes (see below), with ‘\C-’, or with any other
syntax for a character. Thus, you can write M-4 as ‘?\M-A’, or as ‘?\M-\101". Likewise, you can
write C-M-b as ‘?7\M-\C-b’, ‘?\C-\M-b’, or ‘7\M-\002’.

2.3.3.5 Other Character Modifier Bits

The case of a graphic character is indicated by its character code; for example, ASCII distin-
guishes between the characters ‘a’ and ‘A’. But ASCII has no way to represent whether a control
character is upper case or lower case. Emacs uses the 225 bit to indicate that the shift key
was used in typing a control character. This distinction is possible only when you use X termi-
nals or other special terminals; ordinary text terminals do not report the distinction. The Lisp
syntax for the shift bit is ‘\S-’; thus, ‘?\C-\S-0’ or ‘?\C-\S-0’ represents the shifted-control-o
character.

The X Window System defines three other modifier bits that can be set in a character: hyper,
super and alt. The syntaxes for these bits are ‘\H-’, ‘\s-’ and ‘\A-". (Case is significant in these
prefixes.) Thus, ‘?\H-\M-\A-x’ represents Al1t-Hyper-Meta-x. (Note that ‘\s’ with no following
‘=’ represents the space character.) Numerically, the bit values are 2% for alt, 22* for super and
221 for hyper.

2.3.4 Symbol Type

A symbol in GNU Emacs Lisp is an object with a name. The symbol name serves as the printed
representation of the symbol. In ordinary Lisp use, with one single obarray (see Section 8.3
[Creating Symbols], page 94), a symbol’s name is unique—no two symbols have the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or it may
serve only to be distinct from all other Lisp objects, so that its presence in a data structure may
be recognized reliably. In a given context, usually only one of these uses is intended. But you
can use one symbol in all of these ways, independently.

A symbol whose name starts with a colon (‘:’) is called a keyword symbol. These symbols
automatically act as constants, and are normally used only by comparing an unknown symbol
with a few specific alternatives. See Section 11.2 [Constant Variables|, page 125.

A symbol name can contain any characters whatever. Most symbol names are written with
letters, digits, and the punctuation characters ‘-+=%/’. Such names require no special punctua-
tion; the characters of the name suffice as long as the name does not look like a number. (If it
does, write a ‘\’ at the beginning of the name to force interpretation as a symbol.) The char-
acters ‘_~10$% " &:<>{}?’ are less often used but also require no special punctuation. Any other
characters may be included in a symbol’s name by escaping them with a backslash. In contrast
to its use in strings, however, a backslash in the name of a symbol simply quotes the single
character that follows the backslash. For example, in a string, ‘\t’ represents a tab character;
in the name of a symbol, however, ‘\t” merely quotes the letter ‘t’. To have a symbol with a

Chapter 2: Lisp Data Types 12

tab character in its name, you must actually use a tab (preceded with a backslash). But it’s
rare to do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and lower
case letters are distinct.

Here are several examples of symbol names. Note that the ‘+” in the fourth example is escaped
to prevent it from being read as a number. This is not necessary in the sixth example because
the rest of the name makes it invalid as a number.

foo ;A symbol named ‘foo’.
FOO ;A symbol named ‘F0O0Q’, different from ‘foo’.
1+ ;A symbol named ‘1+’
; (not ‘+1’, which is an integer).
\+1 ;A symbol named ‘+1’
; (not a very readable name).
NG\ 1\ 2)\) ; A symbol named ‘(* 1 2)’ (a worse name).

+-x/_"10$%"&=:<>{} ; A symbol named ‘+-x/_"10%$%"&=:<>{}".
; These characters need not be escaped.

As an exception to the rule that a symbol’s name serves as its printed representation, ‘##’ is
the printed representation for an interned symbol whose name is an empty string. Furthermore,
‘“#:foo’ is the printed representation for an uninterned symbol whose name is foo. (Normally,
the Lisp reader interns all symbols; see Section 8.3 [Creating Symbols], page 94.)

2.3.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two kinds of
sequence in Emacs Lisp: lists and arrays.

Lists are the most commonly-used sequences. A list can hold elements of any type, and its
length can be easily changed by adding or removing elements. See the next subsection for more
about lists.

Arrays are fixed-length sequences. They are further subdivided into strings, vectors, char-
tables and bool-vectors. Vectors can hold elements of any type, whereas string elements must
be characters, and bool-vector elements must be t or nil. Char-tables are like vectors except
that they are indexed by any valid character code. The characters in a string can have text
properties like characters in a buffer (see Section 31.19 [Text Properties], page 603), but vectors
do not support text properties, even when their elements happen to be characters.

Lists, strings and the other array types also share important similarities. For example, all
have a length I, and all have elements which can be indexed from zero to I minus one. Several
functions, called sequence functions, accept any kind of sequence. For example, the function
length reports the length of any kind of sequence. See Chapter 6 [Sequences Arrays Vectors],
page 78.

It is generally impossible to read the same sequence twice, since sequences are always created
anew upon reading. If you read the read syntax for a sequence twice, you get two sequences with
equal contents. There is one exception: the empty list () always stands for the same object,
nil.

2.3.6 Cons Cell and List Types

A cons cell is an object that consists of two slots, called the CAR slot and the CDR slot. Each
slot can hold any Lisp object. We also say that “the CAR of this cons cell is” whatever object
its CAR slot currently holds, and likewise for the CDR.

A list is a series of cons cells, linked together so that the CDR slot of each cons cell holds
either the next cons cell or the empty list. The empty list is actually the symbol nil. See

Chapter 2: Lisp Data Types 13

Chapter 5 [Lists|, page 57, for details. Because most cons cells are used as part of lists, we refer
to any structure made out of cons cells as a list structure.

A note to C programmers: a Lisp list thus works as a linked list built up of cons
cells. Because pointers in Lisp are implicit, we do not distinguish between a cons
cell slot “holding” a value versus “pointing to” the value.

Because cons cells are so central to Lisp, we also have a word for “an object which is not a
cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left paren-
thesis, an arbitrary number of elements, and a right parenthesis. Here are examples of lists:

(A2 "A"M) ;A list of three elements.

O ; A list of no elements (the empty list).

nil ; A list of no elements (the empty list).

A OM ; A list of one element: the string "A ()".

@ O) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.

((A B C) ;A list of one element

; (which is a list of three elements).

Upon reading, each object inside the parentheses becomes an element of the list. That is, a
cons cell is made for each element. The CAR slot of the cons cell holds the element, and its CDR
slot refers to the next cons cell of the list, which holds the next element in the list. The CDR
slot of the last cons cell is set to hold nil.

The names CAR and CDR derive from the history of Lisp. The original Lisp implementation
ran on an IBM 704 computer which divided words into two parts, called the “address” part and
the “decrement”; CAR was an instruction to extract the contents of the address part of a register,
and CDR an instruction to extract the contents of the decrement. By contrast, “cons cells” are
named for the function cons that creates them, which in turn was named for its purpose, the
construction of cells.

2.3.6.1 Drawing Lists as Box Diagrams

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes, like
dominoes. (The Lisp reader cannot read such an illustration; unlike the textual notation, which
can be understood by both humans and computers, the box illustrations can be understood only
by humans.) This picture represents the three-element list (rose violet buttercup):

--> rose -=> violet --> buttercup

In this diagram, each box represents a slot that can hold or refer to any Lisp object. Each
pair of boxes represents a cons cell. Each arrow represents a reference to a Lisp object, either
an atom or another cons cell.

In this example, the first box, which holds the CAR of the first cons cell, refers to or “holds”
rose (a symbol). The second box, holding the CDR of the first cons cell, refers to the next pair
of boxes, the second cons cell. The CAR of the second cons cell is violet, and its CDR is the
third cons cell. The CDR of the third (and last) cons cell is nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a different
manner:

Chapter 2: Lisp Data Types 14

| cdr | | car | cdr | | car | cdr |
| rose | o———————- >| violet | o———————- >| buttercup | nil |
|

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

-—> A --> nil

Here is a more complex illustration, showing the three-element list, ((pine needles) oak
maple), the first element of which is a two-element list:

1 d==> 1 1 I--> 1 | |-->nil
I I I
I I I
| --> oak --> maple
|
| —-— == e
> | I-—>1 | [-->nil
I I
I I
--> pine --> needles

The same list represented in the second box notation looks like this:

car	cdr		car	cdr		car	cdr
l o	o-——-——- > oak	o——————- >	maple	nil			
		[
e | mmmmmmmmem

|

|

| e

| | car | cdr | | car | cdr |

—————— >| pine | o------->| needles | nil |

2.3.6.2 Dotted Pair Notation

Dotted pair notation is a general syntax for cons cells that represents the CAR and CDR explicitly.
In this syntax, (a . b) stands for a cons cell whose CAR is the object a and whose CDR is the
object b. Dotted pair notation is more general than list syntax because the CDR does not have
to be a list. However, it is more cumbersome in cases where list syntax would work. In dotted
pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For nil-terminated lists,
you can use either notation, but list notation is usually clearer and more convenient. When
printing a list, the dotted pair notation is only used if the CDR of a cons cell is not a list.

Chapter 2: Lisp Data Types 15

Here’s an example using boxes to illustrate dotted pair notation. This example shows the
pair (rose . violet):

| | |--> violet

-=> rose

You can combine dotted pair notation with list notation to represent conveniently a chain of
cons cells with a non-nil final CDR. You write a dot after the last element of the list, followed
by the CDR of the final cons cell. For example, (rose violet . buttercup) is equivalent to
(rose . (violet . buttercup)). The object looks like this:

| | |==> | | |--> buttercup

--> rose --> violet

The syntax (rose . violet . buttercup) is invalid because there is nothing that it could
mean. If anything, it would say to put buttercup in the CDR of a cons cell whose CDR is already
used for violet.

The list (rose violet) is equivalent to (rose . (violet)), and looks like this:

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose . (violet
. (buttercup))).

2.3.6.3 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells. In each
element, the CAR is considered a key, and the CDR is considered an associated value. (In some
cases, the associated value is stored in the CAR of the CDR.) Association lists are often used as
stacks, since it is easy to add or remove associations at the front of the list.

For example,

(setq alist-of-colors
’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose is
the key and red is the value.

See Section 5.8 [Association Lists], page 73, for a further explanation of alists and for functions
that work on alists. See Chapter 7 [Hash Tables|, page 88, for another kind of lookup table,
which is much faster for handling a large number of keys.

2.3.7 Array Type

An array is composed of an arbitrary number of slots for holding or referring to other Lisp
objects, arranged in a contiguous block of memory. Accessing any element of an array takes
approximately the same amount of time. In contrast, accessing an element of a list requires time

Chapter 2: Lisp Data Types 16

proportional to the position of the element in the list. (Elements at the end of a list take longer
to access than elements at the beginning of a list.)

Emacs defines four types of array: strings, vectors, bool-vectors, and char-tables.

A string is an array of characters and a vector is an array of arbitrary objects. A bool-vector
can hold only t or nil. These kinds of array may have any length up to the largest integer.
Char-tables are sparse arrays indexed by any valid character code; they can hold arbitrary
objects.

The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices 0, 1, 2,
and 3. The largest possible index value is one less than the length of the array. Once an array
is created, its length is fixed.

All Emacs Lisp arrays are one-dimensional. (Most other programming languages support
multidimensional arrays, but they are not essential; you can get the same effect with nested
one-dimensional arrays.) Each type of array has its own read syntax; see the following sections
for details.

The array type is a subset of the sequence type, and contains the string type, the vector
type, the bool-vector type, and the char-table type.

2.3.8 String Type

A string is an array of characters. Strings are used for many purposes in Emacs, as can be
expected in a text editor; for example, as the names of Lisp symbols, as messages for the user,
and to represent text extracted from buffers. Strings in Lisp are constants: evaluation of a string
returns the same string.

See Chapter 4 [Strings and Characters|, page 43, for functions that operate on strings.

2.3.8.1 Syntax for Strings

The read syntax for a string is a double-quote, an arbitrary number of characters, and another
double-quote, "like this". To include a double-quote in a string, precede it with a backslash;
thus, "\"" is a string containing just a single double-quote character. Likewise, you can include
a backslash by preceding it with another backslash, like this: "this \\ is a single embedded
backslash".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—one
that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores an
escaped newline while reading a string. An escaped space ‘\ ’ is likewise ignored.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."
= "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

2.3.8.2 Non-ASCII Characters in Strings

There are two text representations for non-ASCII characters in Emacs strings: multibyte and
unibyte (see Section 32.1 [Text Representations|, page 626). Roughly speaking, unibyte strings
store raw bytes, while multibyte strings store human-readable text. Each character in a unibyte
string is a byte, i.e., its value is between 0 and 255. By contrast, each character in a multibyte
string may have a value between 0 to 4194303 (see Section 2.3.3 [Character Type|, page 9). In
both cases, characters above 127 are non-ASCII.

Chapter 2: Lisp Data Types 17

You can include a non-ASCII character in a string constant by writing it literally. If the
string constant is read from a multibyte source, such as a multibyte buffer or string, or a file
that would be visited as multibyte, then Emacs reads each non-ASCII character as a multibyte
character and automatically makes the string a multibyte string. If the string constant is read
from a unibyte source, then Emacs reads the non-ASCII character as unibyte, and makes the
string unibyte.

Instead of writing a character literally into a multibyte string, you can write it as its character
code using an escape sequence. See Section 2.3.3.2 [General Escape Syntax|, page 10, for details
about escape sequences.

If you use any Unicode-style escape sequence ‘\uNNNN’ or ‘\UOONNNNNN’ in a string constant
(even for an ASCII character), Emacs automatically assumes that it is multibyte.

You can also use hexadecimal escape sequences (‘\xn’) and octal escape sequences (‘\n’)
in string constants. But beware: If a string constant contains hexadecimal or octal escape
sequences, and these escape sequences all specify unibyte characters (i.e., less than 256), and
there are no other literal non-ASCII characters or Unicode-style escape sequences in the string,
then Emacs automatically assumes that it is a unibyte string. That is to say, it assumes that
all non-ASCII characters occurring in the string are 8-bit raw bytes.

In hexadecimal and octal escape sequences, the escaped character code may contain a variable
number of digits, so the first subsequent character which is not a valid hexadecimal or octal
digit terminates the escape sequence. If the next character in a string could be interpreted as
a hexadecimal or octal digit, write ‘\ ’ (backslash and space) to terminate the escape sequence.
For example, ‘\xe0\ ’ represents one character, ‘a’ with grave accent. ‘\ ’ in a string constant
is just like backslash-newline; it does not contribute any character to the string, but it does
terminate any preceding hex escape.

2.3.8.3 Nonprinting Characters in Strings

You can use the same backslash escape-sequences in a string constant as in character literals
(but do not use the question mark that begins a character constant). For example, you can write
a string containing the nonprinting characters tab and C-a, with commas and spaces between
them, like this: "\t, \C-a". See Section 2.3.3 [Character Type], page 9, for a description of the
read syntax for characters.

However, not all of the characters you can write with backslash escape-sequences are valid
in strings. The only control characters that a string can hold are the ASCII control characters.
Strings do not distinguish case in ASCII control characters.

Properly speaking, strings cannot hold meta characters; but when a string is to be used as
a key sequence, there is a special convention that provides a way to represent meta versions
of ASCII characters in a string. If you use the ‘\M-’ syntax to indicate a meta character in
a string constant, this sets the 27 bit of the character in the string. If the string is used in
define-key or lookup-key, this numeric code is translated into the equivalent meta character.
See Section 2.3.3 [Character Type], page 9.

Strings cannot hold characters that have the hyper, super, or alt modifiers.

2.3.8.4 Text Properties in Strings

A string can hold properties for the characters it contains, in addition to the characters them-
selves. This enables programs that copy text between strings and buffers to copy the text’s
properties with no special effort. See Section 31.19 [Text Properties|, page 603, for an expla-
nation of what text properties mean. Strings with text properties use a special read and print
syntax:

#("characters" property-data...)
where property-data consists of zero or more elements, in groups of three as follows:

Chapter 2: Lisp Data Types 18

beg end plist
The elements beg and end are integers, and together specify a range of indices in the string;
plist is the property list for that range. For example,

#("foo bar" 0 3 (face bold) 3 4 nil 4 7 (face italic))

represents a string whose textual contents are ‘foo bar’, in which the first three characters have
a face property with value bold, and the last three have a face property with value italic.
(The fourth character has no text properties, so its property list is nil. It is not actually
necessary to mention ranges with nil as the property list, since any characters not mentioned
in any range will default to having no properties.)

2.3.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount of time
to access any element of a vector. (In a list, the access time of an element is proportional to the
distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements, and
a right square bracket. This is also the read syntax. Like numbers and strings, vectors are
considered constants for evaluation.

[1 "two" (three)] ;A vector of three elements.
= [1 "two" (three)]

See Section 6.4 [Vectors], page 82, for functions that work with vectors.

2.3.10 Char-Table Type

A char-table is a one-dimensional array of elements of any type, indexed by character codes.
Char-tables have certain extra features to make them more useful for many jobs that involve
assigning information to character codes—for example, a char-table can have a parent to inherit
from, a default value, and a small number of extra slots to use for special purposes. A char-table
can also specify a single value for a whole character set.

The printed representation of a char-table is like a vector except that there is an extra ‘#~’
at the beginning.!
See Section 6.6 [Char-Tables|, page 83, for special functions to operate on char-tables. Uses
of char-tables include:
e Case tables (see Section 4.9 [Case Tables|, page 54).
e Character category tables (see Section 34.8 [Categories|, page 682).
e Display tables (see Section 37.21.2 [Display Tables], page 799).
e Syntax tables (see Chapter 34 [Syntax Tables|, page 671).

2.3.11 Bool-Vector Type

A bool-vector is a one-dimensional array whose elements must be t or nil.

The printed representation of a bool-vector is like a string, except that it begins with ‘#&’
followed by the length. The string constant that follows actually specifies the contents of the
bool-vector as a bitmap—each “character” in the string contains 8 bits, which specify the next
8 elements of the bool-vector (1 stands for t, and 0 for nil). The least significant bits of the
character correspond to the lowest indices in the bool-vector.

(make-bool-vector 3 t)
= #&3"~G"
(make-bool-vector 3 nil)

1 You may also encounter ‘#~"’, used for “sub-char-tables”.

Chapter 2: Lisp Data Types 19

= #&3""Q"

These results make sense, because the binary code for ‘C-g’ is 111 and ‘C-@’ is the character
with code 0.

If the length is not a multiple of 8, the printed representation shows extra elements, but these
extras really make no difference. For instance, in the next example, the two bool-vectors are
equal, because only the first 3 bits are used:

(equal #&3"\377" #&3"\007")
=t

2.3.12 Hash Table Type

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps keys to
corresponding values, but much faster. The printed representation of a hash table specifies its
properties and contents, like this:

(make-hash-table)
= #s(hash-table size 65 test eql rehash-size 1.5
rehash-threshold 0.8 data ())

See Chapter 7 [Hash Tables|, page 88, for more information about hash tables.

2.3.13 Function Type

Lisp functions are executable code, just like functions in other programming languages. In Lisp,
unlike most languages, functions are also Lisp objects. A non-compiled function in Lisp is a
lambda expression: that is, a list whose first element is the symbol lambda (see Section 12.2
[Lambda Expressions|, page 151).

In most programming languages, it is impossible to have a function without a name. In Lisp,
a function has no intrinsic name. A lambda expression can be called as a function even though
it has no name; to emphasize this, we also call it an anonymous function (see Section 12.7
[Anonymous Functions|, page 159). A named function in Lisp is just a symbol with a valid
function in its function cell (see Section 12.4 [Defining Functions], page 155).

Most of the time, functions are called when their names are written in Lisp expressions in
Lisp programs. However, you can construct or obtain a function object at run time and then
call it with the primitive functions funcall and apply. See Section 12.5 [Calling Functions],
page 156.

2.3.14 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented as
an object much like a function, but with different argument-passing semantics. A Lisp macro
has the form of a list whose first element is the symbol macro and whose CDR is a Lisp function
object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list that
begins with macro is a macro as far as Emacs is concerned. See Chapter 13 [Macros], page 173,
for an explanation of how to write a macro.

Warning: Lisp macros and keyboard macros (see Section 20.16 [Keyboard Macros|, page 321)
are entirely different things. When we use the word “macro” without qualification, we mean a
Lisp macro, not a keyboard macro.

2.3.15 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming lan-
guage. Primitive functions are also called subrs or built-in functions. (The word “subr” is
derived from “subroutine”.) Most primitive functions evaluate all their arguments when they

Chapter 2: Lisp Data Types 20

are called. A primitive function that does not evaluate all its arguments is called a special form
(see Section 9.1.7 [Special Forms], page 104).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to redefine a primitive with a function written in Lisp. The reason is
that the primitive function may be called directly from C code. Calls to the redefined function
from Lisp will use the new definition, but calls from C code may still use the built-in definition.
Therefore, we discourage redefinition of primitive functions.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.3.13 [Function Type], page 19, for information about the functions written in Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.
= #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?
=t ; Yes.

2.3.16 Byte-Code Function Type

Byte-code function objects are produced by byte-compiling Lisp code (see Chapter 16 [Byte
Compilation|, page 210). Internally, a byte-code function object is much like a vector; however,
the evaluator handles this data type specially when it appears in a function call. See Section 16.7
[Byte-Code Objects], page 215.

The printed representation and read syntax for a byte-code function object is like that for a
vector, with an additional ‘#” before the opening ‘[’.

2.3.17 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as the
function definition of a symbol, where it serves as a placeholder for the real definition. The
autoload object says that the real definition is found in a file of Lisp code that should be loaded
when necessary. It contains the name of the file, plus some other information about the real
definition.

After the file has been loaded, the symbol should have a new function definition that is not
an autoload object. The new definition is then called as if it had been there to begin with. From
the user’s point of view, the function call works as expected, using the function definition in the
loaded file.

An autoload object is usually created with the function autoload, which stores the object
in the function cell of a symbol. See Section 15.5 [Autoload], page 201, for more details.

2.4 Editing Types

The types in the previous section are used for general programming purposes, and most of
them are common to most Lisp dialects. Emacs Lisp provides several additional data types for
purposes connected with editing.

2.4.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 26 [Buffers|, page 458).
Most buffers hold the contents of a disk file (see Chapter 24 [Files], page 412) so they can be
edited, but some are used for other purposes. Most buffers are also meant to be seen by the
user, and therefore displayed, at some time, in a window (see Chapter 27 [Windows|, page 473).
But a buffer need not be displayed in any window. Each buffer has a designated position called

Chapter 2: Lisp Data Types 21

point (see Chapter 29 [Positions], page 553); most editing commands act on the contents of the
current buffer in the neighborhood of point. At any time, one buffer is the current buffer.

The contents of a buffer are much like a string, but buffers are not used like strings in Emacs
Lisp, and the available operations are different. For example, you can insert text efficiently into
an existing buffer, altering the buffer’s contents, whereas “inserting” text into a string requires
concatenating substrings, and the result is an entirely new string object.

Many of the standard Emacs functions manipulate or test the characters in the current buffer;
a whole chapter in this manual is devoted to describing these functions (see Chapter 31 [Text],
page 572).
Several other data structures are associated with each buffer:
e a local syntax table (see Chapter 34 [Syntax Tables|, page 671);
e a local keymap (see Chapter 21 [Keymaps|, page 323); and,
e a list of buffer-local variable bindings (see Section 11.10 [Buffer-Local Variables|, page 137).
e overlays (see Section 37.9 [Overlays|, page 742).
e text properties for the text in the buffer (see Section 31.19 [Text Properties], page 603).

)

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer, but presents it
differently. See Section 26.11 [Indirect Buffers], page 470.

Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)
= #<buffer objects.texi>

2.4.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components: one
for the buffer, and one for the position. Changes in the buffer’s text automatically relocate
the position value as necessary to ensure that the marker always points between the same two
characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

(point-marker)
= #<marker at 10779 in objects.texi>

See Chapter 30 [Markers|, page 564, for information on how to test, create, copy, and move
markers.

2.4.3 Window Type

A window describes the portion of the terminal screen that Emacs uses to display a buffer.
Every window has one associated buffer, whose contents appear in the window. By contrast, a
given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated the
selected window. This is the window where the cursor is (usually) displayed when Emacs is
ready for a command. The selected window usually displays the current buffer, but this is not
necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only one
frame. See Section 2.4.4 [Frame Type], page 22.

Chapter 2: Lisp Data Types 22

Windows have no read syntax. They print in hash notation, giving the window number and
the name of the buffer being displayed. The window numbers exist to identify windows uniquely,
since the buffer displayed in any given window can change frequently.

(selected-window)
= #<window 1 on objects.texi>

See Chapter 27 [Windows|, page 473, for a description of the functions that work on windows.

2.4.4 Frame Type

A frame is a screen area that contains one or more Emacs windows; we also use the term “frame”
to refer to the Lisp object that Emacs uses to refer to the screen area.

Frames have no read syntax. They print in hash notation, giving the frame’s title, plus its
address in core (useful to identify the frame uniquely).

(selected-frame)
= #<frame emacs@psilocin.gnu.org Oxdac80>

See Chapter 28 [Frames]|, page 522, for a description of the functions that work on frames.

2.4.5 Terminal Type

A terminal is a device capable of displaying one or more Emacs frames (see Section 2.4.4 [Frame
Typel, page 22).

Terminals have no read syntax. They print in hash notation giving the terminal’s ordinal
number and its TTY device file name.

(get-device-terminal nil)
= #<terminal 1 on /dev/tty>

2.4.6 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of the win-
dows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax; their print syntax looks like
‘#<window-configuration>’. See Section 27.24 [Window Configurations|, page 516, for a
description of several functions related to window configurations.

2.4.7 Frame Configuration Type

A frame configuration stores information about the positions, sizes, and contents of the windows
in all frames. It is not a primitive type—it is actually a list whose CAR is frame-configuration
and whose CDR is an alist. Each alist element describes one frame, which appears as the CAR of
that element.

See Section 28.12 [Frame Configurations|, page 542, for a description of several functions
related to frame configurations.

2.4.8 Process Type

The word process usually means a running program. Emacs itself runs in a process of this sort.
However, in Emacs Lisp, a process is a Lisp object that designates a subprocess created by the
Emacs process. Programs such as shells, GDB, ftp, and compilers, running in subprocesses of
FEmacs, extend the capabilities of Emacs. An Emacs subprocess takes textual input from Emacs
and returns textual output to Emacs for further manipulation. Emacs can also send signals to
the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of the
process:

Chapter 2: Lisp Data Types 23

(process-list)
= (#<process shell>)

See Chapter 36 [Processes|, page 691, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

2.4.9 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this way:
markers, buffers, strings, and functions. Most often, input streams (character sources) obtain
characters from the keyboard, a buffer, or a file, and output streams (character sinks) send
characters to a buffer, such as a *Help* buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands for
the value of the variable standard-input or standard-output. Also, the object t as a stream
specifies input using the minibuffer (see Chapter 19 [Minibuffers|, page 256) or output in the
echo area (see Section 37.4 [The Echo Area], page 730).

Streams have no special printed representation or read syntax, and print as whatever primitive
type they are.

See Chapter 18 [Read and Print], page 246, for a description of functions related to streams,
including parsing and printing functions.

2.4.10 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the user’s
command input is executed. A keymap is actually a list whose CAR is the symbol keymap.

See Chapter 21 [Keymaps|, page 323, for information about creating keymaps, handling prefix
keys, local as well as global keymaps, and changing key bindings.

2.4.11 Overlay Type

An overlay specifies properties that apply to a part of a buffer. Each overlay applies to a specified
range of the buffer, and contains a property list (a list whose elements are alternating property
names and values). Overlay properties are used to present parts of the buffer temporarily in
a different display style. Overlays have no read syntax, and print in hash notation, giving the
buffer name and range of positions.

See Section 37.9 [Overlays|, page 742, for information on how you can create and use overlays.

2.4.12 Font Type

A font specifies how to display text on a graphical terminal. There are actually three sepa-
rate font types—font objects, font specs, and font entities—each of which has slightly different
properties. None of them have a read syntax; their print syntax looks like ‘#<font-object>’,
‘#<font-spec>’, and ‘#<font-entity>’ respectively. See Section 37.12.12 [Low-Level Font],
page 766, for a description of these Lisp objects.

2.5 Read Syntax for Circular Objects

To represent shared or circular structures within a complex of Lisp objects, you can use the
reader constructs ‘#n=" and ‘#n#’.

Use #n= before an object to label it for later reference; subsequently, you can use #n# to refer
the same object in another place. Here, n is some integer. For example, here is how to make a
list in which the first element recurs as the third element:

(#1=(a) b #1#)

This differs from ordinary syntax such as this

Chapter 2: Lisp Data Types 24

((a) b (@)

which would result in a list whose first and third elements look alike but are not the same Lisp
object. This shows the difference:
(progl nil
(setq x ’(#1=(a) b #1#)))
(eq (nth 0 x) (nth 2 x))
= t
(setq x ’((a) b (a)))
(eq (nth 0 x) (nth 2 x))
= nil
You can also use the same syntax to make a circular structure, which appears as an “element”
within itself. Here is an example:

#1=(a #1#)

This makes a list whose second element is the list itself. Here’s how you can see that it really
works:
(progl nil
(setq x ’#1=(a #1#)))
(eq x (cadr x))
=t

The Lisp printer can produce this syntax to record circular and shared structure in a Lisp
object, if you bind the variable print-circle to a non-nil value. See Section 18.6 [Output
Variables|, page 253.

2.6 Type Predicates

The Emacs Lisp interpreter itself does not perform type checking on the actual arguments passed
to functions when they are called. It could not do so, since function arguments in Lisp do not
have declared data types, as they do in other programming languages. It is therefore up to the
individual function to test whether each actual argument belongs to a type that the function
can use.

All built-in functions do check the types of their actual arguments when appropriate, and
signal a wrong-type-argument error if an argument is of the wrong type. For example, here is
what happens if you pass an argument to + that it cannot handle:

(+ 2 ’a)
Wrong type argument: number-or-marker-p, a

If you want your program to handle different types differently, you must do explicit type
checking. The most common way to check the type of an object is to call a type predicate
function. Emacs has a type predicate for each type, as well as some predicates for combinations
of types.

A type predicate function takes one argument; it returns t if the argument belongs to the
appropriate type, and nil otherwise. Following a general Lisp convention for predicate functions,
most type predicates’ names end with ‘p’.

Here is an example which uses the predicates 1istp to check for a list and symbolp to check
for a symbol.

(defun add-on (x)
(cond ((symbolp x)
;3 If X is a symbol, put it on LIST.
(setq list (comns x list)))
((1istp x)

Chapter 2: Lisp Data Types 25

;3 If X is a list, add its elements to LIST.
(setq list (append x list)))

(t

;3 We handle only symbols and lists.

(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to further
information.

atom See Section 5.2 [List-related Predicates|, page 57.
arrayp See Section 6.3 [Array Functions|, page 80.

bool-vector-p
See Section 6.7 [Bool-Vectors], page 85.

bufferp See Section 26.1 [Buffer Basics|, page 458.

byte-code-function-p
See Section 2.3.16 [Byte-Code Type|, page 20.

case-table-p
See Section 4.9 [Case Tables], page 54.

char-or-string-p
See Section 4.2 [Predicates for Strings|, page 44.

char-table-p
See Section 6.6 [Char-Tables|, page 83.

commandp See Section 20.3 [Interactive Call], page 289.
consp See Section 5.2 [List-related Predicates|, page 57.

custom-variable-p
See Section 14.3 [Variable Definitions], page 183.

display-table-p
See Section 37.21.2 [Display Tables], page 799.

floatp See Section 3.3 [Predicates on Numbers]|, page 32.
fontp See Section 37.12.12 [Low-Level Font], page 766.

frame-configuration—p
See Section 28.12 [Frame Configurations], page 542.

frame-live-p
See Section 28.6 [Deleting Frames|, page 538.

framep See Chapter 28 [Frames|, page 522.

functionp
See Chapter 12 [Functions|, page 150.

hash-table-p
See Section 7.4 [Other Hash], page 91.

integer-or-marker-p
See Section 30.2 [Predicates on Markers|, page 565.

integerp See Section 3.3 [Predicates on Numbers|, page 32.
keymapp See Section 21.4 [Creating Keymaps|, page 326.
keywordp See Section 11.2 [Constant Variables], page 125.

Chapter 2: Lisp Data Types 26

listp See Section 5.2 [List-related Predicates|, page 57.
markerp See Section 30.2 [Predicates on Markers|, page 565.

wholenump
See Section 3.3 [Predicates on Numbers], page 32.

nlistp See Section 5.2 [List-related Predicates|, page 57.
numberp See Section 3.3 [Predicates on Numbers|, page 32.

number-or-marker-p
See Section 30.2 [Predicates on Markers|, page 565.

overlayp See Section 37.9 [Overlays|, page 742.
processp See Chapter 36 [Processes|, page 691.

sequencep
See Section 6.1 [Sequence Functions], page 78.

stringp See Section 4.2 [Predicates for Strings|, page 44.
subrp See Section 12.8 [Function Cells], page 160.
symbolp See Chapter 8 [Symbols|, page 93.

syntax-table-p
See Chapter 34 [Syntax Tables|, page 671.

vectorp See Section 6.4 [Vectors|, page 82.

window-configuration-p
See Section 27.24 [Window Configurations], page 516.

window-live-p
See Section 27.6 [Deleting Windows]|, page 485.

windowp See Section 27.1 [Basic Windows], page 473.
booleanp See Section 1.3.2 [nil and t|, page 2.

string-or-null-p
See Section 4.2 [Predicates for Strings|, page 44.

The most general way to check the type of an object is to call the function type-of. Recall
that each object belongs to one and only one primitive type; type-of tells you which one (see
Chapter 2 [Lisp Data Types], page 7). But type-of knows nothing about non-primitive types.
In most cases, it is more convenient to use type predicates than type-of.

type-of object [Function]
This function returns a symbol naming the primitive type of object. The value is one of
the symbols bool-vector, buffer, char-table, compiled-function, cons, float, font-
entity, font-object, font-spec, frame, hash-table, integer, marker, overlay, process,
string, subr, symbol, vector, window, or window-configuration.
(type-of 1)
= integer
(type-of ’nil)
= symbol
(type-of (1)) ;O is nil.
= symbol
(type-of ’(x))
= cons

Chapter 2: Lisp Data Types 27

2.7 Equality Predicates

Here we describe functions that test for equality between two objects. Other functions test
equality of contents between objects of specific types, e.g., strings. For these predicates, see the
appropriate chapter describing the data type.

eq objectl object2 [Function]
This function returns t if objectl and object2 are the same object, and nil otherwise.
If objectl and object2 are integers with the same value, they are considered to be the same
object (i.e., eq returns t). If objectl and object2 are symbols with the same name, they are
normally the same object—but see Section 8.3 [Creating Symbols|, page 94 for exceptions. For
other types (e.g., lists, vectors, strings), two arguments with the same contents or elements
are not necessarily eq to each other: they are eq only if they are the same object, meaning
that a change in the contents of one will be reflected by the same change in the contents of
the other.

(eq ’foo ’foo0)
= t

(eq 456 456)
=t

(eq "asdf" "asdf")
= nil

(eq "" "M
= t
;3 This exception occurs because Emacs Lisp
; 5 makes just one multibyte empty string, to save space.

(eq (1 (2 (3))) (1 (2 (3))))
= nil

(setq foo (1 (2 (3))))
= (1 (2 3)))

(eq foo foo)
=t

(eq foo ’(1 (2 (3))))
= nil

(eq [(1 2) 3] [(1 2) 3])
= nil

(eq (point-marker) (point-marker))
= nil
The make-symbol function returns an uninterned symbol, distinct from the symbol that is
used if you write the name in a Lisp expression. Distinct symbols with the same name are
not eq. See Section 8.3 [Creating Symbols], page 94.
(eq (make-symbol "foo") ’foo)
= nil

equal objectl object2 [Function]
This function returns t if objectl and object2 have equal components, and nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical argu-

Chapter 2: Lisp Data Types 28

ments to see if their elements or contents are the same. So, if two objects are eq, they are
equal, but the converse is not always true.
(equal ’foo ’fo0)
=t

(equal 456 456)
= t

(equal "asdf" "asdf")
=t

(eq "asdf" "asdf")
= nil

(equal ’(1 (2 (3))) (1 (2 (3))))
= t

(eq 7(1 (2 (3))) (1 (2 (3NN
= nil

(equal [(1 2) 31 [(1 2) 31D
=t

(eq [(1 2) 3] [(1 2) 3D
= nil

(equal (point-marker) (point-marker))
= t

(eq (point-marker) (point-marker))
= nil
Comparison of strings is case-sensitive, but does not take account of text properties—it
compares only the characters in the strings. See Section 31.19 [Text Properties], page 603.
Use equal-including-properties to also compare text properties. For technical reasons, a
unibyte string and a multibyte string are equal if and only if they contain the same sequence
of character codes and all these codes are either in the range 0 through 127 (ASCII) or 160
through 255 (eight-bit-graphic). (see Section 32.1 [Text Representations], page 626).

(equal "asdf" "ASDF")
= nil
However, two distinct buffers are never considered equal, even if their textual contents are
the same.

The test for equality is implemented recursively; for example, given two cons cells x and y,
(equal x y) returns t if and only if both the expressions below return t:

(equal (car x) (car y))
(equal (cdr x) (cdr y))

Because of this recursive method, circular lists may therefore cause infinite recursion (leading
to an error).

equal-including-properties objectl object2 [Function]
This function behaves like equal in all cases but also requires that for two strings to be equal,
they have the same text properties.

(equal "asdf" (propertize "asdf" ’asdf t))
=t

Chapter 2: Lisp Data Types

(equal-including-properties "asdf"
(propertize "asdf" ’asdf t))
= nil

29

Chapter 3: Numbers 30

3 Numbers

GNU Emacs supports two numeric data types: integers and floating-point numbers. Integers
are whole numbers such as —3, 0, 7, 13, and 511. Floating-point numbers are numbers with
fractional parts, such as —4.5, 0.0, and 2.71828. They can also be expressed in exponential
notation: ‘1.5e2’ is the same as ‘150.0’; here, ‘€2’ stands for ten to the second power, and that
is multiplied by 1.5. Integer computations are exact, though they may overflow. Floating-point
computations often involve rounding errors, as the numbers have a fixed amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is —536,870,912
to 536,870,911 (30 bits; i.e., —2% to 2% — 1), but many machines provide a wider range. Many
examples in this chapter assume the minimum integer width of 30 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and optional
final period. An integer that is out of the Emacs range is treated as a floating-point number.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer —1.
9000000000000000000
; The floating-point number 9e18.
0 ; The integer O.
-0 ; The integer 0.

The syntax for integers in bases other than 10 uses ‘#’ followed by a letter that specifies the
radix: ‘b’ for binary, ‘o’ for octal, ‘x’ for hex, or ‘radixr’ to specify radix radix. Case is not
significant for the letter that specifies the radix. Thus, ‘#binteger’ reads integer in binary, and
‘#radixrinteger’ reads integer in radix radix. Allowed values of radix run from 2 to 36. For
example:

#b101100 = 44
#ob4 = 44
#x2c = 44
#24r1k = 44

To understand how various functions work on integers, especially the bitwise operators (see
Section 3.8 [Bitwise Operations], page 38), it is often helpful to view the numbers in their binary
form.

In 30-bit binary, the decimal integer 5 looks like this:
0000...000101 (30 bits total)

(The ‘. .." stands for enough bits to fill out a 30-bit word; in this case, ‘...’ stands for twenty
0 bits. Later examples also use the ‘...’ notation to make binary integers easier to read.)

The integer —1 looks like this:
1111...111111 (30 bits total)
—1 is represented as 30 ones. (This is called two’s complement notation.)

Subtracting 4 from —1 returns the negative integer —5. In binary, the decimal integer 4 is
100. Consequently, —5 looks like this:

1111...111011 (30 bits total)

In this implementation, the largest 30-bit binary integer is 536,870,911 in decimal. In binary,
it looks like this:

Chapter 3: Numbers 31

0111...111111 (30 bits total)

Since the arithmetic functions do not check whether integers go outside their range, when
you add 1 to 536,870,911, the value is the negative integer —536,870,912:

(+ 1 536870911)
= -536870912
= 1000...000000 (30 bits total)

Many of the functions described in this chapter accept markers for arguments in place of
numbers. (See Chapter 30 [Markers|, page 564.) Since the actual arguments to such functions
may be either numbers or markers, we often give these arguments the name number-or-marker.
When the argument value is a marker, its position value is used and its buffer is ignored.

most-positive-fixnum [Variable]
The value of this variable is the largest integer that Emacs Lisp can handle. Typical values
are 22 — 1 on 32-bit and 25 — 1 on 64-bit platforms.

most-negative-fixnum [Variable]
The value of this variable is the smallest integer that Emacs Lisp can handle. It is negative.
Typical values are —22% on 32-bit and —25! on 64-bit platforms.

In Emacs Lisp, text characters are represented by integers. Any integer between zero and
the value of (max-char), inclusive, is considered to be valid as a character. See Section 32.5
[Character Codes], page 629.

3.2 Floating-Point Basics

Floating-point numbers are useful for representing numbers that are not integral. The range
of floating-point numbers is the same as the range of the C data type double on the machine
you are using. On all computers currently supported by Emacs, this is double-precision IEEE
floating point.

The read syntax for floating-point numbers requires either a decimal point, an exponent, or
both. Optional signs (‘+’ or ‘=’) precede the number and its exponent. For example, ‘1500.0’,
‘+15e2’, ‘15.0e+2’, ‘+1500000e-3’, and ‘. 15e4’ are five ways of writing a floating-point number
whose value is 1500. They are all equivalent. Like Common Lisp, Emacs Lisp requires at
least one digit after any decimal point in a floating-point number; ‘1500.” is an integer, not a
floating-point number.

Emacs Lisp treats -0.0 as numerically equal to ordinary zero with respect to equal and =.
This follows the IEEE floating-point standard, which says -0.0 and 0.0 are numerically equal
even though other operations can distinguish them.

The IEEE floating-point standard supports positive infinity and negative infinity as floating-
point values. It also provides for a class of values called NaN or “not-a-number”; numerical
functions return such values in cases where there is no correct answer. For example, (/ 0.0
0.0) returns a NaN. Although NaN values carry a sign, for practical purposes there is no other
significant difference between different NaN values in Emacs Lisp.

Here are read syntaxes for these special floating-point values:
infinity ‘1.0e+INF’ and ‘-1.0e+INF’

not-a-number
‘0.0e+NaN’ and ‘-0.0e+NaN’

The following functions are specialized for handling floating-point numbers:

isnan x [Function]
This predicate returns t if its floating-point argument is a NaN, nil otherwise.

Chapter 3: Numbers 32

frexp x [Function]
This function returns a cons cell (s . e), where s and e are respectively the significand and
exponent of the floating-point number x.

If x is finite, then s is a floating-point number between 0.5 (inclusive) and 1.0 (exclusive), e
is an integer, and z = s2°. If x is zero or infinity, then s is the same as x. If x is a NaN, then
s is also a NaN. If x is zero, then e is 0.

ldexp sig &optional exp [Function]
This function returns a floating-point number corresponding to the significand sig and expo-
nent exp.

copysign xI x2 [Function]
This function copies the sign of x2 to the value of x1, and returns the result. x1 and x2 must
be floating point.

logb x [Function]
This function returns the binary exponent of x. More precisely, the value is the logarithm
base 2 of |z|, rounded down to an integer.

(logb 10)
= 3
(logb 10.0e20)
= 69

3.3 Type Predicates for Numbers

The functions in this section test for numbers, or for a specific type of number. The functions
integerp and floatp can take any type of Lisp object as argument (they would not be of much
use otherwise), but the zerop predicate requires a number as its argument. See also integer-
or-marker-p and number-or-marker-p, in Section 30.2 [Predicates on Markers|, page 565.
floatp object [Function]
This predicate tests whether its argument is floating point and returns t if so, nil otherwise.

integerp object [Function]
This predicate tests whether its argument is an integer, and returns t if so, nil otherwise.

numberp object [Function]
This predicate tests whether its argument is a number (either integer or floating point), and
returns t if so, nil otherwise.

natnump object [Function]
This predicate (whose name comes from the phrase “natural number”) tests to see whether
its argument is a nonnegative integer, and returns t if so, nil otherwise. 0 is considered
non-negative.

wholenump is a synonym for natnump.

zerop number [Function]
This predicate tests whether its argument is zero, and returns t if so, nil otherwise. The
argument must be a number.

(zerop x) is equivalent to (= x 0).

Chapter 3: Numbers 33

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can be many
distinct floating-point objects with the same numeric value. If you use eq to compare them,
then you test whether two values are the same object. By contrast, = compares only the numeric
values of the objects.

In Emacs Lisp, each integer is a unique Lisp object. Therefore, eq is equivalent to = where
integers are concerned. It is sometimes convenient to use eq for comparing an unknown value
with an integer, because eq does not report an error if the unknown value is not a number—it
accepts arguments of any type. By contrast, = signals an error if the arguments are not numbers
or markers. However, it is better programming practice to use = if you can, even for comparing
integers.

Sometimes it is useful to compare numbers with equal, which treats two numbers as equal
if they have the same data type (both integers, or both floating point) and the same value. By
contrast, = can treat an integer and a floating-point number as equal. See Section 2.7 [Equality
Predicates], page 27.

There is another wrinkle: because floating-point arithmetic is not exact, it is often a bad
idea to check for equality of floating-point values. Usually it is better to test for approximate
equality. Here’s a function to do this:

(defvar fuzz-factor 1.0e-6)
(defun approx-equal (x y)
(or (= x y)
(< (/ (abs (- x y))
(max (abs x) (abs y)))
fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires = because
Common Lisp implements multi-word integers, and two distinct integer objects can
have the same numeric value. Emacs Lisp can have just one integer object for any
given value because it has a limited range of integers.

= number-or-marker &rest number-or-markers [Function]
This function tests whether all its arguments are numerically equal, and returns t if so, nil
otherwise.

eql valuel value2 [Function]
This function acts like eq except when both arguments are numbers. It compares numbers
by type and numeric value, so that (eql 1.0 1) returns nil, but (eql 1.0 1.0) and (eql 1
1) both return t.

/= number-or-marker]l number-or-marker2 [Function]
This function tests whether its arguments are numerically equal, and returns t if they are
not, and nil if they are.

< number-or-marker &rest number-or-markers [Function]
This function tests whether each argument is strictly less than the following argument. It
returns t if so, nil otherwise.

<= number-or-marker &rest number-or-markers [Function]
This function tests whether each argument is less than or equal to the following argument.
It returns t if so, nil otherwise.

> number-or-marker &rest number-or-markers [Function]
This function tests whether each argument is strictly greater than the following argument.
It returns t if so, nil otherwise.

Chapter 3: Numbers 34

>= number-or-marker &rest number-or-markers [Function)]
This function tests whether each argument is greater than or equal to the following argument.
It returns t if so, nil otherwise.

max number-or-marker &rest numbers-or-markers [Function]
This function returns the largest of its arguments. If any of the arguments is floating point,
the value is returned as floating point, even if it was given as an integer.

(max 20)
= 20
(max 1 2.5)
= 2.5
(max 1 3 2.5)
= 3.0

min number-or-marker &rest numbers-or-markers [Function]
This function returns the smallest of its arguments. If any of the arguments is floating point,
the value is returned as floating point, even if it was given as an integer.
(min -4 1)
= -4

abs number [Function]
This function returns the absolute value of number.

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

float number [Function]
This returns number converted to floating point. If number is already floating point, float
returns it unchanged.

There are four functions to convert floating-point numbers to integers; they differ in how
they round. All accept an argument number and an optional argument divisor. Both arguments
may be integers or floating-point numbers. divisor may also be nil. If divisor is nil or omitted,
these functions convert number to an integer, or return it unchanged if it already is an integer.
If divisor is non-nil, they divide number by divisor and convert the result to an integer. If
divisor is zero (whether integer or floating point), Emacs signals an arith-error error.

truncate number &optional divisor [Function]
This returns number, converted to an integer by rounding towards zero.

(truncate 1.2)

=1

(truncate 1.7)
=1

(truncate -1.2)
= -1

(truncate -1.7)
= -1

floor number &optional divisor [Function]

This returns number, converted to an integer by rounding downward (towards negative in-
finity).

If divisor is specified, this uses the kind of division operation that corresponds to mod, round-
ing downward.

Chapter 3: Numbers 35

(floor 1.2)
= 1
(floor 1.7)
=1
(floor -1.2)
= -2
(floor -1.7)
= -2
(floor 5.99 3)
=1

ceiling number &optional divisor [Function]
This returns number, converted to an integer by rounding upward (towards positive infinity).

(ceiling 1.2)

= 2

(ceiling 1.7)
= 2

(ceiling -1.2)
= -1

(ceiling -1.7)
= -1

round number &optional divisor [Function]

This returns number, converted to an integer by rounding towards the nearest integer. Round-
ing a value equidistant between two integers returns the even integer.

(round 1.2)
= 1
(round 1.7)
= 2
(round -1.2)
= -1
(round -1.7)
= -2

3.6 Arithmetic Operations

Emacs Lisp provides the traditional four arithmetic operations (addition, subtraction, multi-
plication, and division), as well as remainder and modulus functions, and functions to add
or subtract 1. Except for %, each of these functions accepts both integer and floating-point
arguments, and returns a floating-point number if any argument is floating point.

Emacs Lisp arithmetic functions do not check for integer overflow. Thus (1+ 536870911)
may evaluate to —536870912, depending on your hardware.

1+ number-or-marker [Function]
This function returns number-or-marker plus 1. For example,

(setq foo 4)
= 4
(1+ foo)
= b5

This function is not analogous to the C operator ++—it does not increment a variable. It
just computes a sum. Thus, if we continue,

Chapter 3: Numbers 36

foo
= 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))
= 5

1- number-or-marker [Function]
This function returns number-or-marker minus 1.

+ &rest numbers-or-markers [Function]
This function adds its arguments together. When given no arguments, + returns 0.

(+)
= 0

+ 1D
=1

(+1234)
= 10

- &optional number-or-marker &rest more-numbers-or-markers [Function]
The - function serves two purposes: negation and subtraction. When - has a single argument,
the value is the negative of the argument. When there are multiple arguments, - subtracts
each of the more-numbers-or-markers from number-or-marker, cumulatively. If there are no
arguments, the result is 0.

(-10 123 4)
= 0
(- 10)
= -10
=)
= 0

* &rest numbers-or-markers [Function]

This function multiplies its arguments together, and returns the product. When given no
arguments, * returns 1.

(x)
=1
(x 1)
= 1
(x 1 234)
= 24

/ dividend divisor &rest divisors [Function]
This function divides dividend by divisor and returns the quotient. If there are additional
arguments divisors, then it divides dividend by each divisor in turn. Each argument may be
a number or a marker.

If all the arguments are integers, the result is an integer, obtained by rounding the quotient
towards zero after each division.

(/ 6 2)

= 3
(/ 5 2)

= 2
(/ 5.0 2)

= 2.5

Chapter 3: Numbers 37

T

(/ 52.0)
= 2.5
(/ 5.0 2.0)
= 2.5
(/ 25 3 2)
= 4
(/ -17 6)
= -2

If you divide an integer by the integer 0, Emacs signals an arith-error error (see
Section 10.5.3 [Errors], page 117). Floating-point division of a nonzero number by zero
yields either positive or negative infinity (see Section 3.2 [Float Basics|, page 31).

dividend divisor [Function]
This function returns the integer remainder after division of dividend by divisor. The argu-
ments must be integers or markers.

For any two integers dividend and divisor,

(+ (% dividend divisor)
(* (/ dividend divisor) divisor))

always equals dividend if divisor is nonzero.

h 9 4)
=1
Ch -9 4
= -1
h 9 -4)
=1
(h -9 -4)
= -1
mod dividend divisor [Function]

This function returns the value of dividend modulo divisor; in other words, the remainder
after division of dividend by divisor, but with the same sign as divisor. The arguments must
be numbers or markers.

Unlike %, mod permits floating-point arguments; it rounds the quotient downward (towards
minus infinity) to an integer, and uses that quotient to compute the remainder.

If divisor is zero, mod signals an arith-error error if both arguments are integers, and
returns a NalN otherwise.

(mod 9 4)

= 1
(mod -9 4)

= 3
(mod 9 -4)

= -3
(mod -9 -4)

= -1
(mod 5.5 2.5)

= .5

For any two numbers dividend and divisor,

(+ (mod dividend divisor)
(x (floor dividend divisor) divisor))

Chapter 3: Numbers 38

always equals dividend, subject to rounding error if either argument is floating point and
to an arith-error if dividend is an integer and divisor is 0. For floor, see Section 3.5
[Numeric Conversions|, page 34.

3.7 Rounding Operations

The functions ffloor, fceiling, fround, and ftruncate take a floating-point argument and
return a floating-point result whose value is a nearby integer. ffloor returns the nearest integer
below; fceiling, the nearest integer above; ftruncate, the nearest integer in the direction
towards zero; fround, the nearest integer.

ffloor float [Function]
This function rounds float to the next lower integral value, and returns that value as a
floating-point number.

fceiling float [Function]
This function rounds float to the next higher integral value, and returns that value as a
floating-point number.

ftruncate float [Function]
This function rounds float towards zero to an integral value, and returns that value as a
floating-point number.

fround float [Function]
This function rounds float to the nearest integral value, and returns that value as a floating-
point number. Rounding a value equidistant between two integers returns the even integer.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits which
are either zero or one). A bitwise operation acts on the individual bits of such a sequence. For
example, shifting moves the whole sequence left or right one or more places, reproducing the
same pattern “moved over”.

The bitwise operations in Emacs Lisp apply only to integers.

1sh integerl count [Function]
1sh, which is an abbreviation for logical shift, shifts the bits in integerl to the left count
places, or to the right if count is negative, bringing zeros into the vacated bits. If count is
negative, 1sh shifts zeros into the leftmost (most-significant) bit, producing a positive result
even if integerl is negative. Contrast this with ash, below.

Here are two examples of 1sh, shifting a pattern of bits one place to the left. We show only
the low-order eight bits of the binary pattern; the rest are all zero.

(1sh 5 1)

= 10
;3 Decimal 5 becomes decimal 10.
00000101 = 00001010

(1sh 7 1)

= 14
;3 Decimal 7 becomes decimal 14.
00000111 = 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces a number
that is twice the value of the previous number.

Chapter 3: Numbers 39

Shifting a pattern of bits two places to the left produces results like this (with 8-bit binary
numbers):
(1sh 3 2)
= 12
;3 Decimal 3 becomes decimal 12.
00000011 = 00001100
On the other hand, shifting one place to the right looks like this:
(1sh 6 -1)
= 3
;3 Decimal 6 becomes decimal 3.
00000110 = 00000011

(1sh 5 -1)

= 2
;3 Decimal 5 becomes decimal 2.

00000101 = 00000010
As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.
The function 1sh, like all Emacs Lisp arithmetic functions, does not check for overflow, so
shifting left can discard significant bits and change the sign of the number. For example, left
shifting 536,870,911 produces —2 in the 30-bit implementation:

(1sh 536870911 1) ; left shift

= -2

In binary, the argument looks like this:

;3 Decimal 536,870,911

0111...111111 (30 bits total)

which becomes the following when left shifted:

;3 Decimal —2
1111...111110 (30 bits total)

ash integerl count [Function]
ash (arithmetic shift) shifts the bits in integerl to the left count places, or to the right if

count is negative.
ash gives the same results as 1sh except when integerl and count are both negative. In that
case, ash puts ones in the empty bit positions on the left, while 1sh puts zeros in those bit
positions.
Thus, with ash, shifting the pattern of bits one place to the right looks like this:
(ash -6 -1) = -3
;3 Decimal —6 becomes decimal —3.
1111...111010 (30 bits total)
=
1111...111101 (30 bits total)
In contrast, shifting the pattern of bits one place to the right with 1sh looks like this:
(1sh -6 -1) = 536870909
;5 Decimal —6 becomes decimal 536,870,909.
1111...111010 (30 bits total)
=
0111...111101 (30 bits total)

Here are other examples:

Chapter 3: Numbers 40

; 30-bit binary values

(1sh 5 2) H 5 = 0000...000101
= 20 ; = 0000...010100
(ash 5 2)
= 20
(1sh -5 2) ;-5 = 1111...111011
= -20 ; = 1111...101100
(ash -5 2)
= -20
(1sh 5 -2) ; 5 = 0000...000101
=1 ; = 0000...000001
(ash 5 -2)
=1
(1sh -5 -2) ;-5 = 1111...111011

= 268435454
0011...111110

3

(ash -5 -2) ;-5 = 1111...111011
= -2 ; = 1111...111110
logand &rest ints-or-markers [Function]

This function returns the “logical and” of the arguments: the nth bit is set in the result if,
and only if, the nth bit is set in all the arguments. (“Set” means that the value of the bit is
1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101 combined
with 1100 produces 1100. In both the binary numbers, the leftmost two bits are set (i.e., they
are 1’s), so the leftmost two bits of the returned value are set. However, for the rightmost two
bits, each is zero in at least one of the arguments, so the rightmost two bits of the returned
value are 0’s.

Therefore,

(logand 13 12)
= 12
If 1ogand is not passed any argument, it returns a value of —1. This number is an identity
element for logand because its binary representation consists entirely of ones. If logand is
passed just one argument, it returns that argument.
; 30-bit binary values

(logand 14 13) ; 14 = 0000...001110
; 13 = 0000...001101
= 12 ; 12 = 0000...001100
(logand 14 13 4) ; 14 = 0000...001110
; 13 = 0000...001101
;4 = 0000...000100
= 4 ;4 = 0000...000100
(logand)
= -1 ;-1 = 1111..111111
logior &rest ints-or-markers [Function]

This function returns the “inclusive or” of its arguments: the nth bit is set in the result if,
and only if, the nth bit is set in at least one of the arguments. If there are no arguments, the
result is zero, which is an identity element for this operation. If logior is passed just one
argument, it returns that argument.

; 30-bit binary values

0000...001100
0000...000101
0000...001101

(logior 12 5) ; 12

l
nonon

= 13 ; 13

Chapter 3: Numbers 41

(logior 12 5 7) ; 12 = 0000...001100
;5 = 0000...000101
; 7 = 0000...000111
= 15 ; 16 = 0000...001111
logxor &rest ints-or-markers [Function]

This function returns the “exclusive or” of its arguments: the nth bit is set in the result if,
and only if, the nth bit is set in an odd number of the arguments. If there are no arguments,
the result is 0, which is an identity element for this operation. If logxor is passed just one
argument, it returns that argument.

; 30-bit binary values

(logxor 12 5) ; 12 = 0000...001100
;5 = 0000...000101

= 9 ;9 = 0000...001001

(logxor 12 5 7) ; 12 = 0000...001100
;5 = 0000...000101

;7 = 0000...000111

= 14 ; 14 = 0000...001110

lognot integer [Function]

This function returns the logical complement of its argument: the nth bit is one in the result
if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)
= -6
;5 5 = 0000...000101 (30 bits total)
;3 becomes
;3 -6 = 1111...111010 (30 bits total)

3.9 Standard Mathematical Functions

These mathematical functions allow integers as well as floating-point numbers as arguments.

sin arg [Function]
cos arg [Function]
tan arg [Function]

These are the basic trigonometric functions, with argument arg measured in radians.

asin arg [Function]
The value of (asin arg) is a number between —7/2 and 7/2 (inclusive) whose sine is arg. If
arg is out of range (outside [—1, 1]), asin returns a NaN.

acos arg [Function]
The value of (acos arg) is a number between 0 and 7 (inclusive) whose cosine is arg. If arg
is out of range (outside [—1, 1]), acos returns a NaN.

atan y &optional x [Function]
The value of (atan y) is a number between —7/2 and 7/2 (exclusive) whose tangent is y.
If the optional second argument x is given, the value of (atan y x) is the angle in radians
between the vector [x, y] and the X axis.

exp arg [Function]
This is the exponential function; it returns e to the power arg.

log arg &optional base [Function]
This function returns the logarithm of arg, with base base. If you don’t specify base, the
natural base e is used. If arg or base is negative, log returns a NaN.

Chapter 3: Numbers 42

expt xy [Function]
This function returns x raised to power y. If both arguments are integers and y is positive,
the result is an integer; in this case, overflow causes truncation, so watch out. If x is a finite
negative number and y is a finite non-integer, expt returns a NaN.

sqrt arg [Function]
This returns the square root of arg. If arg is finite and less than zero, sqrt returns a NaN.

In addition, Emacs defines the following common mathematical constants:

float-e [Variable]
The mathematical constant e (2.71828...).

float-pi [Variable]
The mathematical constant pi (3.14159. . .).

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most purposes,
pseudo-random numbers suffice. A series of pseudo-random numbers is generated in a determin-
istic fashion. The numbers are not truly random, but they have certain properties that mimic a
random series. For example, all possible values occur equally often in a pseudo-random series.

Pseudo-random numbers are generated from a “seed”. Starting from any given seed, the
random function always generates the same sequence of numbers. By default, Emacs initial-
izes the random seed at startup, in such a way that the sequence of values of random (with
overwhelming likelihood) differs in each Emacs run.

Sometimes you want the random number sequence to be repeatable. For example, when
debugging a program whose behavior depends on the random number sequence, it is helpful to
get the same behavior in each program run. To make the sequence repeat, execute (random
""). This sets the seed to a constant value for your particular Emacs executable (though it may
differ for other Emacs builds). You can use other strings to choose various seed values.

random &optional limit [Function]
This function returns a pseudo-random integer. Repeated calls return a series of pseudo-
random integers.
If limit is a positive integer, the value is chosen to be nonnegative and less than limit.
Otherwise, the value might be any integer representable in Lisp, i.e., an integer between most-
negative-fixnum and most-positive-fixnum (see Section 3.1 [Integer Basics|, page 30).
If limit is t, it means to choose a new seed as if Emacs were restarting.

If limit is a string, it means to choose a new seed based on the string’s contents.

Chapter 4: Strings and Characters 43

4 Strings and Characters

A string in Emacs Lisp is an array that contains an ordered sequence of characters. Strings are
used as names of symbols, buffers, and files; to send messages to users; to hold text being copied
between buffers; and for many other purposes. Because strings are so important, Emacs Lisp
has many functions expressly for manipulating them. Emacs Lisp programs use strings more
often than individual characters.

See Section 20.7.15 [Strings of Events|, page 306, for special considerations for strings of
keyboard character events.

4.1 String and Character Basics

A character is a Lisp object which represents a single character of text. In Emacs Lisp, characters
are simply integers; whether an integer is a character or not is determined only by how it is
used. See Section 32.5 [Character Codes|, page 629, for details about character representation
in Emacs.

A string is a fixed sequence of characters. It is a type of sequence called a array, meaning
that its length is fixed and cannot be altered once it is created (see Chapter 6 [Sequences Arrays
Vectors|, page 78). Unlike in C, Emacs Lisp strings are not terminated by a distinguished
character code.

Since strings are arrays, and therefore sequences as well, you can operate on them with
the general array and sequence functions documented in Chapter 6 [Sequences Arrays Vectors],
page 78. For example, you can access or change individual characters in a string using the
functions aref and aset (see Section 6.3 [Array Functions|, page 80). However, note that
length should not be used for computing the width of a string on display; use string-width
(see Section 37.10 [Size of Displayed Text], page 749) instead.

There are two text representations for non-ASCII characters in Emacs strings (and in buffers):
unibyte and multibyte. For most Lisp programming, you don’t need to be concerned with these
two representations. See Section 32.1 [Text Representations|, page 626, for details.

Sometimes key sequences are represented as unibyte strings. When a unibyte string is a key
sequence, string elements in the range 128 to 255 represent meta characters (which are large
integers) rather than character codes in the range 128 to 255. Strings cannot hold characters
that have the hyper, super or alt modifiers; they can hold ASCII control characters, but no other
control characters. They do not distinguish case in ASCII control characters. If you want to
store such characters in a sequence, such as a key sequence, you must use a vector instead of a
string. See Section 2.3.3 [Character Type|, page 9, for more information about keyboard input
characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings with string-match (see Section 33.4 [Regexp Search], page 660). The functions
match-string (see Section 33.6.2 [Simple Match Datal, page 664) and replace-match (see
Section 33.6.1 [Replacing Match], page 663) are useful for decomposing and modifying strings
after matching regular expressions against them.

Like a buffer, a string can contain text properties for the characters in it, as well as the
characters themselves. See Section 31.19 [Text Properties|, page 603. All the Lisp primitives
that copy text from strings to buffers or other strings also copy the properties of the characters
being copied.

See Chapter 31 [Text], page 572, for information about functions that display strings or copy
them into buffers. See Section 2.3.3 [Character Type|, page 9, and Section 2.3.8 [String Type],
page 16, for information about the syntax of characters and strings. See Chapter 32 [Non-ASCII
Characters|, page 626, for functions to convert between text representations and to encode and
decode character codes.

Chapter 4: Strings and Characters 44

4.2 Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Sequences
Arrays Vectors], page 78, and Section 6.2 [Arrays|, page 80.

stringp object [Function]
This function returns t if object is a string, nil otherwise.

string-or-null-p object [Function]
This function returns t if object is a string or nil. It returns nil otherwise.

char-or-string-p object [Function]
This function returns t if object is a string or a character (i.e., an integer), nil otherwise.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together, or by
taking them apart.

make-string count character [Function]
This function returns a string made up of count repetitions of character. If count is negative,
an error is signaled.
(make-string 5 7x)
= "xxxxx"
(make-string 0 7x)
:> nn
Other functions to compare with this one include make-vector (see Section 6.4 [Vectors],
page 82) and make-list (see Section 5.4 [Building Lists], page 60).

string &rest characters [Function]
This returns a string containing the characters characters.
(string 7a 7b ?7c)
= "abc"

substring string start &optional end [Function]
This function returns a new string which consists of those characters from string in the range
from (and including) the character at the index start up to (but excluding) the character at
the index end. The first character is at index zero.
(substring "abcdefg" 0 3)
= "abc"
In the above example, the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2.
The index 3—which is the fourth character in the string—marks the character position up
to which the substring is copied. Thus, ‘abc’ is copied from the string "abcdefg".
A negative number counts from the end of the string, so that —1 signifies the index of the
last character of the string. For example:
(substring "abcdefg" -3 -1)
= "ef"
In this example, the index for ‘e’ is —3, the index for ‘f’ is —2, and the index for ‘g’ is —1.
Therefore, ‘e’ and ‘£’ are included, and ‘g’ is excluded.
When nil is used for end, it stands for the length of the string. Thus,
(substring "abcdefg" -3 nil)
= "efg"
Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

Chapter 4: Strings and Characters 45

(substring "abcdefg" 0)
= "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Functions],
page 78).

If the characters copied from string have text properties, the properties are copied into the
new string also. See Section 31.19 [Text Properties], page 603.

substring also accepts a vector for the first argument. For example:

(substring [a b (c) "d"] 1 3)
= [b (c)]

A wrong-type-argument error is signaled if start is not an integer or if end is neither an
integer nor nil. An args-out-of-range error is signaled if start indicates a character
following end, or if either integer is out of range for string.

Contrast this function with buffer-substring (see Section 31.2 [Buffer Contents|, page 573),
which returns a string containing a portion of the text in the current buffer. The beginning
of a string is at index 0, but the beginning of a buffer is at index 1.

substring-no-properties string &optional start end [Function]
This works like substring but discards all text properties from the value. Also, start may
be omitted or nil, which is equivalent to 0. Thus, (substring-no-properties string)
returns a copy of string, with all text properties removed.

concat &rest sequences [Function]
This function returns a new string consisting of the characters in the arguments passed to it
(along with their text properties, if any). The arguments may be strings, lists of numbers,
or vectors of numbers; they are not themselves changed. If concat receives no arguments, it
returns an empty string.

(concat "abc" "-def")
= "abc-def"

(concat "abc" (1list 120 121) [122])
= "abcxyz"

;5 nil is an empty sequence.
(concat "abc" nil "-def")

= "abc-def"
(concat "The " "quick brown " "fox.")
= "The quick brown fox."
(concat)
i nn

This function always constructs a new string that is not eq to any existing string, except
when the result is the empty string (to save space, Emacs makes only one empty multibyte
string).

For information about other concatenation functions, see the description of mapconcat in
Section 12.6 [Mapping Functions|, page 158, vconcat in Section 6.5 [Vector Functions],
page 82, and append in Section 5.4 [Building Lists|, page 60. For concatenating individ-
ual command-line arguments into a string to be used as a shell command, see Section 36.2
[Shell Arguments], page 692.

split-string string &optional separators omit-nulls trim [Function]
This function splits string into substrings based on the regular expression separators (see
Section 33.3 [Regular Expressions|, page 651). Each match for separators defines a splitting
point; the substrings between splitting points are made into a list, which is returned.

Chapter 4: Strings and Characters 46

If omit-nulls is nil (or omitted), the result contains null strings whenever there are two
consecutive matches for separators, or a match is adjacent to the beginning or end of string.
If omit-nulls is t, these null strings are omitted from the result.

If separators is nil (or omitted), the default is the value of split-string-default-
separators.

As a special case, when separators is nil (or omitted), null strings are always omitted from
the result. Thus:

(split-string " two words ")
= ("two" "words")

The result is not ("" "two" "words" ""), which would rarely be useful. If you need such a
result, use an explicit value for separators:

(split-string " two words "
split-string-default-separators)
:> (ll n IItwoll "wordsll n II)
More examples:
(split-string "Soup is good food" "o")
i (IISII ||up iS gll nn Ild fll nn ||dll)
(split-string "Soup is good food" "o" t)
:> ("Sll ||up is gll lld fll lld")
(split-string "Soup is good food" "o+")
: (IISII ||up iS gll lld fll lldll)
Empty matches do count, except that split-string will not look for a final empty match
when it already reached the end of the string using a non-empty match or when string is
empty:

(split-string "aooob" "o*")

:> (" n.n all nn ||b|| n ")
(split-string "ooaboo" "o*")

= (nmonmomgm npnoww)
(split-string "" "")

: ("")

However, when separators can match the empty string, omit-nulls is usually t, so that the
subtleties in the three previous examples are rarely relevant:

(split-string "Soup is good food" "ox" t)

= ("S" M"u" "p" M M MiM Mgh MM nghnongn o wowowfgw nguy
(split-string "Nice doggy!" "" t)

:> (IINII ||ill llcll ||ell non lldll "O“ llg" ||g|| lly" n ! ll)
(split-string "" " t)

= nil

Somewhat odd, but predictable, behavior can occur for certain “non-greedy” values of sep-
arators that can prefer empty matches over non-empty matches. Again, such values rarely
occur in practice:
(split-string "ooo" "ox" t)
= nil
(split-string "ooo" "\\|o+" t)
i (lloll ||oll IIOII)
If the optional argument trim is non-nil, it should be a regular expression to match text to

trim from the beginning and end of each substring. If trimming makes the substring empty,
it is treated as null.

Chapter 4: Strings and Characters 47

If you need to split a string into a list of individual command-line arguments suitable for
call-process or start-process, see Section 36.2 [Shell Arguments], page 692.

split-string-default-separators [Variable]
The default value of separators for split-string. Its usual value is " [\f\t\n\r\v]+".

4.4 Modifying Strings

The most basic way to alter the contents of an existing string is with aset (see Section 6.3
[Array Functions|, page 80). (aset string idx char) stores char into string at index idx.
Each character occupies one or more bytes, and if char needs a different number of bytes from
the character already present at that index, aset signals an error.

A more powerful function is store-substring:

store-substring string idx obj [Function]
This function alters part of the contents of the string string, by storing obj starting at index
idx. The argument obj may be either a character or a (smaller) string.

Since it is impossible to change the length of an existing string, it is an error if obj doesn’t
fit within string’s actual length, or if any new character requires a different number of bytes
from the character currently present at that point in string.

To clear out a string that contained a password, use clear-string:

clear-string string [Function]
This makes string a unibyte string and clears its contents to zeros. It may also change string’s
length.

4.5 Comparison of Characters and Strings

char-equal characterl character2 [Function]
This function returns t if the arguments represent the same character, nil otherwise. This
function ignores differences in case if case-fold-search is non-nil.

(char-equal ?7x 7x)
=t
(let ((case-fold-search nil))
(char-equal 7x 7X))
= nil

string= stringl string2 [Function]
This function returns t if the characters of the two strings match exactly. Symbols are also
allowed as arguments, in which case the symbol names are used. Case is always significant,
regardless of case-fold-search.

This function is equivalent to equal for comparing two strings (see Section 2.7 [Equality
Predicates|, page 27). In particular, the text properties of the two strings are ignored; use
equal-including-properties if you need to distinguish between strings that differ only in
their text properties. However, unlike equal, if either argument is not a string or symbol,
string= signals an error.

(string= "abc" "abc")
=t

(string= "abc" "ABC")
= nil

(string= "ab" "ABC")

Chapter 4: Strings and Characters 48

= nil

For technical reasons, a unibyte and a multibyte string are equal if and only if they contain
the same sequence of character codes and all these codes are either in the range 0 through
127 (ASCII) or 160 through 255 (eight-bit-graphic). However, when a unibyte string
is converted to a multibyte string, all characters with codes in the range 160 through 255
are converted to characters with higher codes, whereas ASCII characters remain unchanged.
Thus, a unibyte string and its conversion to multibyte are only equal if the string is all ASCII.
Character codes 160 through 255 are not entirely proper in multibyte text, even though they
can occur. As a consequence, the situation where a unibyte and a multibyte string are equal
without both being all ASCII is a technical oddity that very few Emacs Lisp programmers
ever get confronted with. See Section 32.1 [Text Representations], page 626.

string-equal stringl string2 [Function]
string-equal is another name for string=.

string< stringl string2 [Function]
This function compares two strings a character at a time. It scans both the strings at the
same time to find the first pair of corresponding characters that do not match. If the lesser
character of these two is the character from stringl, then stringl is less, and this function
returns t. If the lesser character is the one from string2, then stringl is greater, and this
function returns nil. If the two strings match entirely, the value is nil.

Pairs of characters are compared according to their character codes. Keep in mind that
lower case letters have higher numeric values in the ASCII character set than their upper
case counterparts; digits and many punctuation characters have a lower numeric value than
upper case letters. An ASCII character is less than any non-ASCII character; a unibyte non-
ASCII character is always less than any multibyte non-ASCII character (see Section 32.1 [Text
Representations|, page 626).

(string< "abc" "abd")

=t

(string< "abd" "abc")
= nil

(string< "123" "abc")
=t

When the strings have different lengths, and they match up to the length of stringl, then
the result is t. If they match up to the length of string2, the result is nil. A string of no
characters is less than any other string.

(string< "" "abc")
=t

(string< "ab" "abc")
=t

(string< "abc" "")
= nil

(string< "abc" "ab")
= nil

(string< "" "M)
= nil

Symbols are also allowed as arguments, in which case their print names are used.

string-lessp stringl string2 [Function]
string-lessp is another name for string<.

Chapter 4: Strings and Characters 49

string-prefix-p stringl string2 &optional ignore-case [Function]
This function returns non-nil if stringl is a prefix of string2; i.e., if string2 starts with stringl.
If the optional argument ignore-case is non-nil, the comparison ignores case differences.

string-suffix-p suffix string &optional ignore-case [Function]
This function returns non-nil if suffix is a suffix of string; i.e., if string ends with suffix. If
the optional argument ignore-case is non-nil, the comparison ignores case differences.

compare-strings stringl startl endl string2 start2 end2 &optional [Function]
ignore-case
This function compares a specified part of stringl with a specified part of string2. The
specified part of stringl runs from index startl (inclusive) up to index endl (exclusive); nil
for start] means the start of the string, while nil for endl means the length of the string.
Likewise, the specified part of string2 runs from index start2 up to index end2.

The strings are compared by the numeric values of their characters. For instance, strl is
considered “smaller than” str2 if its first differing character has a smaller numeric value.
If ignore-case is non-nil, characters are converted to lower-case before comparing them.
Unibyte strings are converted to multibyte for comparison (see Section 32.1 [Text Repre-
sentations], page 626), so that a unibyte string and its conversion to multibyte are always
regarded as equal.

If the specified portions of the two strings match, the value is t. Otherwise, the value is
an integer which indicates how many leading characters agree, and which string is less. Its
absolute value is one plus the number of characters that agree at the beginning of the two
strings. The sign is negative if stringl (or its specified portion) is less.

assoc-string key alist &optional case-fold [Function]
This function works like assoc, except that key must be a string or symbol, and comparison
is done using compare-strings. Symbols are converted to strings before testing. If case-fold
is non-nil, it ignores case differences. Unlike assoc, this function can also match elements
of the alist that are strings or symbols rather than conses. In particular, alist can be a list of
strings or symbols rather than an actual alist. See Section 5.8 [Association Lists|, page 73.

See also the function compare-buffer-substrings in Section 31.3 [Comparing Text],
page 575, for a way to compare text in buffers. The function string-match, which matches a
regular expression against a string, can be used for a kind of string comparison; see Section 33.4
[Regexp Search], page 660.

4.6 Conversion of Characters and Strings

This section describes functions for converting between characters, strings and integers. format
(see Section 4.7 [Formatting Strings|, page 51) and prinl-to-string (see Section 18.5 [Out-
put Functions|, page 251) can also convert Lisp objects into strings. read-from-string (see
Section 18.3 [Input Functions|, page 248) can “convert” a string representation of a Lisp object
into an object. The functions string-to-multibyte and string-to-unibyte convert the text
representation of a string (see Section 32.3 [Converting Representations|, page 627).

See Chapter 23 [Documentation|, page 404, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-char-
description). These are used primarily for making help messages.

number-to-string number [Function]
This function returns a string consisting of the printed base-ten representation of number.
The returned value starts with a minus sign if the argument is negative.

Chapter 4: Strings and Characters 50

(number-to-string 256)

= "256"

(number-to-string -23)
= n_o3mn

(number-to-string -23.5)
= "-23.5"

int-to-string is a semi-obsolete alias for this function.

See also the function format in Section 4.7 [Formatting Strings|, page 51.

string-to-number string &optional base [Function]
This function returns the numeric value of the characters in string. If base is non-nil, it
must be an integer between 2 and 16 (inclusive), and integers are converted in that base. If
base is nil, then base ten is used. Floating-point conversion only works in base ten; we have
not implemented other radices for floating-point numbers, because that would be much more
work and does not seem useful. If string looks like an integer but its value is too large to fit
into a Lisp integer, string-to-number returns a floating-point result.
The parsing skips spaces and tabs at the beginning of string, then reads as much of string as
it can interpret as a number in the given base. (On some systems it ignores other whitespace
at the beginning, not just spaces and tabs.) If string cannot be interpreted as a number, this
function returns 0.
(string-to-number "256")
= 256
(string-to-number "25 is a perfect square.")
= 25
(string-to-number "X256")
= 0
(string-to-number "-4.5")
= —-4.5
(string-to-number "1e5")
= 100000.0

string-to-int is an obsolete alias for this function.

char-to-string character [Function]
This function returns a new string containing one character, character. This function is semi-
obsolete because the function string is more general. See Section 4.3 [Creating Strings,
page 44.

string-to-char string [Function]
This function returns the first character in string. This mostly identical to (aref string 0),
except that it returns 0 if the string is empty. (The value is also 0 when the first character
of string is the null character, ASCII code 0.) This function may be eliminated in the future
if it does not seem useful enough to retain.

Here are some other functions that can convert to or from a string:

concat This function converts a vector or a list into a string. See Section 4.3 [Creating
Strings|, page 44.

vconcat This function converts a string into a vector. See Section 6.5 [Vector Functions],
page 82.

append This function converts a string into a list. See Section 5.4 [Building Lists|, page 60.
byte-to-string
This function converts a byte of character data into a unibyte string. See Section 32.3
[Converting Representations|, page 627.

Chapter 4: Strings and Characters 51

4.7 Formatting Strings

Formatting means constructing a string by substituting computed values at various places in a
constant string. This constant string controls how the other values are printed, as well as where
they appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from format
only in how they use the result of formatting.

format string &rest objects [Function]
This function returns a new string that is made by copying string and then replacing any
format specification in the copy with encodings of the corresponding objects. The arguments
objects are the computed values to be formatted.

The characters in string, other than the format specifications, are copied directly into the
output, including their text properties, if any.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there is a ‘%d’
in string, the format function replaces it with the printed representation of one of the values to
be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
= "The value of fill-column is 72."

Since format interprets ‘%’ characters as format specifications, you should never pass an
arbitrary string as the first argument. This is particularly true when the string is generated
by some Lisp code. Unless the string is known to never include any ‘%’ characters, pass "%s",
described below, as the first argument, and the string as the second, like this:

(format "%s" arbitrary-string)

If string contains more than one format specification, the format specifications correspond
to successive values from objects. Thus, the first format specification in string uses the first
such value, the second format specification uses the second such value, and so on. Any extra
format specifications (those for which there are no corresponding values) cause an error. Any
extra values to be formatted are ignored.

Certain format specifications require values of particular types. If you supply a value that
doesn’t fit the requirements, an error is signaled.

Here is a table of valid format specifications:

s’ Replace the specification with the printed representation of the object, made with-
out quoting (that is, using princ, not prini—see Section 18.5 [Output Functions|,
page 251). Thus, strings are represented by their contents alone, with no ‘"’ char-
acters, and symbols appear without ‘\’ characters.

If the object is a string, its text properties are copied into the output. The text
properties of the ‘%s’ itself are also copied, but those of the object take priority.

Ak Replace the specification with the printed representation of the object, made with
quoting (that is, using prini—see Section 18.5 [Output Functions|, page 251). Thus,
strings are enclosed in ‘"’ characters, and ‘\’ characters appear where necessary
before special characters.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘hd’ Replace the specification with the base-ten representation of an integer.

‘%X,

A Y Replace the specification with the base-sixteen representation of an integer. ‘%x’

uses lower case and ‘%X’ uses upper case.

Chapter 4: Strings and Characters 52

‘e’ Replace the specification with the character which is the value given.

‘e’ Replace the specification with the exponential notation for a floating-point number.

hE’ Replace the specification with the decimal-point notation for a floating-point num-
ber.

e’ Replace the specification with notation for a floating-point number, using either

exponential notation or decimal-point notation, whichever is shorter.

A Replace the specification with a single ‘%’. This format specification is unusual in
that it does not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.
Here are several examples:

(format "The name of this buffer is ¥%s." (buffer-name))
= "The name of this buffer is strings.texi."

(format "The buffer object prints as ’s." (current-buffer))
= "The buffer object prints as strings.texi."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)
= "The octal value of 18 is 22,
and the hex value is 12."

A specification can have a width, which is a decimal number between the ‘%’ and the specifi-
cation character. If the printed representation of the object contains fewer characters than this
width, format extends it with padding. The width specifier is ignored for the ‘%%’ specification.
Any padding introduced by the width specifier normally consists of spaces inserted on the left:

(format "%5d is padded on the left with spaces" 123)
= " 123 is padded on the left with spaces"

If the width is too small, format does not truncate the object’s printed representation. Thus,
you can use a width to specify a minimum spacing between columns with no risk of losing
information. In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first
case, the string inserted in place of ‘%7s’ has only 3 letters, and needs 4 blank spaces as padding.
In the second case, the string "specification" is 13 letters wide but is not truncated.

(format "The word ‘%7s’ has %d letters in it."
"foo" (length "foo"))
= "The word ° foo’ has 3 letters in it."
(format "The word ‘J%7s’ has %d letters in it."
"specification" (length "specification"))
= "The word ‘specification’ has 13 letters in it."
Immediately after the ‘%’ and before the optional width specifier, you can also put certain
flag characters.

The flag ‘+” inserts a plus sign before a positive number, so that it always has a sign. A
space character as flag inserts a space before a positive number. (Otherwise, positive numbers
start with the first digit.) These flags are useful for ensuring that positive numbers and negative
numbers use the same number of columns. They are ignored except for ‘%d’, ‘%e’, ‘%f’, ‘%g’, and
if both flags are used, ‘+” takes precedence.

The flag ‘#’ specifies an “alternate form” which depends on the format in use. For ‘%o’, it
ensures that the result begins with a ‘0’. For ‘%x’ and ‘%X’, it prefixes the result with ‘0x’ or
‘0X’. For ‘%e’, “%f’, and ‘%g’, the ‘#’ flag means include a decimal point even if the precision is
Z€ro.

Chapter 4: Strings and Characters 53

The flag ‘0’ ensures that the padding consists of ‘0’ characters instead of spaces. This flag
is ignored for non-numerical specification characters like ‘%s’, ‘%S’ and ‘%c’. These specification
characters accept the ‘0’ flag, but still pad with spaces.

The flag ‘=’ causes the padding inserted by the width specifier, if any, to be inserted on the
right rather than the left. If both ‘-’ and ‘0’ are present, the ‘0’ flag is ignored.

(format "%06d is padded on the left with zeros" 123)
= "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
= "123 is padded on the right"

(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))
= "The word ‘foo > actually has 3 letters in it."

All the specification characters allow an optional precision before the character (after the
width, if present). The precision is a decimal-point ‘.’ followed by a digit-string. For the
floating-point specifications (‘%e’, ‘%f’, ‘%g’), the precision specifies how many decimal places to
show; if zero, the decimal-point itself is also omitted. For ‘%s’ and ‘%S’, the precision truncates
the string to the given width, so ‘% .3s’ shows only the first three characters of the representation
for object. Precision has no effect for other specification characters.

4.8 Case Conversion in Lisp

The character case functions change the case of single characters or of the contents of strings.
The functions normally convert only alphabetic characters (the letters ‘A’ through ‘Z’ and ‘a’
through ‘z’, as well as non-ASCII letters); other characters are not altered. You can specify
a different case conversion mapping by specifying a case table (see Section 4.9 [Case Tables],
page 54).

These functions do not modify the strings that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

downcase string-or-char [Function]
This function converts string-or-char, which should be either a character or a string, to lower
case.

When string-or-char is a string, this function returns a new string in which each letter in the
argument that is upper case is converted to lower case. When string-or-char is a character,
this function returns the corresponding lower case character (an integer); if the original
character is lower case, or is not a letter, the return value is equal to the original character.

(downcase "The cat in the hat")
= "the cat in the hat"

(downcase 7X)
= 120

upcase string-or-char [Function]
This function converts string-or-char, which should be either a character or a string, to upper
case.

When string-or-char is a string, this function returns a new string in which each letter in the
argument that is lower case is converted to upper case. When string-or-char is a character,
this function returns the corresponding upper case character (an integer); if the original
character is upper case, or is not a letter, the return value is equal to the original character.

Chapter 4: Strings and Characters 54

(upcase "The cat in the hat")
= "THE CAT IN THE HAT"

(upcase 7x)
= 88

capitalize string-or-char [Function]
This function capitalizes strings or characters. If string-or-char is a string, the function
returns a new string whose contents are a copy of string-or-char in which each word has been
capitalized. This means that the first character of each word is converted to upper case, and
the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned to the
word constituent syntax class in the current syntax table (see Section 34.2.1 [Syntax Class
Table], page 672).

When string-or-char is a character, this function does the same thing as upcase.

(capitalize "The cat in the hat")
= "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
= "The 77th-Hatted Cat"

(capitalize 7x)
= 88

upcase-initials string-or-char [Function]
If string-or-char is a string, this function capitalizes the initials of the words in string-or-char,
without altering any letters other than the initials. It returns a new string whose contents
are a copy of string-or-char, in which each word has had its initial letter converted to upper
case.

The definition of a word is any sequence of consecutive characters that are assigned to the
word constituent syntax class in the current syntax table (see Section 34.2.1 [Syntax Class
Table], page 672).

When the argument to upcase-initials is a character, upcase-initials has the same
result as upcase.

(upcase-initials "The CAT in the hAt")
= "The CAT In The HAt"

See Section 4.5 [Text Comparison], page 47, for functions that compare strings; some of them
ignore case differences, or can optionally ignore case differences.

4.9 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the case conversion
functions for Lisp objects (see the previous section) and those that apply to text in the buffer
(see Section 31.18 [Case Changes|, page 601). Each buffer has a case table; there is also a
standard case table which is used to initialize the case table of new buffers.

A case table is a char-table (see Section 6.6 [Char-Tables], page 83) whose subtype is case-
table. This char-table maps each character into the corresponding lower case character. It has
three extra slots, which hold related tables:

upcase The upcase table maps each character into the corresponding upper case character.

Chapter 4: Strings and Characters 55

canonicalize
The canonicalize table maps all of a set of case-related characters into a particular
member of that set.

equivalences
The equivalences table maps each one of a set of case-related characters into the
next character in that set.

In simple cases, all you need to specify is the mapping to lower-case; the three related tables
will be calculated automatically from that one.

For some languages, upper and lower case letters are not in one-to-one correspondence. There
may be two different lower case letters with the same upper case equivalent. In these cases, you
need to specify the maps for both lower case and upper case.

The extra table canonicalize maps each character to a canonical equivalent; any two char-
acters that are related by case-conversion have the same canonical equivalent character. For
example, since ‘a’ and ‘A’ are related by case-conversion, they should have the same canonical
equivalent character (which should be either ‘a’ for both of them, or ‘A’ for both of them).

The extra table equivalences is a map that cyclically permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’ into
‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When constructing a case table, you can provide nil for canonicalize; then Emacs fills in this
slot from the lower case and upper case mappings. You can also provide nil for equivalences;
then Emacs fills in this slot from canonicalize. In a case table that is actually in use, those
components are non-nil. Do not try to specify equivalences without also specifying canonicalize.

Here are the functions for working with case tables:

case-table-p object [Function]
This predicate returns non-nil if object is a valid case table.

set-standard-case-table table [Function]
This function makes table the standard case table, so that it will be used in any buffers
created subsequently.

standard-case-table [Function]
This returns the standard case table.

current-case-table [Function]
This function returns the current buffer’s case table.

set-case-table table [Function]
This sets the current buffer’s case table to table.

with-case-table table body. . . [Macro]
The with-case-table macro saves the current case table, makes table the current case table,
evaluates the body forms, and finally restores the case table. The return value is the value of
the last form in body. The case table is restored even in case of an abnormal exit via throw
or error (see Section 10.5 [Nonlocal Exits], page 115).

Some language environments modify the case conversions of ASCII characters; for example, in
the Turkish language environment, the ASCII character ‘I’ is downcased into a Turkish “dotless
i”. This can interfere with code that requires ordinary ASCII case conversion, such as implemen-
tations of ASCII-based network protocols. In that case, use the with-case-table macro with
the variable ascii-case-table, which stores the unmodified case table for the ASCII character set.

Chapter 4: Strings and Characters 56

ascii-case-table [Variable]
The case table for the ASCII character set. This should not be modified by any language
environment settings.

The following three functions are convenient subroutines for packages that define non-ASCII
character sets. They modify the specified case table case-table; they also modify the standard
syntax table. See Chapter 34 [Syntax Tables|, page 671. Normally you would use these functions
to change the standard case table.

set-case-syntax-pair uc lc case-table [Function]
This function specifies a pair of corresponding letters, one upper case and one lower case.

set-case-syntax-delims I r case-table [Function]
This function makes characters I and r a matching pair of case-invariant delimiters.

set-case-syntax char syntax case-table [Function]
This function makes char case-invariant, with syntax syntax.

describe-buffer-case-table [Command]|
This command displays a description of the contents of the current buffer’s case table.

Chapter 5: Lists 57

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects). The
important difference between lists and vectors is that two or more lists can share part of their
structure; in addition, you can insert or delete elements in a list without copying the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells (see Section 2.3.6
[Cons Cell Type|, page 12). A cons cell is a data object that represents an ordered pair. That
is, it has two slots, and each slot holds, or refers to, some Lisp object. One slot is known as the
CAR, and the other is known as the CDR. (These names are traditional; see Section 2.3.6 [Cons
Cell Type]|, page 12.) CDR is pronounced “could-er”.

We say that “the CAR of this cons cell is” whatever object its CAR slot currently holds, and
likewise for the CDR.

A list is a series of cons cells “chained together”, so that each cell refers to the next one.
There is one cons cell for each element of the list. By convention, the CARs of the cons cells
hold the elements of the list, and the CDRs are used to chain the list (this asymmetry between
CAR and CDR is entirely a matter of convention; at the level of cons cells, the CAR and CDR slots
have similar properties). Hence, the CDR slot of each cons cell in a list refers to the following
cons cell.

Also by convention, the CDR of the last cons cell in a list isnil. We call such a nil-terminated
structure a true list. In Emacs Lisp, the symbol nil is both a symbol and a list with no elements.
For convenience, the symbol nil is considered to have nil as its CDR (and also as its CAR).

Hence, the CDR of a true list is always a true list. The CDR of a nonempty true list is a true
list containing all the elements except the first.

If the CDR of a list’s last cons cell is some value other than nil, we call the structure a dotted
list, since its printed representation would use dotted pair notation (see Section 2.3.6.2 [Dotted
Pair Notation|, page 14). There is one other possibility: some cons cell’s CDR could point to one
of the previous cons cells in the list. We call that structure a circular list.

For some purposes, it does not matter whether a list is true, circular or dotted. If a program
doesn’t look far enough down the list to see the CDR of the final cons cell, it won’t care. However,
some functions that operate on lists demand true lists and signal errors if given a dotted list.
Most functions that try to find the end of a list enter infinite loops if given a circular list.

Because most cons cells are used as part of lists, we refer to any structure made out of cons
cells as a list structure.

5.2 Predicates on Lists

The following predicates test whether a Lisp object is an atom, whether it is a cons cell or is a
list, or whether it is the distinguished object nil. (Many of these predicates can be defined in
terms of the others, but they are used so often that it is worth having them.)

consp object [Function]
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell, although
it ¢s a list.

atom object [Function]
This function returns t if object is an atom, nil otherwise. All objects except cons cells are
atoms. The symbol nil is an atom and is also a list; it is the only Lisp object that is both.

(atom object) = (not (consp object))

Chapter 5: Lists 58

listp object [Function]
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.
(listp ’ (1))
=t
(1istp)
=t

nlistp object [Function]
This function is the opposite of 1istp: it returns t if object is not a list. Otherwise, it returns
nil.
(listp object) = (not (nlistp object))

null object [Function]
This function returns t if object is nil, and returns nil otherwise. This function is identical
to not, but as a matter of clarity we use null when object is considered a list and not when
it is considered a truth value (see not in Section 10.3 [Combining Conditions|, page 113).
(null ’ (1))
= nil
(null >)
=t

5.3 Accessing Elements of Lists

car cons-cell [Function]
This function returns the value referred to by the first slot of the cons cell cons-cell. In other
words, it returns the CAR of cons-cell.

As a special case, if cons-cell is nil, this function returns nil. Therefore, any list is a valid
argument. An error is signaled if the argument is not a cons cell or nil.
(car ’(a b ¢))
= a

(car ()
= nil

cdr cons-cell [Function]
This function returns the value referred to by the second slot of the cons cell cons-cell. In
other words, it returns the CDR of cons-cell.

As a special case, if cons-cell is nil, this function returns nil; therefore, any list is a valid
argument. An error is signaled if the argument is not a cons cell or nil.
(cdr ’(a b ¢))
= (b ¢)
(cdr 70))
= nil

car-safe object [Function]
This function lets you take the CAR of a cons cell while avoiding errors for other data types.
It returns the CAR of object if object is a cons cell, nil otherwise. This is in contrast to car,
which signals an error if object is not a list.

(car-safe object)

(let ((x object))
(if (comsp x)
(car x)
nil))

Chapter 5: Lists 59

cdr-safe object [Function]
This function lets you take the CDR of a cons cell while avoiding errors for other data types.
It returns the CDR of object if object is a cons cell, nil otherwise. This is in contrast to cdr,
which signals an error if object is not a list.

(cdr-safe object)

(let ((x object))
(if (consp x)
(cdr x)
nil))

pop listname [Macro]
This macro provides a convenient way to examine the CAR of a list, and take it off the list,
all at once. It operates on the list stored in listname. It removes the first element from the
list, saves the CDR into listname, then returns the removed element.

In the simplest case, listname is an unquoted symbol naming a list; in that case, this macro
is equivalent to (progl (car listname) (setq listname (cdr listname))).

X

= (a b c)
(pop x)

= a
X

= (b c)

More generally, listname can be a generalized variable. In that case, this macro saves into
listname using setf. See Section 11.15 [Generalized Variables|, page 148.

For the push macro, which adds an element to a list, See Section 5.5 [List Variables|, page 63.

nth n list [Function]
This function returns the nth element of list. Elements are numbered starting with zero, so
the CAR of list is element number zero. If the length of list is n or less, the value is nil.

(nth 2 °(1 2 3 4))

= 3
(nth 10 °(1 2 3 4))
= nil
(nth n x) = (car (nthcdr n x))

The function elt is similar, but applies to any kind of sequence. For historical reasons, it
takes its arguments in the opposite order. See Section 6.1 [Sequence Functions], page 78.

nthcdr n list [Function]
This function returns the nth CDR of list. In other words, it skips past the first n links of Iist
and returns what follows.

If n is zero, nthedr returns all of Iist. If the length of list is n or less, nthcdr returns nil.

(nthcdr 1 °(1 2 3 4))

= (2 3 4)
(nthcdr 10 > (1 2 3 4))
= nil

(nthedr 0 °(1 2 3 4))
= (123 4)

Chapter 5: Lists 60

last list &optional n [Function]
This function returns the last link of list. The car of this link is the list’s last element. If list
is null, nil is returned. If n is non-nil, the nth-to-last link is returned instead, or the whole
of list if n is bigger than list’s length.

safe-length list [Function]
This function returns the length of list, with no risk of either an error or an infinite loop. It
generally returns the number of distinct cons cells in the list. However, for circular lists, the
value is just an upper bound; it is often too large.

If Iist is not nil or a cons cell, safe-length returns 0.

The most common way to compute the length of a list, when you are not worried that it may
be circular, is with length. See Section 6.1 [Sequence Functions|, page 78.

caar cons-cell [Function]
This is the same as (car (car cons-cell)).

cadr cons-cell [Function]
This is the same as (car (cdr cons-cell)) or (nth 1 cons-cell).

cdar cons-cell [Function]
This is the same as (cdr (car cons-cell)).

cddr cons-cell [Function]
This is the same as (cdr (cdr cons-cell)) or (nthcdr 2 cons-cell).

butlast x &optional n [Function]
This function returns the list x with the last element, or the last n elements, removed. If n is
greater than zero it makes a copy of the list so as not to damage the original list. In general,
(append (butlast x n) (last x n)) will return a list equal to x.

nbutlast x &optional n [Function]
This is a version of butlast that works by destructively modifying the cdr of the appropriate
element, rather than making a copy of the list.

5.4 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the fundamental
list-building function; however, it is interesting to note that list is used more times in the
source code for Emacs than cons.

cons objectl object2 [Function]
This function is the most basic function for building new list structure. It creates a new cons
cell, making objectl the CAR, and object2 the CDR. It then returns the new cons cell. The
arguments objectl and object2 may be any Lisp objects, but most often object2 is a list.

(cons 1 ’(2))
= (1 2)
(cons 1 °())
= (1)
(cons 1 2)
= (1.2

cons is often used to add a single element to the front of a list. This is called consing the
element onto the list.! For example:

1 There is no strictly equivalent way to add an element to the end of a list. You can use (append listname
(list newelt)), which creates a whole new list by copying listname and adding newelt to its end. Or you can

Chapter 5: Lists 61

(setq list (cons newelt list))

Note that there is no conflict between the variable named 1ist used in this example and the
function named list described below; any symbol can serve both purposes.

list &rest objects [Function]
This function creates a list with objects as its elements. The resulting list is always nil-
terminated. If no objects are given, the empty list is returned.

(list 1 2 3 4 5)
= (1 2345)
(list 1 2 (3 4 5) ’foo)
= (1 2 (3 4 5) foo)
(1list)
= nil

make-1ist length object [Function]
This function creates a list of length elements, in which each element is object. Compare
make-list with make-string (see Section 4.3 [Creating Strings|, page 44).
(make-list 3 ’pigs)
= (pigs pigs pigs)
(make-1list 0 ’pigs)
= nil
(setq 1 (make-list 3 ’(a b)))
= ((a b) (a b) (a b))
(eq (car 1) (cadr 1))
=t

append &rest sequences [Function]
This function returns a list containing all the elements of sequences. The sequences may be
lists, vectors, bool-vectors, or strings, but the last one should usually be a list. All arguments
except the last one are copied, so none of the arguments is altered. (See nconc in Section 5.6.3
[Rearrangement|, page 68, for a way to join lists with no copying.)

More generally, the final argument to append may be any Lisp object. The final argument is
not copied or converted; it becomes the CDR of the last cons cell in the new list. If the final
argument is itself a list, then its elements become in effect elements of the result list. If the
final element is not a list, the result is a dotted list since its final CDR is not nil as required
in a true list.

Here is an example of using append:

(setq trees ’(pine oak))
= (pine oak)

(setq more-trees (append ’(maple birch) trees))
= (maple birch pine oak)

trees
= (pine oak)
more-trees
= (maple birch pine oak)
(eq trees (cdr (cdr more-trees)))
=t

use (nconc listname (list newelt)), which modifies listname by following all the CDRs and then replacing
the terminating nil. Compare this to adding an element to the beginning of a list with cons, which neither
copies nor modifies the list.

Chapter 5: Lists 62

You can see how append works by looking at a box diagram. The variable trees is set to the
list (pine oak) and then the variable more-trees is set to the list (maple birch pine oak).
However, the variable trees continues to refer to the original list:

more-trees trees

--> maple -->birch --> pine --> oak
An empty sequence contributes nothing to the value returned by append. As a consequence
of this, a final nil argument forces a copy of the previous argument:
trees
= (pine oak)
(setq wood (append trees nil))
= (pine oak)
wood
= (pine oak)
(eq wood trees)
= nil
This once was the usual way to copy a list, before the function copy-sequence was invented.
See Chapter 6 [Sequences Arrays Vectors|, page 78.
Here we show the use of vectors and strings as arguments to append:
(append [a b] "cd" nil)
= (a b 99 100)
With the help of apply (see Section 12.5 [Calling Functions|, page 156), we can append all
the lists in a list of lists:
(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxyz)
If no sequences are given, nil is returned:
(append)
= nil
Here are some examples where the final argument is not a list:
(append ’(x y) ’z)
= (xy . 2)
(append ’(x y) [z])
= (xy . [z
The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence becomes
the final CDR, like any other non-list final argument.

reverse list [Function]
This function creates a new list whose elements are the elements of list, but in reverse order.

The original argument list is not altered.
(setq x (1 2 3 4))
= (1234

(reverse x)
= (4321

= (1234

Chapter 5: Lists

copy-tree tree &optional vecp

number-sequence from &optional to separation

63

[Function]
This function returns a copy of the tree tree. If tree is a cons cell, this makes a new cons
cell with the same CAR and CDR, then recursively copies the CAR and CDR in the same way.

Normally, when tree is anything other than a cons cell, copy-tree simply returns tree.
However, if vecp is non-nil, it copies vectors too (and operates recursively on their elements).

[Function]
This returns a list of numbers starting with from and incrementing by separation, and ending
at or just before to. separation can be positive or negative and defaults to 1. If to is nil or
numerically equal to from, the value is the one-element list (from). If to is less than from
with a positive separation, or greater than from with a negative separation, the value is nil
because those arguments specify an empty sequence.

If separation is 0 and to is neither nil nor numerically equal to from, number-sequence
signals an error, since those arguments specify an infinite sequence.

All arguments are numbers. Floating-point arguments can be tricky, because floating-point
arithmetic is inexact. For instance, depending on the machine, it may quite well happen
that (number-sequence 0.4 0.6 0.2) returns the one element list (0.4), whereas (number-
sequence 0.4 0.8 0.2) returns a list with three elements. The nth element of the list is
computed by the exact formula (+ from (* n separation)). Thus, if one wants to make
sure that to is included in the list, one can pass an expression of this exact type for to.
Alternatively, one can replace to with a slightly larger value (or a slightly more negative
value if separation is negative).

Some examples:

(number-sequence
= (4567

(number-sequence
= (9876

(number-sequence
= (97 5)

(number-sequence
= (8)

(number-sequence
= nil
(number-sequence
= nil
(number-sequence

= (1.5 3.5

8 5)

58 -1)

1.5 6 2)
5.5)

5.5 Modifying List Variables

These functions, and one macro, provide convenient ways to modify a list which is stored in a

variable.

push element listname

[Macro]

This macro creates a new list whose CAR is element and whose CDR is the list specified by
listname, and saves that list in listname. In the simplest case, listname is an unquoted symbol
naming a list, and this macro is equivalent to (setq listname (cons element listname)).

(setq 1 ’(a b))
= (a b)
(push ’c 1)
= (c a b)
1

Chapter 5: Lists 64

= (c a b)
More generally, listname can be a generalized variable. In that case, this macro does the
equivalent of (setf listname (cons element listname)). See Section 11.15 [Generalized
Variables|, page 148.

For the pop macro, which removes the first element from a list, See Section 5.3 [List Elements],
page 58.

Two functions modify lists that are the values of variables.

add-to-1list symbol element &optional append compare-fn [Function]
This function sets the variable symbol by consing element onto the old value, if element is not
already a member of that value. It returns the resulting list, whether updated or not. The
value of symbol had better be a list already before the call. add-to-list uses compare-fn
to compare element against existing list members; if compare-fn is nil, it uses equal.

Normally, if element is added, it is added to the front of symbol, but if the optional argument
append is non-nil, it is added at the end.

The argument symbol is not implicitly quoted; add-to-1ist is an ordinary function, like set
and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-1list:
(setq foo ’(a b))

= (a b)
(add-to-1list ’foo ’c) ;5 Add c.
= (c a b)
(add-to-1list ’foo ’b) ;3 No effect.
= (c a b)
foo ;3 foo was changed.
= (c a b)

An equivalent expression for (add-to-list ’var value) is this:

(or (member value var)
(setq var (cons value var)))

add-to-ordered-list symbol element &optional order [Function]
This function sets the variable symbol by inserting element into the old value, which must
be a list, at the position specified by order. If element is already a member of the list, its
position in the list is adjusted according to order. Membership is tested using eq. This
function returns the resulting list, whether updated or not.

The order is typically a number (integer or float), and the elements of the list are sorted in
non-decreasing numerical order.

order may also be omitted or nil. Then the numeric order of element stays unchanged if it
already has one; otherwise, element has no numeric order. Elements without a numeric list
order are placed at the end of the list, in no particular order.

Any other value for order removes the numeric order of element if it already has one; other-
wise, it is equivalent to nil.

The argument symbol is not implicitly quoted; add-to-ordered-1list is an ordinary function,
like set and unlike setq. Quote the argument yourself if necessary.

The ordering information is stored in a hash table on symbol’s 1ist-order property.

Chapter 5: Lists

65

Here’s a scenario showing how to use add-to-ordered-list:

(setq foo (1))
= nil

(add-to-ordered-list ’foo
= (a)

(add-to-ordered-list ’foo
= (a c)

(add-to-ordered-list ’foo
= (a b c)

(add-to-ordered-list ’foo
= (a c b)

(add-to-ordered-list ’foo
= (acbd

(add-to-ordered-list ’foo
= (acbed

foo
= (acbed

’a 1)

’c 3)

b 2)

b 4)

’d)

)e)

; Add a.

; Add c.

; Add b.

; Move b.

; Append d.

; Add e.

; ;5 foo was changed.

5.6 Modifying Existing List Structure

You can modify the CAR and CDR contents of a cons cell with the primitives setcar and setcdr.
We call these “destructive” operations because they change existing list structure.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter list
structure; they change structure the same way as setcar and setcdr, but the
Common Lisp functions return the cons cell while setcar and setcdr return the

new CAR or CDR.

5.6.1 Altering List Elements with setcar

Changing the CAR of a cons cell is done with setcar. When used on a list, setcar replaces one
element of a list with a different element.

setcar cons object

[Function]

This function stores object as the new CAR of cons, replacing its previous CAR. In other
words, it changes the CAR slot of cons to refer to object. It returns the value object. For

example:

(setq x > (1 2))
= (1 2)
(setcar x 4)
= 4

= (4 2)

When a cons cell is part of the shared structure of several lists, storing a new CAR into the
cons changes one element of each of these lists. Here is an example:

Chapter 5: Lists 66

;3 Create two lists that are partly shared.
(setq x1 ’(a b c))

= (a b c)
(setq x2 (cons ’z (cdr x1)))

= (z b <)

;; Replace the CAR of a shared link.

(setcar (cdr x1) ’foo)
= foo

x1 ; Both lists are changed.
= (a foo ¢)

x2
= (z foo ¢)

;5 Replace the CAR of a link that is not shared.

(setcar x1 ’baz)
= baz

x1 ; Only one list is changed.
= (baz foo c¢)

x2
= (z foo ¢)

Here is a graphical depiction of the shared structure of the two lists in the variables x1 and
x2, showing why replacing b changes them both:

x1:
| car | cdr | | car | cdr | | car | cdr |
| a | O———m > b | o-—————- >| c | mnil |
[| [> | | | | |
______________ | e e
|
x2: |
______________ |
| car | cdr | |

Chapter 5: Lists 67

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a CDR is setcdr:

setcdr cons object [Function]
This function stores object as the new CDR of cons, replacing its previous CDR. In other
words, it changes the CDR slot of cons to refer to object. It returns the value object.

Here is an example of replacing the CDR of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element is
unchanged, because it resides in the CAR of the list, and is not reached via the CDR.

(setq x ’(1 2 3))

= (123
(setcdr x ’(4))
= (4)

X
= (14

You can delete elements from the middle of a list by altering the CDRs of the cons cells in
the list. For example, here we delete the second element, b, from the list (a b ¢), by changing
the CDR of the first cons cell:

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cdr (cdr x1)))
= (c)

x1
= (a ¢)

Here is the result in box notation:

The second cons cell, which previously held the element b, still exists and its CAR is still b, but
it no longer forms part of this list.

It is equally easy to insert a new element by changing CDRs:

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cons ’d (cdr x1)))
= (d b c)

x1
= (adbc)

Here is this result in box notation:

Chapter 5: Lists 68

car	cdr		car	cdr		car	cdr
a	o	-=>	b	o-———=== >	c	mnil	
		[
_________	--	[[

| |

| - |

| | car | cdr | |

-=>| a4 | o-—---
|

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the CDRs of their
component cons cells. We call these functions “destructive” because they chew up the original
lists passed to them as arguments, relinking their cons cells to form a new list that is the returned
value.

The function delq in the following section is another example of destructive list manipulation.

nconc &rest lists [Function]
This function returns a list containing all the elements of lists. Unlike append (see Section 5.4
[Building Lists|, page 60), the lists are not copied. Instead, the last CDR of each of the lists
is changed to refer to the following list. The last of the lists is not altered. For example:
(setq x ’(1 2 3))
= (1 23)
(nconc x ’(4 5))
= (1 23 45)

= (1 2345)
Since the last argument of nconc is not itself modified, it is reasonable to use a constant list,
such as ’ (4 5), as in the above example. For the same reason, the last argument need not
be a list:
(setq x ’(1 2 3))
= (12 3)
(nconc x ’z)
= (123. 2

= (123. 2
However, the other arguments (all but the last) must be lists.
A common pitfall is to use a quoted constant list as a non-last argument to nconc. If you do

this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
= (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
= (foo 1 2 3 4)

(eq xx xy)

=t

Chapter 5: Lists 69

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

nreverse list [Function]
This function reverses the order of the elements of list. Unlike reverse, nreverse alters its
argument by reversing the CDRs in the cons cells forming the list. The cons cell that used to
be the last one in list becomes the first cons cell of the value.
For example:

(setq x ’(a b ¢))

= (a b c)
x
= (a b c)
(nreverse x)
= (c b a)
;3 The cons cell that was first is now last.
x
= (a)

To avoid confusion, we usually store the result of nreverse back in the same variable which
held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c¢), presented graphically:

Original list head: Reversed list:
| car | cdr | | car | cdr | | car | cdr |
I a | nil <= | b | o I<—= | ¢l o |
| | I (. | [(. I (.
————————————— | = - el B
| I | |
sort list predicate [Function]

This function sorts list stably, though destructively, and returns the sorted list. It compares
elements using predicate. A stable sort is one in which elements with equal sort keys maintain
their relative order before and after the sort. Stability is important when successive sorts are
used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called with
two elements of list. To get an increasing order sort, the predicate should return non-nil if
the first element is “less than” the second, or nil if not.

The comparison function predicate must give reliable results for any given pair of arguments,
at least within a single call to sort. It must be antisymmetric; that is, if a is less than b, b
must not be less than a. It must be transitive—that is, if a is less than b, and b is less than
¢, then a must be less than c. If you use a comparison function which does not meet these
requirements, the result of sort is unpredictable.

The destructive aspect of sort is that it rearranges the cons cells forming list by changing
CDRs. A nondestructive sort function would create new cons cells to store the elements in
their sorted order. If you wish to make a sorted copy without destroying the original, copy
it first with copy-sequence and then sort.

Sorting does not change the CARs of the cons cells in list; the cons cell that originally contained
the element a in list still has a in its CAR after sorting, but it now appears in a different
position in the list due to the change of CDRs. For example:

(setq nums (1 326 5 4 0))
= (1326540

Chapter 5: Lists 70

(sort nums ’<)

= (012345 6)
nums

= (12345 686)

Warning: Note that the list in nums no longer contains 0; this is the same cons cell that it
was before, but it is no longer the first one in the list. Don’t assume a variable that formerly
held the argument now holds the entire sorted list! Instead, save the result of sort and use
that. Most often we store the result back into the variable that held the original list:

(setq nums (sort nums ’<))

See Section 31.15 [Sorting|, page 594, for more functions that perform sorting. See
documentation in Section 23.2 [Accessing Documentation], page 405, for a useful example
of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element of a set
if it appears in the list, and ignore the order of the list. To form the union of two sets, use append
(as long as you don’t mind having duplicate elements). You can remove equal duplicates using
delete-dups. Other useful functions for sets include memq and delq, and their equal versions,
member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations. Although standard GNU Emacs
Lisp does not have them, the c1-1ib library provides versions. See Section “Lists
as Sets” in Common Lisp Extensions.

memq object list [Function]
This function tests to see whether object is a member of list. If it is, memq returns a list
starting with the first occurrence of object. Otherwise, it returns nil. The letter ‘q’ in memq
says that it uses eq to compare object against the elements of the list. For example:

(memg ’b ’(a b c b a))

= (b cb a)
(memqg ’(2) ’((1) (2))) ; (2) and (2) are not eq.
= nil
delq object list [Function]

This function destructively removes all elements eq to object from list, and returns the
resulting list. The letter ‘qQ’ in delq says that it uses eq to compare object against the
elements of the list, like memq and remgq.

Typically, when you invoke delq, you should use the return value by assigning it to the
variable which held the original list. The reason for this is explained below.

The delq function deletes elements from the front of the list by simply advancing down the
list, and returning a sublist that starts after those elements. For example:

(delq ’a ’(a b c)) = (cdr ’(a b ¢))
When an element to be deleted appears in the middle of the list, removing it involves changing
the CDRs (see Section 5.6.2 [Setcdr], page 67).
(setq sample-list ’(a b ¢ (4)))
= (a b c (4)
(delq ’a sample-list)
= (b c (4)
sample-list
= (a b c (4)

Chapter 5: Lists 71

(delq ’c sample-list)
= (a b (4)
sample-list
= (a b (4)

Note that (delq ’c sample-list) modifies sample-1list to splice out the third element, but
(delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t assume
that a variable which formerly held the argument list now has fewer elements, or that it still
holds the original list! Instead, save the result of delq and use that. Most often we store the
result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the sample-
list are not eq:

(delq ’(4) sample-list)
= (a c (4)

If you want to delete elements that are equal to a given value, use delete (see below).

remq object list [Function]
This function returns a copy of list, with all elements removed which are eq to object. The
letter ‘q’ in remq says that it uses eq to compare object against the elements of 1ist.

(setq sample-list ’(a b c a b ¢))
= (abcaboc)

(remq ’a sample-list)
= (bcboc)

sample-list
= (abcaboc)

memql object list [Function]
The function memql tests to see whether object is a member of list, comparing members with
object using eql, so floating-point elements are compared by value. If object is a member,
memqgl returns a list starting with its first occurrence in list. Otherwise, it returns nil.

Compare this with memq:
(memgl 1.2 °(1.1 1.2 1.3)) ; 1.2 and 1.2 are eql.

= (1.2 1.3)
(memg 1.2 ’(1.1 1.2 1.3)) ; 1.2 and 1.2 are not eq.
= nil

The following three functions are like memq, delq and remq, but use equal rather than eq to
compare elements. See Section 2.7 [Equality Predicates|, page 27.

member object list [Function]
The function member tests to see whether object is a member of list, comparing members
with object using equal. If object is a member, member returns a list starting with its first
occurrence in list. Otherwise, it returns nil.

Compare this with memq:

(member °(2) *((1) (2))) ; (2) and (2) are equal.
= ((2))

(memq ’(2) (1) (2))) ; (2) and (2) are not eq.
= nil

;3 Two strings with the same contents are equal.

(member "foo" ’("foo" "bar"))
= ("foo" "bar")

Chapter 5: Lists 72

delete object sequence [Function]
This function removes all elements equal to object from sequence, and returns the resulting
sequence.

If sequence is a list, delete is to delq as member is to memq: it uses equal to compare
elements with object, like member; when it finds an element that matches, it cuts the element
out just as delq would. As with delq, you should typically use the return value by assigning
it to the variable which held the original list.

If sequence is a vector or string, delete returns a copy of sequence with all elements equal
to object removed.

For example:

(setq 1 > ((2) (1) ()N
(delete ’(2) 1)
= (1))

= ((2) (1))
;3 If you want to change 1 reliably,
;5 write (setq 1 (delete ’(2) 1)).
(setqg 1 °((2) (1 ()N
(delete ’(1) 1)
= ((2) (2)

= ((2) ()
;5 In this case, it makes no difference whether you set 1,
;3 but you should do so for the sake of the other case.
(delete ’(2) [(2) (1) (201D

= [(1)]

remove object sequence [Function]
This function is the non-destructive counterpart of delete. It returns a copy of sequence, a
list, vector, or string, with elements equal to object removed. For example:

(remove ’(2) *((2) (1) (2)))
= ((1))

(remove ’(2) [(2) (1) (1)
= [(D)]

Common Lisp note: The functions member, delete and remove in GNU Emacs Lisp
are derived from Maclisp, not Common Lisp. The Common Lisp versions do not
use equal to compare elements.

member-ignore-case object list [Function]
This function is like member, except that object should be a string and that it ignores differ-
ences in letter-case and text representation: upper-case and lower-case letters are treated as
equal, and unibyte strings are converted to multibyte prior to comparison.

delete-dups list [Function]
This function destructively removes all equal duplicates from list, stores the result in list
and returns it. Of several equal occurrences of an element in list, delete-dups keeps the
first one.

See also the function add-to-1list, in Section 5.5 [List Variables|, page 63, for a way to add
an element to a list stored in a variable and used as a set.

Chapter 5: Lists 73

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list of cons
cells called associations: the CAR of each cons cell is the key, and the CDR is the associated
value.?

Here is an example of an alist. The key pine is associated with the value cones; the key oak
is associated with acorns; and the key maple is associated with seeds.

((pine . cones)
(oak . acormns)
(maple . seeds))

Both the values and the keys in an alist may be any Lisp objects. For example, in the
following alist, the symbol a is associated with the number 1, and the string "b" is associated
with the list (2 3), which is the CDR of the alist element:

(Ga . 1) ("p" 2 3))

Sometimes it is better to design an alist to store the associated value in the CAR of the CDR
of the element. Here is an example of such an alist:

((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this kind of alist is
that you can store other related information—even a list of other items—in the CDR of the CDR.
One disadvantage is that you cannot use rassq (see below) to find the element containing a
given value. When neither of these considerations is important, the choice is a matter of taste,
as long as you are consistent about it for any given alist.

The same alist shown above could be regarded as having the associated value in the CDR of
the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on a
stack, since new associations may be added easily to the front of the list. When searching an
association list for an association with a given key, the first one found is returned, if there is
more than one.

In Emacs Lisp, it is not an error if an element of an association list is not a cons cell. The
alist search functions simply ignore such elements. Many other versions of Lisp signal errors in
such cases.

Note that property lists are similar to association lists in several respects. A property list
behaves like an association list in which each key can occur only once. See Section 5.9 [Property
Lists], page 76, for a comparison of property lists and association lists.

assoc key alist [Function]
This function returns the first association for key in alist, comparing key against the alist
elements using equal (see Section 2.7 [Equality Predicates], page 27). It returns nil if no
association in alist has a CAR equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . comnes) (oak . acorns) (maple . seeds))
(assoc ’oak trees)
= (oak . acorns)
(cdr (assoc ’oak trees))
= acorns
(assoc ’birch trees)
= nil

Here is another example, in which the keys and values are not symbols:

2 This usage of “key” is not related to the term “key sequence”; it means a value used to look up an item in a
table. In this case, the table is the alist, and the alist associations are the items.

Chapter 5: Lists 74

(setq needles-per-cluster
>((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
= ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
= ("Austrian Pine" "Red Pine")

The function assoc-string is much like assoc except that it ignores certain differences
between strings. See Section 4.5 [Text Comparison|, page 47.

rassoc value alist [Function]
This function returns the first association with value value in alist. It returns nil if no
association in alist has a CDR equal to value.

rassoc is like assoc except that it compares the CDR of each alist association instead of the
CAR. You can think of this as “reverse assoc”, finding the key for a given value.

assq key alist [Function]
This function is like assoc in that it returns the first association for key in alist, but it makes
the comparison using eq instead of equal. assq returns nil if no association in alist has a
CAR eq to key. This function is used more often than assoc, since eq is faster than equal
and most alists use symbols as keys. See Section 2.7 [Equality Predicates], page 27.
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assq ’pine trees)
= (pine . cones)
On the other hand, assq is not usually useful in alists where the keys may not be symbols:

(setq leaves
’(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
= nil

(assoc "simple leaves" leaves)
= ("simple leaves" . oak)

rassq value alist [Function]
This function returns the first association with value value in alist. It returns nil if no
association in alist has a CDR eq to value.

rassq is like assq except that it compares the CDR of each alist association instead of the
CAR. You can think of this as “reverse assq”, finding the key for a given value.

For example:
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
= (oak . acorns)
(rassq ’spores trees)
= nil
rassq cannot search for a value stored in the CAR of the CDR of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
= nil
In this case, the CDR of the association (1ily white) is not the symbol white, but rather
the list (white). This becomes clearer if the association is written in dotted pair notation:
(lily white) = (1ily . (white))

Chapter 5: Lists 75

assoc-default key alist &optional test default [Function]
This function searches alist for a match for key. For each element of alist, it compares the
element (if it is an atom) or the element’s CAR (if it is a cons) against key, by calling test with
two arguments: the element or its CAR, and key. The arguments are passed in that order
so that you can get useful results using string-match with an alist that contains regular
expressions (see Section 33.4 [Regexp Search], page 660). If test is omitted or nil, equal is
used for comparison.

If an alist element matches key by this criterion, then assoc-default returns a value based
on this element. If the element is a cons, then the value is the element’s CDR. Otherwise, the
return value is default.

If no alist element matches key, assoc-default returns nil.

copy-alist alist [Function]
This function returns a two-level deep copy of alist: it creates a new copy of each association,
so that you can alter the associations of the new alist without changing the old one.
(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(3 . ("Pitch Pine"))
(5 . ("White Pine"))))
=
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
=

((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(5 "White Pine"))

(eq needles-per-cluster copy)
= nil
(equal needles-per-cluster copy)
=t
(eq (car needles-per-cluster) (car copy))
= nil
(cdr (car (cdr needles-per-cluster)))
= ("Pitch Pine")
(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
=t
This example shows how copy-alist makes it possible to change the associations of one copy
without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))
= ("Pitch Pine")

assq-delete-all key alist [Function]
This function deletes from alist all the elements whose CAR is eq to key, much as if you
used delq to delete each such element one by one. It returns the shortened alist, and often
modifies the original list structure of alist. For correct results, use the return value of assq-
delete-all rather than looking at the saved value of alist.
(setq alist ’((foo 1) (bar 2) (foo 3) (lose 4)))
= ((foo 1) (bar 2) (foo 3) (lose 4))
(assq-delete-all ’foo alist)
= ((bar 2) (lose 4))
alist
= ((foo 1) (bar 2) (lose 4))

Chapter 5: Lists 76

rassq-delete-all value alist [Function]
This function deletes from alist all the elements whose CDR is eq to value. It returns the
shortened alist, and often modifies the original list structure of alist. rassq-delete-all is
like assq-delete-all except that it compares the CDR of each alist association instead of
the CAR.

5.9 Property Lists

A property list (plist for short) is a list of paired elements. Each of the pairs associates a
property name (usually a symbol) with a property or value. Here is an example of a property
list:

(pine cones numbers (1 2 3) color "blue")

This property list associates pine with cones, numbers with (1 2 3), and color with "blue".
The property names and values can be any Lisp objects, but the names are usually symbols (as
they are in this example).

Property lists are used in several contexts. For instance, the function put-text-property
takes an argument which is a property list, specifying text properties and associated values which
are to be applied to text in a string or buffer. See Section 31.19 [Text Properties|, page 603.

Another prominent use of property lists is for storing symbol properties. Every symbol
possesses a list of properties, used to record miscellaneous information about the symbol; these
properties are stored in the form of a property list. See Section 8.4 [Symbol Properties|, page 97.

5.9.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists|, page 73) are very similar to property lists.
In contrast to association lists, the order of the pairs in the property list is not significant, since
the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If your program keeps all such information in one association
list, it will typically need to search that entire list each time it checks for an association for a
particular Lisp function name or variable, which could be slow. By contrast, if you keep the same
information in the property lists of the function names or variables themselves, each search will
scan only the length of one property list, which is usually short. This is why the documentation
for a variable is recorded in a property named variable-documentation. The byte compiler
likewise uses properties to record those functions needing special treatment.

However, association lists have their own advantages. Depending on your application, it may
be faster to add an association to the front of an association list than to update a property. All
properties for a symbol are stored in the same property list, so there is a possibility of a conflict
between different uses of a property name. (For this reason, it is a good idea to choose property
names that are probably unique, such as by beginning the property name with the program’s
usual name-prefix for variables and functions.) An association list may be used like a stack
where associations are pushed on the front of the list and later discarded; this is not possible
with a property list.

5.9.2 Property Lists Outside Symbols

The following functions can be used to manipulate property lists. They all compare property
names using eq.

plist-get plist property [Function]
This returns the value of the property property stored in the property list plist. It accepts a
malformed plist argument. If property is not found in the plist, it returns nil. For example,

Chapter 5: Lists 7

(plist-get ’(foo 4) ’foo)

= 4

(plist-get ’(foo 4 bad) ’foo)
= 4

(plist-get ’(foo 4 bad) ’bad)
= nil

(plist-get ’(foo 4 bad) ’bar)
= nil

plist-put plist property value [Function]

This stores value as the value of the property property in the property list plist. It may
modify plist destructively, or it may construct a new list structure without altering the old.
The function returns the modified property list, so you can store that back in the place where
you got plist. For example,
(setq my-plist ’(bar t foo 4))
= (bar t foo 4)
(setq my-plist (plist-put my-plist ’foo 69))
= (bar t foo 69)
(setq my-plist (plist-put my-plist ’quux ’(a)))
= (bar t foo 69 quux (a))

lax-plist-get plist property [Function]
Like plist-get except that it compares properties using equal instead of eq.

lax-plist-put plist property value [Function]
Like plist-put except that it compares properties using equal instead of eq.

plist-member plist property [Function]
This returns non-nil if plist contains the given property. Unlike plist-get, this allows you
to distinguish between a missing property and a property with the value nil. The value is
actually the tail of plist whose car is property.

Chapter 6: Sequences, Arrays, and Vectors 78

6 Sequences, Arrays, and Vectors

The sequence type is the union of two other Lisp types: lists and arrays. In other words, any
list is a sequence, and any array is a sequence. The common property that all sequences have is
that each is an ordered collection of elements.

An array is a fixed-length object with a slot for each of its elements. All the elements
are accessible in constant time. The four types of arrays are strings, vectors, char-tables and
bool-vectors.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons cells,
one cell per element. Finding the nth element requires looking through n cons cells, so elements
farther from the beginning of the list take longer to access. But it is possible to add elements
to the list, or remove elements.

The following diagram shows the relationship between these types:

| Sequence |
| |
(I (I (I
| | List | | Array (I
[L (I
[(I | | | | [
| | | Vector | | String | ||
| | | _ | | _ | (I
| | e ___ (I
| || [[
| | | Char-table | | Bool-vector | | |
| |
| |

6.1 Sequences
This section describes functions that accept any kind of sequence.

sequencep object [Function]
This function returns t if object is a list, vector, string, bool-vector, or char-table, nil
otherwise.

length sequence [Function]
This function returns the number of elements in sequence. If sequence is a dotted list, a
wrong-type-argument error is signaled. Circular lists may cause an infinite loop. For a
char-table, the value returned is always one more than the maximum Emacs character code.
See [Definition of safe-length], page 60, for the related function safe-length.
(length (1 2 3))
= 3
(length)
= 0
(length "foobar")
= 6
(length [1 2 3])
= 3
(length (make-bool-vector 5 nil))
= 5

Chapter 6: Sequences, Arrays, and Vectors 79

See also string-bytes, in Section 32.1 [Text Representations], page 626.

If you need to compute the width of a string on display, you should use string-width (see
Section 37.10 [Size of Displayed Text|, page 749), not length, since length only counts the
number of characters, but does not account for the display width of each character.

elt sequence index [Function]
This function returns the element of sequence indexed by index. Legitimate values of index
are integers ranging from 0 up to one less than the length of sequence. If sequence is a
list, out-of-range values behave as for nth. See [Definition of nth], page 59. Otherwise,
out-of-range values trigger an args-out-of-range error.

(elt [1 2 3 4] 2)

= 3
(elt (1 2 3 4) 2)

= 3
;5 We use string to show clearly which character elt returns.
(string (elt "1234" 2))

= "3"
(elt [1 2 3 4] 4)

Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1)

Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions|, page 80) and nth (see
[Definition of nth], page 59).

copy-sequence sequence [Function]
This function returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice versa.
However, the elements of the new sequence are not copies; they are identical (eq) to the
elements of the original. Therefore, changes made within these elements, as found via the
copied sequence, are also visible in the original sequence.

If the sequence is a string with text properties, the property list in the copy is itself a copy,
not shared with the original’s property list. However, the actual values of the properties are
shared. See Section 31.19 [Text Properties], page 603.

This function does not work for dotted lists. Trying to copy a circular list may cause an
infinite loop.

See also append in Section 5.4 [Building Lists|, page 60, concat in Section 4.3 [Creating
Strings|, page 44, and vconcat in Section 6.5 [Vector Functions|, page 82, for other ways to
copy sequences.

(setq bar ’(1 2))
= (1 2)

(setq x (vector ’foo bar))
= [foo (1 2)]

(setq y (copy-sequence x))
= [foo (1 2)]

(eq x y)
= nil
(equal x y)
=t

Chapter 6: Sequences, Arrays, and Vectors 80

(eq (elt x 1) (elt y 1))
=t

;5 Replacing an element of one sequence.
(aset x 0 ’quux)
x = [quux (1 2)]
y = [foo (1 2)]

;35 Modifying the inside of a shared element.
(setcar (aref x 1) 69)

x = [quux (69 2)]

y = [foo (69 2)]

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements of the
array. Any element of an array may be accessed in constant time. In contrast, the time to access
an element of a list is proportional to the position of that element in the list.

Emacs defines four types of array, all one-dimensional: strings (see Section 2.3.8 [String Type],
page 16), vectors (see Section 2.3.9 [Vector Typel, page 18), bool-vectors (see Section 2.3.11
[Bool-Vector Type|, page 18), and char-tables (see Section 2.3.10 [Char-Table Type], page 18).
Vectors and char-tables can hold elements of any type, but strings can only hold characters, and
bool-vectors can only hold t and nil.

All four kinds of array share these characteristics:

e The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3.

e The length of the array is fixed once you create it; you cannot change the length of an
existing array.
e For purposes of evaluation, the array is a constant—i.e., it evaluates to itself.
e The elements of an array may be referenced or changed with the functions aref and aset,
respectively (see Section 6.3 [Array Functions|, page 80).
When you create an array, other than a char-table, you must specify its length. You cannot
specify the length of a char-table, because that is determined by the range of character codes.

In principle, if you want an array of text characters, you could use either a string or a vector.
In practice, we always choose strings for such applications, for four reasons:

e They occupy one-fourth the space of a vector of the same elements.
e Strings are printed in a way that shows the contents more clearly as text.
e Strings can hold text properties. See Section 31.19 [Text Properties], page 603.

e Many of the specialized editing and I/0O facilities of Emacs accept only strings. For example,
you cannot insert a vector of characters into a buffer the way you can insert a string. See
Chapter 4 [Strings and Characters|, page 43.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector
may be necessary, because many keyboard input characters are outside the range that will fit
in a string. See Section 20.8.1 [Key Sequence Input|, page 308.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept all types of arrays.

Chapter 6: Sequences, Arrays, and Vectors 81

arrayp object [Function]
This function returns t if object is an array (i.e., a vector, a string, a bool-vector or a
char-table).
(arrayp [al)
=t
(arrayp "asdf")
=t
(arrayp (syntax-table)) ;5 A char-table.
=t

aref array index [Function]
This function returns the indexth element of array. The first element is at index zero.

(setq primes [2 3 5 7 11 13])
= [2 357 11 13]
(aref primes 4)
= 11
(aref "abcdefg" 1)
= 98 ; ‘b’ is ASCII code 98.

See also the function elt, in Section 6.1 [Sequence Functions|, page 78.

aset array index object [Function]
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
= [foo bar baz]
(aset w 0 ’fu)
= fu

= [fu bar baz]

(setq x "asdfasfd")
= "asdfasfd"
(aset x 3 72)
= 90

= "asdZasfd"

If array is a string and object is not a character, a wrong-type-argument error results. The
function converts a unibyte string to multibyte if necessary to insert a character.

fillarray array object [Function]
This function fills the array array with object, so that each element of array is object. It
returns array.

(setqa [abcdef gl)

= [abcdef gl
(fillarray a 0)

= [00 0000 0]
a

= [0000 0 0 0]
(setq s "When in the course")

= "When in the course"
(fillarray s ?7-)

If array is a string and object is not a character, a wrong-type-argument error results.

Chapter 6: Sequences, Arrays, and Vectors 82

The general sequence functions copy-sequence and length are often useful for objects known
to be arrays. See Section 6.1 [Sequence Functions|, page 78.

6.4 Vectors

A vector is a general-purpose array whose elements can be any Lisp objects. (By contrast, the
elements of a string can only be characters. See Chapter 4 [Strings and Characters|, page 43.)
Vectors are used in Emacs for many purposes: as key sequences (see Section 21.1 [Key Sequences],
page 323), as symbol-lookup tables (see Section 8.3 [Creating Symbols|, page 94), as part of the
representation of a byte-compiled function (see Chapter 16 [Byte Compilation], page 210), and
more.

Like other arrays, vectors use zero-origin indexing: the first element has index 0.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]l. You can write vectors in the same
way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result of
evaluating it is the same vector. This does not evaluate or even examine the elements of the
vector. See Section 9.1.1 [Self-Evaluating Forms], page 101.

Here are examples illustrating these principles:

(setq avector [1 two ’(three) "four" [fivell)

= [1 two (quote (three)) "four" [five]]
(eval avector)

= [1 two (quote (three)) "four" [five]]
(eq avector (eval avector))

=t

6.5 Functions for Vectors

Here are some functions that relate to vectors:

vectorp object [Function]
This function returns t if object is a vector.
(vectorp [al)
=t
(vectorp "asdf")
= nil

vector &rest objects [Function]
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
= [foo 23 [bar baz] "rats"]
(vector)
= [

make-vector length object [Function]
This function returns a new vector consisting of length elements, each initialized to object.

(setq sleepy (make-vector 9 ’Z))
= [ZZ 27227777 1Z]

vconcat &rest sequences [Function]
This function returns a new vector containing all the elements of sequences. The arguments
sequences may be true lists, vectors, strings or bool-vectors. If no sequences are given, the
empty vector is returned.

Chapter 6: Sequences, Arrays, and Vectors 83

The value is either the empty vector, or is a newly constructed nonempty vector that is not
eq to any existing vector.

(setq a (vconcat (A B C) (D E F)))
= [ABCDEF]

(eq a (vconcat a))
= nil

(vconcat)
= []

(vconcat [A B C] "aa" ’(foo (6 7)))
= [A B C 97 97 foo (6 7)]

The vconcat function also allows byte-code function objects as arguments. This is a special
feature to make it easy to access the entire contents of a byte-code function object. See
Section 16.7 [Byte-Code Objects], page 215.

For other concatenation functions, see mapconcat in Section 12.6 [Mapping Functions],
page 158, concat in Section 4.3 [Creating Strings|, page 44, and append in Section 5.4
[Building Lists|, page 60.

The append function also provides a way to convert a vector into a list with the same elements:

(setq avector [1 two (quote (three)) "four" [fivel])
= [1 two (quote (three)) "four" [five]]
(append avector nil)
= (1 two (quote (three)) "four" [five])

6.6 Char-Tables

A char-table is much like a vector, except that it is indexed by character codes. Any valid
character code, without modifiers, can be used as an index in a char-table. You can access a
char-table’s elements with aref and aset, as with any array. In addition, a char-table can have
extra slots to hold additional data not associated with particular character codes. Like vectors,
char-tables are constants when evaluated, and can hold elements of any type.

Each char-table has a subtype, a symbol, which serves two purposes:

e The subtype provides an easy way to tell what the char-table is for. For instance, display
tables are char-tables with display-table as the subtype, and syntax tables are char-
tables with syntax-table as the subtype. The subtype can be queried using the function
char-table-subtype, described below.

e The subtype controls the number of extra slots in the char-table. This number is speci-
fied by the subtype’s char-table-extra-slots symbol property (see Section 8.4 [Symbol
Properties|, page 97), whose value should be an integer between 0 and 10. If the subtype
has no such symbol property, the char-table has no extra slots.

A char-table can have a parent, which is another char-table. If it does, then whenever the
char-table specifies nil for a particular character c, it inherits the value specified in the parent.
In other words, (aref char-table c¢) returns the value from the parent of char-table if char-
table itself specifies nil.

A char-table can also have a default value. If so, then (aref char-table c) returns the
default value whenever the char-table does not specify any other non-nil value.

make-char-table subtype &optional init [Function]
Return a newly-created char-table, with subtype subtype (a symbol). Each element is ini-
tialized to init, which defaults to nil. You cannot alter the subtype of a char-table after the
char-table is created.

Chapter 6: Sequences, Arrays, and Vectors 84

There is no argument to specify the length of the char-table, because all char-tables have
room for any valid character code as an index.

If subtype has the char-table-extra-slots symbol property, that specifies the number of
extra slots in the char-table. This should be an integer between 0 and 10; otherwise, make-
char-table raises an error. If subtype has no char-table-extra-slots symbol property
(see Section 5.9 [Property Lists|, page 76), the char-table has no extra slots.

char-table-p object [Function]
This function returns t if object is a char-table, and nil otherwise.

char-table-subtype char-table [Function]
This function returns the subtype symbol of char-table.

There is no special function to access default values in a char-table. To do that, use char-
table-range (see below).

char-table-parent char-table [Function]
This function returns the parent of char-table. The parent is always either nil or another
char-table.

set-char-table-parent char-table new-parent [Function]
This function sets the parent of char-table to new-parent.

char-table-extra-slot char-table n [Function]
This function returns the contents of extra slot n of char-table. The number of extra slots in
a char-table is determined by its subtype.

set-char-table-extra-slot char-table n value [Function]
This function stores value in extra slot n of char-table.

A char-table can specify an element value for a single character code; it can also specify a
value for an entire character set.

char-table-range char-table range [Function]
This returns the value specified in char-table for a range of characters range. Here are the
possibilities for range:

nil Refers to the default value.

char Refers to the element for character char (supposing char is a valid character
code).

(from . to)

A cons cell refers to all the characters in the inclusive range ‘[from. . to]’ .

set-char-table-range char-table range value [Function]
This function sets the value in char-table for a range of characters range. Here are the
possibilities for range:

nil Refers to the default value.

t Refers to the whole range of character codes.

char Refers to the element for character char (supposing char is a valid character
code).

(from . to)

A cons cell refers to all the characters in the inclusive range ‘[from. .to]’.

Chapter 6: Sequences, Arrays, and Vectors 85

map-char-table function char-table [Function]
This function calls its argument function for each element of char-table that has a non-nil
value. The call to function is with two arguments, a key and a value. The key is a possible
range argument for char-table-range—either a valid character or a cons cell (from . to),
specifying a range of characters that share the same value. The value is what (char-table-
range char-table key) returns.

Overall, the key-value pairs passed to function describe all the values stored in char-table.

The return value is always nil; to make calls to map-char-table useful, function should
have side effects. For example, here is how to examine the elements of the syntax table:

(let (accumulator)
(map-char-table
#’ (lambda (key value)
(setq accumulator
(cons (list
(if (consp key)
(1ist (car key) (cdr key))
key)
value)
accumulator)))
(syntax-table))
accumulator)
=
(((2597602 4194303) (2)) ((2597523 2597601) (3))
(65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
(12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3N

6.7 Bool-vectors

A bool-vector is much like a vector, except that it stores only the values t and nil. If you try
to store any non-nil value into an element of the bool-vector, the effect is to store t there. As
with all arrays, bool-vector indices start from 0, and the length cannot be changed once the
bool-vector is created. Bool-vectors are constants when evaluated.

There are two special functions for working with bool-vectors; aside from that, you manipu-
late them with same functions used for other kinds of arrays.

make-bool-vector length initial [Function]
Return a new bool-vector of length elements, each one initialized to initial.

bool-vector-p object [Function]
This returns t if object is a bool-vector, and nil otherwise.

There are also some bool-vector set operation functions, described below:

bool-vector-exclusive-or a b &optional c [Function]
Return bitwise exclusive or of bool vectors a and b. If optional argument c is given, the
result of this operation is stored into c¢. All arguments should be bool vectors of the same
length.

bool-vector-union a b &optional ¢ [Function]
Return bitwise or of bool vectors a and b. If optional argument c¢ is given, the result of this
operation is stored into c. All arguments should be bool vectors of the same length.

bool-vector-intersection a b &optional ¢ [Function]
Return bitwise and of bool vectors a and b. If optional argument c is given, the result of this
operation is stored into c. All arguments should be bool vectors of the same length.

Chapter 6: Sequences, Arrays, and Vectors 86

bool-vector-set-difference a b &optional ¢ [Function]
Return set difference of bool vectors a and b. If optional argument c is given, the result of
this operation is stored into c. All arguments should be bool vectors of the same length.

bool-vector-not a &optional b [Function]
Return set complement of bool vector a. If optional argument b is given, the result of this
operation is stored into b. All arguments should be bool vectors of the same length.

bool-vector-subsetp a b [Function]
Return t if every t value in a is also t in b, nil otherwise. All arguments should be bool
vectors of the same length.

bool-vector-count-consecutive a b i [Function]
Return the number of consecutive elements in a equal b starting at i. a is a bool vector, b is
t or nil, and i is an index into a.

bool-vector-count-population a [Function]
Return the number of elements that are t in bool vector a.

Here is an example of creating, examining, and updating a bool-vector. Note that the printed
form represents up to 8 boolean values as a single character.

(setq bv (make-bool-vector 5 t))

= #&5""_"
(aref bv 1)
=t
(aset bv 3 nil)
= nil
bv
= #&5""W"

These results make sense because the binary codes for control-_ and control-W are 11111 and
10111, respectively.

6.8 Managing a Fixed-Size Ring of Objects

A ring is a fixed-size data structure that supports insertion, deletion, rotation, and modulo-
indexed reference and traversal. An efficient ring data structure is implemented by the ring
package. It provides the functions listed in this section.

Note that several “rings” in Emacs, like the kill ring and the mark ring, are actually imple-
mented as simple lists, not using the ring package; thus the following functions won’t work on
them.

make-ring size [Function]
This returns a new ring capable of holding size objects. size should be an integer.

ring-p object [Function]
This returns t if object is a ring, nil otherwise.

ring-size ring [Function]
This returns the maximum capacity of the ring.

ring-length ring [Function]
This returns the number of objects that ring currently contains. The value will never exceed
that returned by ring-size.

ring-elements ring [Function]
This returns a list of the objects in ring, in order, newest first.

Chapter 6: Sequences, Arrays, and Vectors 87

ring-copy ring [Function]
This returns a new ring which is a copy of ring. The new ring contains the same (eq) objects
as ring.

ring-empty-p ring [Function]
This returns t if ring is empty, nil otherwise.

The newest element in the ring always has index 0. Higher indices correspond to older
elements. Indices are computed modulo the ring length. Index —1 corresponds to the oldest
element, —2 to the next-oldest, and so forth.

ring-ref ring index [Function]
This returns the object in ring found at index index. index may be negative or greater than
the ring length. If ring is empty, ring-ref signals an error.

ring-insert ring object [Function]
This inserts object into ring, making it the newest element, and returns object.

If the ring is full, insertion removes the oldest element to make room for the new element.

ring-remove ring &optional index [Function]
Remove an object from ring, and return that object. The argument index specifies which item
to remove; if it is nil, that means to remove the oldest item. If ring is empty, ring-remove
signals an error.

ring-insert-at-beginning ring object [Function]
This inserts object into ring, treating it as the oldest element. The return value is not
significant.

If the ring is full, this function removes the newest element to make room for the inserted
element.

If you are careful not to exceed the ring size, you can use the ring as a first-in-first-out queue.
For example:

(let ((fifo (make-ring 5)))
(mapc (lambda (obj) (ring-insert fifo obj))
>(0 one "two"))
(list (ring-remove fifo) t
(ring-remove fifo) t
(ring-remove fifo)))
= (0 t one t "two")

Chapter 7: Hash Tables 88

7 Hash Tables

A hash table is a very fast kind of lookup table, somewhat like an alist (see Section 5.8 [Asso-
ciation Lists|, page 73) in that it maps keys to corresponding values. It differs from an alist in
these ways:

e Lookup in a hash table is extremely fast for large tables—in fact, the time required is
essentially independent of how many elements are stored in the table. For smaller tables
(a few tens of elements) alists may still be faster because hash tables have a more-or-less
constant overhead.

e The correspondences in a hash table are in no particular order.

e There is no way to share structure between two hash tables, the way two alists can share a
common tail.

Emacs Lisp provides a general-purpose hash table data type, along with a series of functions
for operating on them. Hash tables have a special printed representation, which consists of ‘#s’
followed by a list specifying the hash table properties and contents. See Section 7.1 [Creating
Hash|, page 88. (Note that the term “hash notation”, which refers to the initial ‘4’ character
used in the printed representations of objects with no read representation, has nothing to do
with the term “hash table”. See Section 2.1 [Printed Representation|, page 7.)

Obarrays are also a kind of hash table, but they are a different type of object and are used
only for recording interned symbols (see Section 8.3 [Creating Symbols|, page 94).

7.1 Creating Hash Tables

The principal function for creating a hash table is make-hash-table.

make-hash-table &rest keyword-args [Function]
This function creates a new hash table according to the specified arguments. The arguments
should consist of alternating keywords (particular symbols recognized specially) and values
corresponding to them.

Several keywords make sense in make-hash-table, but the only two that you really need to
know about are :test and :weakness.

:test test
This specifies the method of key lookup for this hash table. The default is eql;
eq and equal are other alternatives:

eql Keys which are numbers are “the same” if they are equal, that is,
if they are equal in value and either both are integers or both are
floating point; otherwise, two distinct objects are never “the same”.

eq Any two distinct Lisp objects are “different” as keys.
equal Two Lisp objects are “the same”, as keys, if they are equal according
to equal.

You can use def ine-hash-table-test (see Section 7.3 [Defining Hash], page 90)
to define additional possibilities for test.

:weakness weak
The weakness of a hash table specifies whether the presence of a key or value in
the hash table preserves it from garbage collection.

The value, weak, must be one of nil, key, value, key-or-value, key-and-
value, or t which is an alias for key-and-value. If weak is key then the hash
table does not prevent its keys from being collected as garbage (if they are not

Chapter 7: Hash Tables 89

referenced anywhere else); if a particular key does get collected, the corresponding
association is removed from the hash table.

If weak is value, then the hash table does not prevent values from being collected
as garbage (if they are not referenced anywhere else); if a particular value does
get collected, the corresponding association is removed from the hash table.

If weak is key-and-value or t, both the key and the value must be live in order
to preserve the association. Thus, the hash table does not protect either keys or
values from garbage collection; if either one is collected as garbage, that removes
the association.

If weak is key-or-value, either the key or the value can preserve the association.
Thus, associations are removed from the hash table when both their key and value
would be collected as garbage (if not for references from weak hash tables).

The default for weak is nil, so that all keys and values referenced in the hash
table are preserved from garbage collection.

:size size
This specifies a hint for how many associations you plan to store in the hash
table. If you know the approximate number, you can make things a little more
efficient by specifying it this way. If you specify too small a size, the hash table
will grow automatically when necessary, but doing that takes some extra time.

The default size is 65.

:rehash-size rehash-size
When you add an association to a hash table and the table is “full”, it grows
automatically. This value specifies how to make the hash table larger, at that
time.

If rehash-size is an integer, it should be positive, and the hash table grows by
adding that much to the nominal size. If rehash-size is floating point, it had
better be greater than 1, and the hash table grows by multiplying the old size by
that number.

The default value is 1.5.

:rehash-threshold threshold
This specifies the criterion for when the hash table is “full” (so it should be made
larger). The value, threshold, should be a positive floating-point number, no
greater than 1. The hash table is “full” whenever the actual number of entries
exceeds this fraction of the nominal size. The default for threshold is 0.8.

makehash &optional test [Function]
This is equivalent to make-hash-table, but with a different style argument list. The argu-
ment test specifies the method of key lookup.

This function is obsolete. Use make-hash-table instead.

You can also create a new hash table using the printed representation for hash tables. The
Lisp reader can read this printed representation, provided each element in the specified hash
table has a valid read syntax (see Section 2.1 [Printed Representation], page 7). For instance,
the following specifies a new hash table containing the keys keyl and key2 (both symbols)
associated with vall (a symbol) and 300 (a number) respectively.

#s(hash-table size 30 data (keyl vall key2 300))

The printed representation for a hash table consists of ‘#s’ followed by a list beginning with
‘hash-table’. The rest of the list should consist of zero or more property-value pairs specifying
the hash table’s properties and initial contents. The properties and values are read literally. Valid

Chapter 7: Hash Tables 90

property names are size, test, weakness, rehash-size, rehash-threshold, and data. The
data property should be a list of key-value pairs for the initial contents; the other properties have
the same meanings as the matching make-hash-table keywords (:size, :test, etc.), described
above.

Note that you cannot specify a hash table whose initial contents include objects that have
no read syntax, such as buffers and frames. Such objects may be added to the hash table after
it is created.

7.2 Hash Table Access

This section describes the functions for accessing and storing associations in a hash table. In
general, any Lisp object can be used as a hash key, unless the comparison method imposes limits.
Any Lisp object can also be used as the value.

gethash key table &optional default [Function]
This function looks up key in table, and returns its associated value—or default, if key has
no association in table.

puthash key value table [Function]
This function enters an association for key in table, with value value. If key already has an
association in table, value replaces the old associated value.

remhash key table [Function]
This function removes the association for key from table, if there is one. If key has no
association, remhash does nothing.

Common Lisp note: In Common Lisp, remhash returns non-nil if it actually removed an
association and nil otherwise. In Emacs Lisp, remhash always returns nil.

clrhash table [Function]
This function removes all the associations from hash table table, so that it becomes empty.
This is also called clearing the hash table.

Common Lisp note: In Common Lisp, clrhash returns the empty table. In Emacs Lisp, it
returns nil.

maphash function table [Function]
This function calls function once for each of the associations in table. The function function
should accept two arguments—a key listed in table, and its associated value. maphash returns
nil.

7.3 Defining Hash Comparisons

You can define new methods of key lookup by means of define-hash-table-test. In order to
use this feature, you need to understand how hash tables work, and what a hash code means.

You can think of a hash table conceptually as a large array of many slots, each capable of
holding one association. To look up a key, gethash first computes an integer, the hash code,
from the key. It reduces this integer modulo the length of the array, to produce an index in the
array. Then it looks in that slot, and if necessary in other nearby slots, to see if it has found
the key being sought.

Thus, to define a new method of key lookup, you need to specify both a function to compute
the hash code from a key, and a function to compare two keys directly.

define-hash-table-test name test-fn hash-fn [Function]
This function defines a new hash table test, named name.

Chapter 7: Hash Tables 91

After defining name in this way, you can use it as the test argument in make-hash-table.
When you do that, the hash table will use test-fn to compare key values, and hash-fn to
compute a “hash code” from a key value.

The function test-fn should accept two arguments, two keys, and return non-nil if they are
considered “the same”.

The function hash-fn should accept one argument, a key, and return an integer that is the
“hash code” of that key. For good results, the function should use the whole range of integers
for hash codes, including negative integers.

The specified functions are stored in the property list of name under the property hash-
table-test; the property value’s form is (test-fn hash-fn).

sxhash obj [Function]
This function returns a hash code for Lisp object obj. This is an integer which reflects the
contents of obj and the other Lisp objects it points to.

If two objects objl1 and obj2 are equal, then (sxhash obj1) and (sxhash obj2) are the same
integer.

If the two objects are not equal, the values returned by sxhash are usually different, but not
always; once in a rare while, by luck, you will encounter two distinct-looking objects that
give the same result from sxhash.

This example creates a hash table whose keys are strings that are compared case-insensitively.

(defun case-fold-string= (a b)

(eq t (compare-strings a nil nil b nil nil t)))
(defun case-fold-string-hash (a)

(sxhash (upcase a)))

(define-hash-table-test ’case-fold
’case-fold-string= ’case-fold-string-hash)

(make-hash-table :test ’case-fold)

Here is how you could define a hash table test equivalent to the predefined test value equal.
The keys can be any Lisp object, and equal-looking objects are considered the same key.

(define-hash-table-test ’contents-hash ’equal ’sxhash)
(make-hash-table :test ’contents-hash)

7.4 Other Hash Table Functions

Here are some other functions for working with hash tables.

hash-table-p table [Function]
This returns non-nil if table is a hash table object.

copy-hash-table table [Function]
This function creates and returns a copy of table. Only the table itself is copied—the keys
and values are shared.

hash-table-count table [Function]
This function returns the actual number of entries in table.

hash-table-test table [Function]
This returns the test value that was given when table was created, to specify how to hash
and compare keys. See make-hash-table (see Section 7.1 [Creating Hash], page 88).

Chapter 7: Hash Tables 92

hash-table-weakness table [Function]
This function returns the weak value that was specified for hash table table.

hash-table-rehash-size table [Function]
This returns the rehash size of table.

hash-table-rehash-threshold table [Function]
This returns the rehash threshold of table.

hash-table-size table [Function]
This returns the current nominal size of table.

Chapter 8: Symbols 93

8 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their components,
their property lists, and how they are created and interned. Separate chapters describe the
use of symbols as variables and as function names; see Chapter 11 [Variables], page 125, and
Chapter 12 [Functions|, page 150. For the precise read syntax for symbols, see Section 2.3.4
[Symbol Type], page 11.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

symbolp object [Function]
This function returns t if object is a symbol, nil otherwise.

8.1 Symbol Components
Each symbol has four components (or “cells”), each of which references another object:

Print name
The symbol’s name.

Value The symbol’s current value as a variable.

Function The symbol’s function definition. It can also hold a symbol, a keymap, or a keyboard
macro.

Property list
The symbol’s property list.

The print name cell always holds a string, and cannot be changed. Each of the other three cells
can be set to any Lisp object.

The print name cell holds the string that is the name of a symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing symbol
with the specified name before it creates a new one. To get a symbol’s name, use the function
symbol-name (see Section 8.3 [Creating Symbols|, page 94).

The value cell holds a symbol’s value as a variable, which is what you get if the symbol itself
is evaluated as a Lisp expression. See Chapter 11 [Variables|, page 125, for details about how
values are set and retrieved, including complications such as Iocal bindings and scoping rules.
Most symbols can have any Lisp object as a value, but certain special symbols have values that
cannot be changed; these include nil and t, and any symbol whose name starts with ‘:’ (those
are called keywords). See Section 11.2 [Constant Variables], page 125.

The function cell holds a symbol’s function definition. Often, we refer to “the function foo”
when we really mean the function stored in the function cell of foo; we make the distinction ex-
plicit only when necessary. Typically, the function cell is used to hold a function (see Chapter 12
[Functions], page 150) or a macro (see Chapter 13 [Macros], page 173). However, it can also be
used to hold a symbol (see Section 9.1.4 [Function Indirection|, page 102), keyboard macro (see
Section 20.16 [Keyboard Macros], page 321), keymap (see Chapter 21 [Keymaps|, page 323), or
autoload object (see Section 9.1.8 [Autoloading], page 105). To get the contents of a symbol’s
function cell, use the function symbol-function (see Section 12.8 [Function Cells], page 160).

The property list cell normally should hold a correctly formatted property list. To get a
symbol’s property list, use the function symbol-plist. See Section 8.4 [Symbol Properties],
page 97.

The function cell or the value cell may be void, which means that the cell does not reference
any object. (This is not the same thing as holding the symbol void, nor the same as holding

Chapter 8: Symbols 94

the symbol nil.) Examining a function or value cell that is void results in an error, such as
‘Symbol’s value as variable is void .

Because each symbol has separate value and function cells, variables names and function
names do not conflict. For example, the symbol buffer-file-name has a value (the name of
the file being visited in the current buffer) as well as a function definition (a primitive function
that returns the name of the file):

buffer-file-name
= "/gnu/elisp/symbols.texi"
(symbol-function ’buffer-file-name)
= #<subr buffer-file-name>

8.2 Defining Symbols

A definition is a special kind of Lisp expression that announces your intention to use a symbol
in a particular way. It typically specifies a value or meaning for the symbol for one kind of use,
plus documentation for its meaning when used in this way. Thus, when you define a symbol as
a variable, you can supply an initial value for the variable, plus documentation for the variable.

defvar and defconst are special forms that define a symbol as a global variable—a variable
that can be accessed at any point in a Lisp program. See Chapter 11 [Variables], page 125, for
details about variables. To define a customizable variable, use the defcustom macro, which also
calls defvar as a subroutine (see Chapter 14 [Customization|, page 180).

In principle, you can assign a variable value to any symbol with setq, whether not it has
first been defined as a variable. However, you ought to write a variable definition for each
global variable that you want to use; otherwise, your Lisp program may not act correctly if it is
evaluated with lexical scoping enabled (see Section 11.9 [Variable Scoping], page 133).

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of the
symbol. (The term “function definition”, meaning the contents of the function cell, is derived
from the idea that defun gives the symbol its definition as a function.) defsubst and defalias
are two other ways of defining a function. See Chapter 12 [Functions|, page 150.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the function
cell of the symbol. Note that a given symbol can be a macro or a function, but not both at
once, because both macro and function definitions are kept in the function cell, and that cell
can hold only one Lisp object at any given time. See Chapter 13 [Macros|, page 173.

As previously noted, Emacs Lisp allows the same symbol to be defined both as a variable
(e.g., with defvar) and as a function or macro (e.g., with defun). Such definitions do not
conflict.

These definition also act as guides for programming tools. For example, the C-h £ and C-h
v commands create help buffers containing links to the relevant variable, function, or macro
definitions. See Section “Name Help” in The GNU Emacs Manual.

8.3 Creating and Interning Symbols

To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of
characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then it
“hashes” those characters to find an index in a table called an obarray. Hashing is an efficient
method of looking something up. For example, instead of searching a telephone book cover to
cover when looking up Jan Jones, you start with the J’s and go from there. That is a simple
version of hashing. Each element of the obarray is a bucket which holds all the symbols with a

Chapter 8: Symbols 95

given hash code; to look for a given name, it is sufficient to look through all the symbols in the
bucket for that name’s hash code. (The same idea is used for general Emacs hash tables, but
they are a different data type; see Chapter 7 [Hash Tables|, page 88.)

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to the
obarray. Finding or adding a symbol with a certain name is called interning it, and the symbol
is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

Interning usually happens automatically in the reader, but sometimes other programs need
to do it. For example, after the M-x command obtains the command name as a string using the
minibuffer, it then interns the string, to get the interned symbol with that name.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the value
of a variable.

Creating an uninterned symbol is useful in generating Lisp code, because an uninterned
symbol used as a variable in the code you generate cannot clash with any variables used in other
Lisp programs.

In Emacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, so you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend to
result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern can
enter a symbol in an obarray properly.

Common Lisp note: Unlike Common Lisp, Emacs Lisp does not provide for interning
a single symbol in several obarrays.
Most of the functions below take a name and sometimes an obarray as arguments. A wrong-
type-argument error is signaled if the name is not a string, or if the obarray is not a vector.

symbol-name symbol [Function]
This function returns the string that is symbol’s name. For example:
(symbol-name ’foo0)
= "foo"
Warning: Changing the string by substituting characters does change the name of the symbol,
but fails to update the obarray, so don’t do it!

make-symbol name [Function]
This function returns a newly-allocated, uninterned symbol whose name is name (which must
be a string). Its value and function definition are void, and its property list is nil. In the
example below, the value of sym is not eq to foo because it is a distinct uninterned symbol
whose name is also ‘foo’.
(setq sym (make-symbol "foo"))
= foo
(eq sym ’foo)
= nil

Chapter 8: Symbols 96

intern name &optional obarray [Function]
This function returns the interned symbol whose name is name. If there is no such symbol
in the obarray obarray, intern creates a new one, adds it to the obarray, and returns it. If
obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))
= foo

(eq sym ’foo)
=t

(setq syml (intern "foo" other-obarray))
= foo

(eq syml ’foo)
= nil

Common Lisp note: In Common Lisp, you can intern an existing symbol in an
obarray. In Emacs Lisp, you cannot do this, because the argument to intern must
be a string, not a symbol.

intern-soft name &optional obarray [Function]
This function returns the symbol in obarray whose name is name, or nil if obarray has
no symbol with that name. Therefore, you can use intern-soft to test whether a symbol
with a given name is already interned. If obarray is omitted, the value of the global variable
obarray is used.

The argument name may also be a symbol; in that case, the function returns name if name
is interned in the specified obarray, and otherwise nil.

(intern-soft "frazzle") ; No such symbol exists.
= nil

(make-symbol "frazzle") ; Create an uninterned one.
= frazzle

(intern-soft "frazzle") ; That one cannot be found.
= nil

(setq sym (intern "frazzle")) ; Create an interned one.
= frazzle

(intern-soft "frazzle") ; That one can be found!
= frazzle

(eq sym ’frazzle) ; And it is the same one.
=t

obarray [Variable]

This variable is the standard obarray for use by intern and read.

mapatoms function &optional obarray [Function]
This function calls function once with each symbol in the obarray obarray. Then it returns
nil. If obarray is omitted, it defaults to the value of obarray, the standard obarray for
ordinary symbols.

(setq count 0)
= 0
(defun count-syms (s)
(setq count (1+ count)))
= count-syms
(mapatoms ’count-syms)
= nil

Chapter 8: Symbols 97

count
= 1871

See documentation in Section 23.2 [Accessing Documentation], page 405, for another example
using mapatoms.

unintern symbol obarray [Function]
This function deletes symbol from the obarray obarray. If symbol is not actually in the
obarray, unintern does nothing. If obarray is nil, the current obarray is used.

If you provide a string instead of a symbol as symbol, it stands for a symbol name. Then
unintern deletes the symbol (if any) in the obarray which has that name. If there is no such
symbol, unintern does nothing.

If unintern does delete a symbol, it returns t. Otherwise it returns nil.

8.4 Symbol Properties

A symbol may possess any number of symbol properties, which can be used to record miscella-
neous information about the symbol. For example, when a symbol has a risky-local-variable
property with a non-nil value, that means the variable which the symbol names is a risky file-
local variable (see Section 11.11 [File Local Variables|, page 142).

Each symbol’s properties and property values are stored in the symbol’s property list cell
(see Section 8.1 [Symbol Components|, page 93), in the form of a property list (see Section 5.9
[Property Lists], page 76).

8.4.1 Accessing Symbol Properties

The following functions can be used to access symbol properties.

get symbol property [Function]
This function returns the value of the property named property in symbol’s property list. If
there is no such property, it returns nil. Thus, there is no distinction between a value of nil
and the absence of the property.

The name property is compared with the existing property names using eq, so any object is
a legitimate property.

See put for an example.

put symbol property value [Function]
This function puts value onto symbol’s property list under the property name property,
replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)
=’transitive
(put ’fly ’noun ’(a buzzing little bug))
= (a buzzing little bug)
(get ’fly ’verb)
= transitive
(symbol-plist ’fly)
= (verb transitive noun (a buzzing little bug))

symbol-plist symbol [Function]
This function returns the property list of symbol.

setplist symbol plist [Function]
This function sets symbol’s property list to plist. Normally, plist should be a well-formed
property list, but this is not enforced. The return value is plist.

Chapter 8: Symbols 98

(setplist ’foo ’(a 1 b (2 3) ¢ nil))
= (a1b (23 cnil)
(symbol-plist ’foo)
= (a1b (2 3) c nil)

For symbols in special obarrays, which are not used for ordinary purposes, it may make sense
to use the property list cell in a nonstandard fashion; in fact, the abbrev mechanism does so
(see Chapter 35 [Abbrevs], page 685).

You could define put in terms of setplist and plist-put, as follows:

(defun put (symbol prop value)
(setplist symbol
(plist-put (symbol-plist symbol) prop value)))

function-get symbol property [Function]
This function is identical to get, except that if symbol is the name of a function alias, it
looks in the property list of the symbol naming the actual function. See Section 12.4 [Defining
Functions], page 155.

8.4.2 Standard Symbol Properties

Here, we list the symbol properties which are used for special purposes in Emacs. In the
following table, whenever we say “the named function”, that means the function whose name is
the relevant symbol; similarly for “the named variable” etc.

:advertised-binding
This property value specifies the preferred key binding, when showing documenta-
tion, for the named function. See Section 23.3 [Keys in Documentation], page 407.

char-table-extra-slots
The value, if non-nil, specifies the number of extra slots in the named char-table
type. See Section 6.6 [Char-Tables|, page 83.

customized-face

face-defface-spec

saved-face

theme-face
These properties are used to record a face’s standard, saved, customized, and themed
face specs. Do not set them directly; they are managed by defface and related
functions. See Section 37.12.2 [Defining Faces], page 754.

customized-value

saved-value

standard-value

theme-value
These properties are used to record a customizable variable’s standard value, saved
value, customized-but-unsaved value, and themed values. Do not set them directly;
they are managed by defcustom and related functions. See Section 14.3 [Variable
Definitions], page 183.

disabled If the value is non-nil, the named function is disabled as a command. See
Section 20.14 [Disabling Commands], page 320.

face-documentation
The value stores the documentation string of the named face. This is set automati-
cally by defface. See Section 37.12.2 [Defining Faces|, page 754.

Chapter 8: Symbols 99

history-length
The value, if non-nil, specifies the maximum minibuffer history length for the
named history list variable. See Section 19.4 [Minibuffer History], page 261.

interactive-form
The value is an interactive form for the named function. Normally, you should
not set this directly; use the interactive special form instead. See Section 20.3
[Interactive Call], page 289.

menu-enable
The value is an expression for determining whether the named menu item should
be enabled in menus. See Section 21.17.1.1 [Simple Menu Items]|, page 345.

mode-class
If the value is special, the named major mode is “special”. See Section 22.2.1
[Major Mode Conventions|, page 358.

permanent-local
If the value is non-nil, the named variable is a buffer-local variable whose value
should not be reset when changing major modes. See Section 11.10.2 [Creating
Buffer-Local|, page 138.

permanent-local-hook
If the value is non-nil, the named function should not be deleted from the local
value of a hook variable when changing major modes. See Section 22.1.2 [Setting
Hooks], page 357.

pure If the value is non-nil, the named function is considered to be side-effect free. Calls
with constant arguments can be evaluated at compile time. This may shift run time
errors to compile time.

risky-local-variable
If the value is non-nil, the named variable is considered risky as a file-local variable.
See Section 11.11 [File Local Variables|, page 142.

safe-function
If the value is non-nil, the named function is considered generally safe for evaluation.
See Section 12.15 [Function Safety], page 171.

safe-local-eval-function
If the value is non-nil, the named function is safe to call in file-local evaluation
forms. See Section 11.11 [File Local Variables|, page 142.

safe-local-variable
The value specifies a function for determining safe file-local values for the named
variable. See Section 11.11 [File Local Variables|, page 142.

side-effect-free
A non-nil value indicates that the named function is free of side-effects, for deter-
mining function safety (see Section 12.15 [Function Safety], page 171) as well as for
byte compiler optimizations. Do not set it.

variable-documentation
If non-nil, this specifies the named variable’s documentation string. This is set
automatically by defvar and related functions. See Section 37.12.2 [Defining Faces],
page 754.

Chapter 9: Evaluation 100

9 Evaluation

The evaluation of expressions in Emacs Lisp is performed by the Lisp interpreter—a program
that receives a Lisp object as input and computes its value as an expression. How it does
this depends on the data type of the object, according to rules described in this chapter. The
interpreter runs automatically to evaluate portions of your program, but can also be called
explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called a form or expression'. The fact that
forms are data objects and not merely text is one of the fundamental differences between Lisp-
like languages and typical programming languages. Any object can be evaluated, but in practice
only numbers, symbols, lists and strings are evaluated very often.

In subsequent sections, we will describe the details of what evaluation means for each kind
of form.

It is very common to read a Lisp form and then evaluate the form, but reading and evaluation
are separate activities, and either can be performed alone. Reading per se does not evaluate
anything; it converts the printed representation of a Lisp object to the object itself. It is up
to the caller of read to specify whether this object is a form to be evaluated, or serves some
entirely different purpose. See Section 18.3 [Input Functions], page 248.

Evaluation is a recursive process, and evaluating a form often involves evaluating parts within
that form. For instance, when you evaluate a function call form such as (car x), Emacs first
evaluates the argument (the subform x). After evaluating the argument, Emacs executes the
function (car), and if the function is written in Lisp, execution works by evaluating the body
of the function (in this example, however, car is not a Lisp function; it is a primitive function
implemented in C). See Chapter 12 [Functions|, page 150, for more information about functions
and function calls.

Evaluation takes place in a context called the environment, which consists of the current
values and bindings of all Lisp variables (see Chapter 11 [Variables|, page 125).? Whenever a
form refers to a variable without creating a new binding for it, the variable evaluates to the value
given by the current environment. Evaluating a form may also temporarily alter the environment
by binding variables (see Section 11.3 [Local Variables], page 126).

Evaluating a form may also make changes that persist; these changes are called side effects.
An example of a form that produces a side effect is (setq foo 1).

Do not confuse evaluation with command key interpretation. The editor command loop
translates keyboard input into a command (an interactively callable function) using the active
keymaps, and then uses call-interactively to execute that command. Executing the com-
mand usually involves evaluation, if the command is written in Lisp; however, this step is not
considered a part of command key interpretation. See Chapter 20 [Command Loop|, page 283.

9.1 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form (or an expression). How Emacs
evaluates a form depends on its data type. Emacs has three different kinds of form that are
evaluated differently: symbols, lists, and “all other types”. This section describes all three kinds,
one by one, starting with the “all other types” which are self-evaluating forms.

1 Tt is sometimes also referred to as an S-expression or sexp, but we generally do not use this terminology in
this manual.

2 This definition of “environment” is specifically not intended to include all the data that can affect the result
of a program.

Chapter 9: Evaluation 101

9.1.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms evaluate to
themselves: the result of evaluation is the same object that was evaluated. Thus, the number
25 evaluates to 25, and the string "foo" evaluates to the string "foo". Likewise, evaluating a
vector does not cause evaluation of the elements of the vector—it returns the same vector with
its contents unchanged.

7123 ; A number, shown without evaluation.
= 123

123 ; Evaluated as usual—result is the same.
= 123

(eval ’123) ; Evaluated ‘‘by hand”—result is the same.
= 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
= 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for types
that lack a read syntax, because there’s no way to write them textually. It is possible to construct
Lisp expressions containing these types by means of a Lisp program. Here is an example:

;3 Build an expression containing a buffer object.
(setq print-exp (list ’print (current-buffer)))
= (print #<buffer eval.texi>)
;3 Evaluate it.
(eval print-exp)
-1 #<buffer eval.texi>
= #<buffer eval.texi>

9.1.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s value, if it
has one. If the symbol has no value as a variable, the Lisp interpreter signals an error. For more
information on the use of variables, see Chapter 11 [Variables|, page 125.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)

= 123
(eval ’a)

= 123
a

= 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and the
value of t is always t; you cannot set or bind them to any other values. Thus, these two symbols
act like self-evaluating forms, even though eval treats them like any other symbol. A symbol
whose name starts with ‘:’ also self-evaluates in the same way; likewise, its value ordinarily
cannot be changed. See Section 11.2 [Constant Variables], page 125.

9.1.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form, according
to its first element. These three kinds of forms are evaluated in different ways, described below.
The remaining list elements constitute the arguments for the function, macro, or special form.

Chapter 9: Evaluation 102

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

9.1.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function cell, and
uses its contents instead of the original symbol. If the contents are another symbol, this process,
called symbol function indirection, is repeated until it obtains a non-symbol. See Section 12.3
[Function Names|, page 154, for more information about symbol function indirection.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Otherwise, we eventually obtain a non-symbol, which
ought to be a function or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of these
types, Emacs signals an invalid-function error.

The following example illustrates the symbol indirection process. We use fset to set the
function cell of a symbol and symbol-function to get the function cell contents (see Section 12.8
[Function Cells|, page 160). Specifically, we store the symbol car into the function cell of first,
and the symbol first into the function cell of erste.

;3 | #<subr car> | <-- | car | <-- | first | <-- | erste |
(symbol-function ’car)
= #<subr car>
(fset ’first ’car)
= car
(fset ’erste ’first)
= first
(erste ’(1 2 3)) ; Call the function referenced by erste.

=1

By contrast, the following example calls a function without any symbol function indirection,
because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
(1 2 3))
= 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

This form is rarely used and is now deprecated. Instead, you should write it as:

(funcall (lambda (arg) (erste arg))
(1 2 3))

or just
(let ((arg (1 2 3))) (erste arg))

The built-in function indirect-function provides an easy way to perform symbol function
indirection explicitly.

Chapter 9: Evaluation 103

indirect-function function &optional noerror [Function]
This function returns the meaning of function as a function. If function is a symbol, then
it finds function’s function definition and starts over with that value. If function is not a
symbol, then it returns function itself.

This function signals a void-function error if the final symbol is unbound and optional
argument noerror is nil or omitted. Otherwise, if noerror is non-nil, it returns nil if the
final symbol is unbound.

It signals a cyclic-function-indirection error if there is a loop in the chain of symbols.
Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)
(indirect-function (symbol-function function))
function))

9.1.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object or primitive
function object, then that list is a function call. For example, here is a call to the function +:

+1x)

The first step in evaluating a function call is to evaluate the remaining elements of the list
from left to right. The results are the actual argument values, one value for each list element.
The next step is to call the function with this list of arguments, effectively using the function
apply (see Section 12.5 [Calling Functions|, page 156). If the function is written in Lisp, the
arguments are used to bind the argument variables of the function (see Section 12.2 [Lambda
Expressions], page 151); then the forms in the function body are evaluated in order, and the
value of the last body form becomes the value of the function call.

9.1.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro call.
When a macro call is evaluated, the elements of the rest of the list are not initially evaluated.
Instead, these elements themselves are used as the arguments of the macro. The macro definition
computes a replacement form, called the expansion of the macro, to be evaluated in place of the
original form. The expansion may be any sort of form: a self-evaluating constant, a symbol, or
a list. If the expansion is itself a macro call, this process of expansion repeats until some other
sort of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the macro
expansion is not necessarily evaluated right away, or at all, because other programs also expand
macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro ex-
pansion, but instead appear as part of the expansion, so they are computed when the expansion
is evaluated.

For example, given a macro defined as follows:

(defmacro cadr (x)
(list ’car (list ’cdr x)))

an expression such as (cadr (assq *handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))
Note that the argument (assq *handler list) appears in the expansion.

See Chapter 13 [Macros|, page 173, for a complete description of Emacs Lisp macros.

Chapter 9: Evaluation 104

9.1.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all evaluated.
Most special forms define control structures or perform variable bindings—things which functions
cannot do.

Each special form has its own rules for which arguments are evaluated and which are used
without evaluation. Whether a particular argument is evaluated may depend on the results of
evaluating other arguments.

If an expression’s first symbol is that of a special form, the expression should follow the rules
of that special form; otherwise, Emacs’s behavior is not well-defined (though it will not crash).
For example, ((lambda (x) x . 3) 4) contains a subexpression that begins with lambda but is
not a well-formed lambda expression, so Emacs may signal an error, or may return 3 or 4 or
nil, or may behave in other ways.

special-form-p object [Function]
This predicate tests whether its argument is a special form, and returns t if so, nil otherwise.

Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a reference
to where each is described.

and see Section 10.3 [Combining Conditions], page 113
catch see Section 10.5.1 [Catch and Throw], page 115
cond see Section 10.2 [Conditionals|, page 110

condition-case

see Section 10.5.3.3 [Handling Errors], page 119
defconst see Section 11.5 [Defining Variables|, page 128
defvar see Section 11.5 [Defining Variables], page 128

function see Section 12.7 [Anonymous Functions|, page 159

[
[
[
if see Section 10.2 [Conditionals|, page 110

interactive
see Section 20.3 [Interactive Call|, page 289

lambda see Section 12.2 [Lambda Expressions|, page 151

let

let* see Section 11.3 [Local Variables], page 126

or see Section 10.3 [Combining Conditions|, page 113
progl

prog2

progn see Section 10.1 [Sequencing], page 109

quote see Section 9.2 [Quoting], page 105

save-current-buffer
see Section 26.2 [Current Buffer], page 458

save-excursion
see Section 29.3 [Excursions|, page 561

save-restriction
see Section 29.4 [Narrowing], page 562

setq see Section 11.8 [Setting Variables|, page 132

Chapter 9: Evaluation 105

setq-default
see Section 11.10.2 [Creating Buffer-Local], page 138

track-mouse
see Section 28.13 [Mouse Tracking], page 543

unwind-protect
see Section 10.5 [Nonlocal Exits], page 115

while see Section 10.4 [Iteration|, page 114

Common Lisp note: Here are some comparisons of special forms in GNU Emacs
Lisp and Common Lisp. setq, if, and catch are special forms in both Emacs Lisp
and Common Lisp. save-excursion is a special form in Emacs Lisp, but doesn’t
exist in Common Lisp. throw is a special form in Common Lisp (because it must
be able to throw multiple values), but it is a function in Emacs Lisp (which doesn’t
have multiple values).

9.1.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has not
yet been loaded into Emacs. It specifies which file contains the definition. When an autoload
object appears as a symbol’s function definition, calling that symbol as a function automatically
loads the specified file; then it calls the real definition loaded from that file. The way to arrange
for an autoload object to appear as a symbol’s function definition is described in Section 15.5
[Autoload], page 201.

)

9.2 Quoting

The special form quote returns its single argument, as written, without evaluating it. This
provides a way to include constant symbols and lists, which are not self-evaluating objects, in
a program. (It is not necessary to quote self-evaluating objects such as numbers, strings, and
vectors.)

quote object [Special Form]
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for it.
An apostrophe character (‘*”) followed by a Lisp object (in read syntax) expands to a list whose
first element is quote, and whose second element is the object. Thus, the read syntax ’x is an
abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))
= (+12)
(quote foo)
= foo
’foo
= foo
’?foo
= (quote foo)
> (quote foo)
= (quote foo)
[’fool
= [(quote foo0)]
Other quoting constructs include function (see Section 12.7 [Anonymous Functions],
page 159), which causes an anonymous lambda expression written in Lisp to be compiled, and

Chapter 9: Evaluation 106

‘7 (see Section 9.3 [Backquote], page 106), which is used to quote only part of a list, while
computing and substituting other parts.

9.3 Backquote

Backquote constructs allow you to quote a list, but selectively evaluate elements of that list. In
the simplest case, it is identical to the special form quote For example, these two forms yield
identical results:

‘(a list of (+ 2 3) elements)

= (a list of (+ 2 3) elements)
’(a list of (+ 2 3) elements)

= (a list of (+ 2 3) elements)

[

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. The Emacs Lisp evaluator evaluates the argument of ¢,’, and puts the value in the
list structure:

‘(a list of ,(+ 2 3) elements)
= (a list of 5 elements)

Substitution with ‘,’ is allowed at deeper levels of the list structure also. For example:

‘(12 @ ,(+45)))
= (12 (39))

You can also splice an evaluated value into the resulting list, using the special marker ¢,@’.
The elements of the spliced list become elements at the same level as the other elements of
the resulting list. The equivalent code without using ‘¢’ is often unreadable. Here are some
examples:

(setq some-list ’(2 3))
= (2 3)

(cons 1 (append some-list ’(4) some-list))
= (12342 3)

‘(1 ,0some-list 4 ,@some-list)
= (12342 23)

(setq list ’(hack foo bar))
= (hack foo bar)

(cons ’use

(cons ’the

(cons ’words (append (cdr list) ’(as elements)))))
= (use the words foo bar as elements)

‘(use the words ,0@(cdr list) as elements)
= (use the words foo bar as elements)

9.4 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program being
run. On rare occasions, you may need to write code that evaluates a form that is computed at
run time, such as after reading a form from text being edited or getting one from a property list.
On these occasions, use the eval function. Often eval is not needed and something else should
be used instead. For example, to get the value of a variable, while eval works, symbol-value
is preferable; or rather than store expressions in a property list that then need to go through
eval, it is better to store functions instead that are then passed to funcall.

Chapter 9: Evaluation 107

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation (see
Chapter 15 [Loading], page 197).

It is generally cleaner and more flexible to store a function in a data structure, and call it
with funcall or apply, than to store an expression in the data structure and evaluate it. Using
functions provides the ability to pass information to them as arguments.

eval form &optional lexical [Function]
This is the basic function for evaluating an expression. It evaluates form in the current
environment, and returns the result. The type of the form object determines how it is
evaluated. See Section 9.1 [Forms], page 100.

The argument lexical specifies the scoping rule for local variables (see Section 11.9 [Variable
Scoping], page 133). If it is omitted or nil, that means to evaluate form using the default
dynamic scoping rule. If it is t, that means to use the lexical scoping rule. The value of
lexical can also be a non-empty alist specifying a particular lexical environment for lexical
bindings; however, this feature is only useful for specialized purposes, such as in Emacs Lisp
debuggers. See Section 11.9.3 [Lexical Binding], page 135.

Since eval is a function, the argument expression that appears in a call to eval is evaluated
twice: once as preparation before eval is called, and again by the eval function itself. Here
is an example:

(setq foo ’bar)
= bar
(setq bar ’baz)
= baz
;5 Here eval receives argument foo
(eval ’foo)
= bar
;; Here eval receives argument bar, which is the value of foo
(eval foo)
= baz

The number of currently active calls to eval is limited to max-1isp-eval-depth (see below).

eval-region start end &optional stream read-function [Command]
This function evaluates the forms in the current buffer in the region defined by the positions
start and end. It reads forms from the region and calls eval on them until the end of the
region is reached, or until an error is signaled and not handled.

By default, eval-region does not produce any output. However, if stream is non-nil, any
output produced by output functions (see Section 18.5 [Output Functions|, page 251), as
well as the values that result from evaluating the expressions in the region are printed using
stream. See Section 18.4 [Output Streams|, page 249.

If read-function is non-nil, it should be a function, which is used instead of read to read
expressions one by one. This function is called with one argument, the stream for reading
input. You can also use the variable load-read-function (see [How Programs Do Loading],
page 198) to specify this function, but it is more robust to use the read-function argument.

eval-region does not move point. It always returns nil.

eval-buffer &optional buffer-or-name stream filename unibyte print [Command]|
This is similar to eval-region, but the arguments provide different optional features. eval-
buffer operates on the entire accessible portion of buffer buffer-or-name. buffer-or-name can
be a buffer, a buffer name (a string), or nil (or omitted), which means to use the current
buffer. stream is used as in eval-region, unless stream is nil and print non-nil. In that

Chapter 9: Evaluation 108

case, values that result from evaluating the expressions are still discarded, but the output of
the output functions is printed in the echo area. filename is the file name to use for load-
history (see Section 15.9 [Unloading], page 207), and defaults to buffer-file-name (see
Section 26.4 [Buffer File Name|, page 461). If unibyte is non-nil, read converts strings to
unibyte whenever possible.

eval-current-buffer is an alias for this command.

max-lisp-eval-depth [User Option]
This variable defines the maximum depth allowed in calls to eval, apply, and funcall before
an error is signaled (with error message "Lisp nesting exceeds max-lisp-eval-depth").

This limit, with the associated error when it is exceeded, is one way Emacs Lisp avoids infinite
recursion on an ill-defined function. If you increase the value of max-1lisp-eval-depth too
much, such code can cause stack overflow instead.

The depth limit counts internal uses of eval, apply, and funcall, such as for calling the
functions mentioned in Lisp expressions, and recursive evaluation of function call arguments
and function body forms, as well as explicit calls in Lisp code.

The default value of this variable is 400. If you set it to a value less than 100, Lisp will reset
it to 100 if the given value is reached. Entry to the Lisp debugger increases the value, if there
is little room left, to make sure the debugger itself has room to execute.

max-specpdl-size provides another limit on nesting. See [Local Variables|, page 127.

values [Variable]
The value of this variable is a list of the values returned by all the expressions that were
read, evaluated, and printed from buffers (including the minibuffer) by the standard Emacs
commands which do this. (Note that this does not include evaluation in *ielm* buffers, nor
evaluation using C-j in lisp-interaction-mode.) The elements are ordered most recent
first.

(setq x 1)
=1

(1ist ’A (1+ 2) auto-save-default)
= (A 3t)

values
= (A31t)1...)

This variable is useful for referring back to values of forms recently evaluated. It is generally
a bad idea to print the value of values itself, since this may be very long. Instead, examine
particular elements, like this:

;3 Refer to the most recent evaluation result.
(nth 0 values)
= (A 3 t)
;5 That put a new element on,
K so all elements move back one.
(nth 1 values)
= (A 3 t)
;35 This gets the element that was next-to-most-recent
3 before this example.
(nth 3 values)
=1

Chapter 10: Control Structures 109

10 Control Structures

A Lisp program consists of a set of expressions, or forms (see Section 9.1 [Forms|, page 100). We
control the order of execution of these forms by enclosing them in control structures. Control
structures are special forms which control when, whether, or how many times to execute the
forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and so on.
This is what happens when you write several forms in succession in the body of a function, or at
top level in a file of Lisp code—the forms are executed in the order written. We call this textual
order. For example, if a function body consists of two forms a and b, evaluation of the function
evaluates first a and then b. The result of evaluating b becomes the value of the function.

Explicit control structures make possible an order of execution other than sequential.

Emacs Lisp provides several kinds of control structure, including other varieties of sequenc-
ing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in control
structures are special forms since their subforms are not necessarily evaluated or not evaluated
sequentially. You can use macros to define your own control structure constructs (see Chapter 13
[Macros], page 173).

9

10.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes from one form
to another. In some contexts, such as in a function body, this happens automatically. Elsewhere
you must use a control structure construct to do this: progn, the simplest control construct of
Lisp.

A progn special form looks like this:
(progn a b ¢ ...)

and it says to execute the forms a, b, ¢, and so on, in that order. These forms are called the
body of the progn form. The value of the last form in the body becomes the value of the entire
progn. (progn) returns nil.

In the early days of Lisp, progn was the only way to execute two or more forms in succession
and use the value of the last of them. But programmers found they often needed to use a progn
in the body of a function, where (at that time) only one form was allowed. So the body of a
function was made into an “implicit progn”: several forms are allowed just as in the body of
an actual progn. Many other control structures likewise contain an implicit progn. As a result,
progn is not used as much as it was many years ago. It is needed now most often inside an
unwind-protect, and, or, or in the then-part of an if.

progn forms. .. [Special Form]
This special form evaluates all of the forms, in textual order, returning the result of the final
form.

(progn (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The third form"

Two other constructs likewise evaluate a series of forms but return different values:

Chapter 10: Control Structures 110

progl forml forms. . . [Special Form]
This special form evaluates form1 and all of the forms, in textual order, returning the result

of forml.

(progl (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The first form"

Here is a way to remove the first element from a list in the variable x, then return the value
of that former element:

(progl (car x) (setq x (cdr x)))

prog2 forml form?2 forms. . . [Special Form]
This special form evaluates forml, form2, and all of the following forms, in textual order,
returning the result of form?2.

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The second form"

10.2 Conditionals

Conditional control structures choose among alternatives. FEmacs Lisp has four conditional
forms: if, which is much the same as in other languages; when and unless, which are variants
of if; and cond, which is a generalized case statement.

if condition then-form else-forms. . . [Special Form]
if chooses between the then-form and the else-forms based on the value of condition. If the
evaluated condition is non-nil, then-form is evaluated and the result returned. Otherwise,
the else-forms are evaluated in textual order, and the value of the last one is returned. (The
else part of if is an example of an implicit progn. See Section 10.1 [Sequencing], page 109.)

If condition has the value nil, and no else-forms are given, if returns nil.
if is a special form because the branch that is not selected is never evaluated—it is ignored.
Thus, in this example, true is not printed because print is never called:
(if nil
(print ’true)
>very-false)
= very-false

when condition then-forms. . . [Macro]
This is a variant of if where there are no else-forms, and possibly several then-forms. In
particular,

(when condition a b c)
is entirely equivalent to

(if condition (progn a b c¢) nil)

Chapter 10: Control Structures 111

unless condition forms. .. [Macro]
This is a variant of if where there is no then-form:

(unless condition a b c¢)
is entirely equivalent to

(if condition nil
ab c)

cond clause. .. [Special Form]
cond chooses among an arbitrary number of alternatives. Each clause in the cond must be
a list. The CAR of this list is the condition; the remaining elements, if any, the body-forms.
Thus, a clause looks like this:

(condition body-forms...)

cond tries the clauses in textual order, by evaluating the condition of each clause. If the
value of condition is non-nil, the clause “succeeds”; then cond evaluates its body-forms, and
returns the value of the last of body-forms. Any remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.

A clause may also look like this:

(condition)
Then, if condition is non-nil when tested, the cond form returns the value of condition.
If every condition evaluates to nil, so that every clause fails, cond returns nil.

The following example has four clauses, which test for the cases where the value of x is a
number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))

Often we want to execute the last clause whenever none of the previous clauses was successful.
To do this, we use t as the condition of the last clause, like this: (t body-forms). The form
t evaluates to t, which is never nil, so this clause never fails, provided the cond gets to it
at all. For example:

(setq a b5)

(cond ((eq a ’hack) ’foo)
(t "default"))

= "default"

This cond expression returns foo if the value of a is hack, and returns the string "default"
otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:
(if a b ©)

(_cond (a b) (£t)

Chapter 10: Control Structures 112

10.2.1 Pattern matching case statement

To compare a particular value against various possible cases, the macro pcase can come handy.
It takes the following form:

(pcase exp branchl branch2 branch3 ...)
where each branch takes the form (upattern body-forms...).

It will first evaluate exp and then compare the value against each upattern to see which
branch to use, after which it will run the corresponding body-forms. A common use case is to
distinguish between a few different constant values:

(pcase (get-return-code x)

(‘success (message "Done!"))

(‘would-block (message "Sorry, can’t do it now"))
(‘read-only (message "The shmliblick is read-only"))
(‘access-denied (message "You do not have the needed rights"))
(code (message "Unknown return code %S" code)))

In the last clause, code is a variable that gets bound to the value that was returned by
(get-return-code x).

To give a more complex example, a simple interpreter for a little expression language could
look like (note that this example requires lexical binding):

(defun evaluate (exp env)
(pcase exp
(‘(add ,x ,y) (+ (evaluate x env) (evaluate y env)))
(“(call ,fun ,arg) (funcall (evaluate fun env) (evaluate arg env)))
(‘(fn ,arg ,body) (lambda (val)
(evaluate body (cons (cons arg val) env))))

((pred numberp) exp)
((pred symbolp) (cdr (assq exp env)))
(_ (error "Unknown expression %S" exp))))

Where ‘(add ,x ,y) is a pattern that checks that exp is a three element list starting with
the symbol add, then extracts the second and third elements and binds them to the variables
x and y. (pred numberp) is a pattern that simply checks that exp is a number, and _ is the
catch-all pattern that matches anything.

Here are some sample programs including their evaluation results:

(evaluate ’(add 1 2) nil) ;=> 3
(evaluate ’(add x y) ’((x . 1) (y . 2))) ;=>3
(evaluate ’(call (fn x (add 1 x)) 2) nil) ;=> 3
(evaluate ’(sub 1 2) nil) ;=> error

There are two kinds of patterns involved in pcase, called U-patterns and Q-patterns. The
upattern mentioned above are U-patterns and can take the following forms:

‘gpattern
This is one of the most common form of patterns. The intention is to mimic the
backquote macro: this pattern matches those values that could have been built by
such a backquote expression. Since we’re pattern matching rather than building a
value, the unquote does not indicate where to plug an expression, but instead it lets
one specify a U-pattern that should match the value at that location.

More specifically, a Q-pattern can take the following forms:
(gpatternl . gpattern2)

This pattern matches any cons cell whose car matches gpatternl and
whose cdr matches pattern2.

Chapter 10: Control Structures 113

atom This pattern matches any atom equal to atom.

,upattern
This pattern matches any object that matches the upattern.

symbol A mere symbol in a U-pattern matches anything, and additionally let-binds this
symbol to the value that it matched, so that you can later refer to it, either in the
body-forms or also later in the pattern.

This so-called don’t care pattern matches anything, like the previous one, but unlike
symbol patterns it does not bind any variable.

(pred pred)
This pattern matches if the function pred returns non-nil when called with the
object being matched.

(or upatternl upattern2...)
This pattern matches as soon as one of the argument patterns succeeds. All argu-
ment patterns should let-bind the same variables.

(and upatternl upattern2...)
This pattern matches only if all the argument patterns succeed.

(guard exp)
This pattern ignores the object being examined and simply succeeds if exp evaluates
to non-nil and fails otherwise. It is typically used inside an and pattern. For
example, (and x (guard (< x 10))) is a pattern which matches any number smaller
than 10 and let-binds it to the variable x.

10.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to express
complicated conditions. The constructs and and or can also be used individually as kinds of
multiple conditional constructs.

not condition [Function]
This function tests for the falsehood of condition. It returns t if condition is nil, and nil
otherwise. The function not is identical to null, and we recommend using the name null if
you are testing for an empty list.

and conditions. . . [Special Form]
The and special form tests whether all the conditions are true. It works by evaluating the
conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil regardless of
the remaining conditions; so and returns nil right away, ignoring the remaining conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the value
of the and form. Just (and), with no conditions, returns t, appropriate because all the
conditions turned out non-nil. (Think about it; which one did not?)
Here is an example. The first condition returns the integer 1, which is not nil. Similarly,
the second condition returns the integer 2, which is not nil. The third condition is nil, so
the remaining condition is never evaluated.
(and (print 1) (print 2) nil (print 3))
41
-4 2
= nil

Here is a more realistic example of using and:

Chapter 10: Control Structures 114

(if (and (comnsp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an error.
and expressions can also be written using either if or cond. Here’s how:

(and argl arg2 arg3)

(if argl (if arg2 arg3))

(_cond (argl (cond (arg2 arg3))))

or conditions. . . [Special Form]
The or special form tests whether at least one of the conditions is true. It works by evaluating
all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must be
non-nil; so or returns right away, ignoring the remaining conditions. The value it returns is
the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil. Just (or), with no
conditions, returns nil, appropriate because all the conditions turned out nil. (Think about
it; which one did not?)

For example, this expression tests whether x is either nil or the integer zero:
(or (eq x nil) (eq x 0))
Like the and construct, or can be written in terms of cond. For example:

(or argl arg2 arg3)

(_Cond (argl1)
(arg2)
(arg3))

You could almost write or in terms of if, but not quite:
(if argl argl
(if arg2 arg2
arg3))

This is not completely equivalent because it can evaluate argl or arg2 twice. By contrast,
(or argl arg2 arg3) never evaluates any argument more than once.

10.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want to repeat
some computation once for each element of a list, or once for each integer from 0 to n. You can
do this in Emacs Lisp with the special form while:

while condition forms. . . [Special Form]
while first evaluates condition. If the result is non-nil, it evaluates forms in textual order.
Then it reevaluates condition, and if the result is non-nil, it evaluates forms again. This
process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue until
either condition evaluates to nil or until an error or throw jumps out of it (see Section 10.5
[Nonlocal Exits|, page 115).

The value of a while form is always nil.

Chapter 10: Control Structures 115

(setq num 0)
= 0
(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
- Iteration O.
- Iteration 1.
- Iteration 2.
- Iteration 3
= nil
To write a “repeat...until” loop, which will execute something on each iteration and then do
the end-test, put the body followed by the end-test in a progn as the first argument of while,
as shown here:

(while (progn
(forward-line 1)
(not (looking-at "~$"))))

This moves forward one line and continues moving by lines until it reaches an empty line. It
is peculiar in that the while has no body, just the end test (which also does the real work of
moving point).

The dolist and dotimes macros provide convenient ways to write two common kinds of
loops.

dolist (var list [result]) body. . . [Macro]
This construct executes body once for each element of list, binding the variable var locally
to hold the current element. Then it returns the value of evaluating result, or nil if result is
omitted. For example, here is how you could use dolist to define the reverse function:

(defun reverse (list)
(let (value)
(dolist (elt list value)
(setq value (cons elt value)))))

dotimes (var count [result]) body. . . [Macro]
This construct executes body once for each integer from 0 (inclusive) to count (exclusive),
binding the variable var to the integer for the current iteration. Then it returns the value
of evaluating result, or nil if result is omitted. Here is an example of using dotimes to do
something 100 times:

(dotimes (i 100)
(insert "I will not obey absurd orders\n"))

10.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote point.
Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them under explicit
control. Nonlocal exits unbind all variable bindings made by the constructs being exited.

10.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The function
throw is the exception to this rule of normal program execution: it performs a nonlocal exit on
request. (There are other exceptions, but they are for error handling only.) throw is used inside
a catch, and jumps back to that catch. For example:

Chapter 10: Control Structures 116

(defun foo-outer ()
(catch ’foo
(foo-inner)))

(defun foo-inner ()
(if x
(throw ’foo t))
)
The throw form, if executed, transfers control straight back to the corresponding catch, which

returns immediately. The code following the throw is not executed. The second argument of
throw is used as the return value of the catch.

The function throw finds the matching catch based on the first argument: it searches for
a catch whose first argument is eq to the one specified in the throw. If there is more than
one applicable catch, the innermost one takes precedence. Thus, in the above example, the
throw specifies foo, and the catch in foo-outer specifies the same symbol, so that catch is
the applicable one (assuming there is no other matching catch in between).

Executing throw exits all Lisp constructs up to the matching catch, including function calls.
When binding constructs such as let or function calls are exited in this way, the bindings are
unbound, just as they are when these constructs exit normally (see Section 11.3 [Local Variables],
page 126). Likewise, throw restores the buffer and position saved by save-excursion (see
Section 29.3 [Excursions|, page 561), and the narrowing status saved by save-restriction. It
also runs any cleanups established with the unwind-protect special form when it exits that
form (see Section 10.5.4 [Cleanups], page 123).

The throw need not appear lexically within the catch that it jumps to. It can equally well
be called from another function called within the catch. As long as the throw takes place
chronologically after entry to the catch, and chronologically before exit from it, it has access to
that catch. This is why throw can be used in commands such as exit-recursive-edit that
throw back to the editor command loop (see Section 20.13 [Recursive Editing], page 319).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and go,
for example. Emacs Lisp has only throw. The c1-1ib library provides versions of
some of these. See Section “Blocks and Exits” in Common Lisp Extensions.

catch tag body. .. [Special Form]
catch establishes a return point for the throw function. The return point is distinguished
from other such return points by tag, which may be any Lisp object except nil. The argument
tag is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual order. If
the forms execute normally (without error or nonlocal exit) the value of the last body form
is returned from the catch.

If a throw is executed during the execution of body, specifying the same value tag, the catch
form exits immediately; the value it returns is whatever was specified as the second argument
of throw.

throw tag value [Function]
The purpose of throw is to return from a return point previously established with catch.
The argument tag is used to choose among the various existing return points; it must be eq
to the value specified in the catch. If multiple return points match tag, the innermost one
is used.

The argument value is used as the value to return from that catch.

Chapter 10: Control Structures 117

If no return point is in effect with tag tag, then a no-catch error is signaled with data (tag
value).

10.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages, this
would be done with a “goto”.) Here we compute (foo i j) for i and j varying from 0 to 9:

(defun search-foo ()
(catch ’loop
(let ((1 0))
(while (< i 10)
(let ((j 0))
(while (< j 10)
(if (foo i j)
(throw ’loop (list i j)))
(setq j (1+ 3))))
(setq i (1+ i))))))
If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch?2

(catch ’hack
(print (catch2 ’hack))
’no)
- yes
= no
Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value is
printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:
(catch ’hack
(print (catch2 ’quux))
’no)
= yes
We still have two return points, but this time only the outer one has the tag hack; the inner one

has the tag quux instead. Therefore, throw makes the outer catch return the value yes. The
function print is never called, and the body-form ’no is never evaluated.

10.5.3 Errors

When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated, it
signals an error.

When an error is signaled, Emacs’s default reaction is to print an error message and terminate
execution of the current command. This is the right thing to do in most cases, such as if you
type C-f at the end of the buffer.

Chapter 10: Control Structures 118

In complicated programs, simple termination may not be what you want. For example, the
program may have made temporary changes in data structures, or created temporary buffers
that should be deleted before the program is finished. In such cases, you would use unwind-
protect to establish cleanup expressions to be evaluated in case of error. (See Section 10.5.4
[Cleanups|, page 123.) Occasionally, you may wish the program to continue execution despite an
error in a subroutine. In these cases, you would use condition-case to establish error handlers
to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the program
to another; use catch and throw instead. See Section 10.5.1 [Catch and Throw|, page 115.

10.5.3.1 How to Signal an Error

Signaling an error means beginning error processing. Error processing normally aborts all or
part of the running program and returns to a point that is set up to handle the error (see
Section 10.5.3.2 [Processing of Errors|, page 119). Here we describe how to signal an error.

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the CAR of an integer or move forward a character at the
end of the buffer. You can also signal errors explicitly with the functions error and signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is handled
almost like an error. See Section 20.11 [Quitting], page 316.

Every error specifies an error message, one way or another. The message should state what
is wrong (“File does not exist”), not how things ought to be (“File must exist”). The convention
in Emacs Lisp is that error messages should start with a capital letter, but should not end with

any sort of punctuation.

error format-string &rest args [Function]
This function signals an error with an error message constructed by applying format (see
Section 4.7 [Formatting Strings|, page 51) to format-string and args.

These examples show typical uses of error:

(error "That is an error -- try something else")
That is an error -- try something else

(error "You have committed %d errors" 10)
You have committed 10 errors

error works by calling signal with two arguments: the error symbol error, and a list
containing the string returned by format.

Warning: If you want to use your own string as an error message verbatim, don’t just write
(error string). If string contains ‘%’, it will be interpreted as a format specifier, with
undesirable results. Instead, use (error "%s" string).

signal error-symbol data [Function]
This function signals an error named by error-symbol. The argument data is a list of addi-
tional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol defined with define-error.
This is how Emacs Lisp classifies different sorts of errors. See Section 10.5.3.4 [Error Symbols],
page 122, for a description of error symbols, error conditions and condition names.

If the error is not handled, the two arguments are used in printing the error message. Nor-
mally, this error message is provided by the error-message property of error-symbol. If
data is non-nil, this is followed by a colon and a comma separated list of the unevaluated
elements of data. For error, the error message is the CAR of data (that must be a string).
Subcategories of file-error are handled specially.

Chapter 10: Control Structures 119

The number and significance of the objects in data depends on error-symbol. For example,
with a wrong-type-argument error, there should be two objects in the list: a predicate that
describes the type that was expected, and the object that failed to fit that type.

Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data) (see
Section 10.5.3.3 [Handling Errors|, page 119).

The function signal never returns.

(signal ’wrong-number-of-arguments ’(x y))
Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition"))
peculiar error: "My unknown error condition"

user-error format-string &rest args [Function]
This function behaves exactly like error, except that it uses the error symbol user-error
rather than error. As the name suggests, this is intended to report errors on the part of the
user, rather than errors in the code itself. For example, if you try to use the command Info-
history-back (1) to move back beyond the start of your Info browsing history, Emacs signals
a user—error. Such errors do not cause entry to the debugger, even when debug-on-error
is non-nil. See Section 17.1.1 [Error Debugging], page 219.

Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of
continuable errors.

10.5.3.2 How Emacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler is a
sequence of Lisp expressions designated to be executed if an error happens in part of the Lisp
program. If the error has an applicable handler, the handler is executed, and control resumes
following the handler. The handler executes in the environment of the condition-case that
established it; all functions called within that condition-case have already been exited, and
the handler cannot return to them.

If there is no applicable handler for the error, it terminates the current command and returns
control to the editor command loop. (The command loop has an implicit handler for all kinds
of errors.) The command loop’s handler uses the error symbol and associated data to print an
error message. You can use the variable command-error-function to control how this is done:

command-error-function [Variable]
This variable, if non-nil, specifies a function to use to handle errors that return control to
the Emacs command loop. The function should take three arguments: data, a list of the
same form that condition-case would bind to its variable; context, a string describing the
situation in which the error occurred, or (more often) nil; and caller, the Lisp function which
called the primitive that signaled the error.

An error that has no explicit handler may call the Lisp debugger. The debugger is enabled if
the variable debug-on-error (see Section 17.1.1 [Error Debugging], page 219) is non-nil. Unlike
error handlers, the debugger runs in the environment of the error, so that you can examine values
of variables precisely as they were at the time of the error.

10.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and return
immediately to the Emacs editor command loop. You can arrange to trap errors occurring in a
part of your program by establishing an error handler, with the special form condition-case.
A simple example looks like this:

Chapter 10: Control Structures 120

(condition-case nil
(delete-file filename)
(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.
(You can use the macro ignore-errors for a simple case like this; see below.)

The condition-case construct is often used to trap errors that are predictable, such as
failure to open a file in a call to insert-file-contents. It is also used to trap errors that are
totally unpredictable, such as when the program evaluates an expression read from the user.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when this
form begins execution and are deactivated when this form returns. They remain in effect for all
the intervening time. In particular, they are in effect during the execution of functions called by
this form, in their subroutines, and so on. This is a good thing, since, strictly speaking, errors
can be signaled only by Lisp primitives (including signal and error) called by the protected
form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more condition
names (which are symbols) to specify which errors it will handle. The error symbol specified
when an error is signaled also defines a list of condition names. A handler applies to an error if
they have any condition names in common. In the example above, there is one handler, and it
specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle the
same error, the inner of the two gets to handle it.

If an error is handled by some condition-case form, this ordinarily prevents the debugger
from being run, even if debug-on-error says this error should invoke the debugger.

If you want to be able to debug errors that are caught by a condition-case, set the variable
debug-on-signal to a non-nil value. You can also specify that a particular handler should let
the debugger run first, by writing debug among the conditions, like this:

(condition-case nil
(delete-file filename)
((debug error) nil))

The effect of debug here is only to prevent condition-case from suppressing the call to the
debugger. Any given error will invoke the debugger only if debug-on-error and the other usual
filtering mechanisms say it should. See Section 17.1.1 [Error Debugging], page 219.

condition-case-unless-debug var protected-form handlers. . . [Macro]
The macro condition-case-unless—debug provides another way to handle debugging of
such forms. It behaves exactly like condition-case, unless the variable debug-on-error is
non-nil, in which case it does not handle any errors at all.

Once Emacs decides that a certain handler handles the error, it returns control to that
handler. To do so, Emacs unbinds all variable bindings made by binding constructs that are
being exited, and executes the cleanups of all unwind-protect forms that are being exited.
Once control arrives at the handler, the body of the handler executes normally.

After execution of the handler body, execution returns from the condition-case form. Be-
cause the protected form is exited completely before execution of the handler, the handler cannot
resume execution at the point of the error, nor can it examine variable bindings that were made
within the protected form. All it can do is clean up and proceed.

Error signaling and handling have some resemblance to throw and catch (see Section 10.5.1
[Catch and Throw]|, page 115), but they are entirely separate facilities. An error cannot be

Chapter 10: Control Structures 121

caught by a catch, and a throw cannot be handled by an error handler (though using throw
when there is no suitable catch signals an error that can be handled).

condition-case var protected-form handlers. . . [Special Form]
This special form establishes the error handlers handlers around the execution of protected-
form. If protected-form executes without error, the value it returns becomes the value of the
condition-case form; in this case, the condition-case has no effect. The condition-case
form makes a difference when an error occurs during protected-form.

Each of the handlers is a list of the form (conditions body...). Here conditions is an error
condition name to be handled, or a list of condition names (which can include debug to allow
the debugger to run before the handler); body is one or more Lisp expressions to be executed
when this handler handles an error. Here are examples of handlers:

(error nil)
(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it is, and which
describes also a list of condition names (see Section 10.5.3.4 [Error Symbols|, page 122).
Emacs searches all the active condition-case forms for a handler that specifies one or more
of these condition names; the innermost matching condition-case handles the error. Within
this condition-case, the first applicable handler handles the error.

After executing the body of the handler, the condition-case returns normally, using the
value of the last form in the handler body as the overall value.

The argument var is a variable. condition-case does not bind this variable when executing
the protected-form, only when it handles an error. At that time, it binds var locally to an
error description, which is a list giving the particulars of the error. The error description has
the form (error-symbol . data). The handler can refer to this list to decide what to do.
For example, if the error is for failure opening a file, the file name is the second element of
data—the third element of the error description.

If var is nil, that means no variable is bound. Then the error symbol and associated data
are not available to the handler.

Sometimes it is necessary to re-throw a signal caught by condition-case, for some outer-level
handler to catch. Here’s how to do that:

(signal (car err) (cdr err))

where err is the error description variable, the first argument to condition-case whose
error condition you want to re-throw. See [Definition of signal], page 118.

error-message-string error-descriptor [Function]
This function returns the error message string for a given error descriptor. It is useful if you
want to handle an error by printing the usual error message for that error. See [Definition of
signal], page 118.

Here is an example of using condition-case to handle the error that results from dividing
by zero. The handler displays the error message (but without a beep), then returns a very large
number.

(defun safe-divide (dividend divisor)
(condition-case err
;3 Protected form.
(/ dividend divisor)

Chapter 10: Control Structures 122

;3 The handler.
(arith-error ; Condition.
; 3 Display the usual message for this error.
(message "%s" (error-message-string err))
1000000)))
= safe-divide

(safe-divide 5 0)
-4 Arithmetic error: (arith-error)
= 1000000

The handler specifies condition name arith-error so that it will handle only division-by-zero
errors. Other kinds of errors will not be handled (by this condition-case). Thus:

(safe-divide nil 3)
Wrong type argument: number-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those from error:

(setq baz 34)
= 34

(condition-case err
(if (eq baz 35)
t
;3 This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))
;3 This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))
2))
-4 The error was: (error "Rats! The variable baz was 34, not 35")
= 2

ignore-errors body. .. [Macro]
This construct executes body, ignoring any errors that occur during its execution. If the exe-
cution is without error, ignore-errors returns the value of the last form in body; otherwise,
it returns nil.

Here’s the example at the beginning of this subsection rewritten using ignore-errors:

(ignore-errors
(delete-file filename))

with-demoted-errors format body. .. [Macro]
This macro is like a milder version of ignore-errors. Rather than suppressing errors al-
together, it converts them into messages. It uses the string format to format the message.
format should contain a single ‘%’-sequence; e.g., "Error: %S". Use with-demoted-errors
around code that is not expected to signal errors, but should be robust if one does occur.
Note that this macro uses condition-case-unless-debug rather than condition-case.

10.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you have
in mind. FEach error has one and only one error symbol to categorize it. This is the finest
classification of errors defined by the Emacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error con-
ditions, identified by condition names. The narrowest such classes belong to the error symbols
themselves: each error symbol is also a condition name. There are also condition names for

Chapter 10: Control Structures 123

more extensive classes, up to the condition name error which takes in all kinds of errors (but
not quit). Thus, each error has one or more condition names: error, the error symbol if that
is distinct from error, and perhaps some intermediate classifications.

define-error name message &optional parent [Function]
In order for a symbol to be an error symbol, it must be defined with define-error which
takes a parent condition (defaults to error). This parent defines the conditions that this
kind of error belongs to. The transitive set of parents always includes the error symbol itself,
and the symbol error. Because quitting is not considered an error, the set of parents of quit
is just (quit).

In addition to its parents, the error symbol has a message which is a string to be printed
when that error is signaled but not handled. If that message is not valid, the error message
‘peculiar error’ is used. See [Definition of signal|, page 118.

Internally, the set of parents is stored in the error-conditions property of the error symbol
and the message is stored in the error-message property of the error symbol.

Here is how we define a new error symbol, new-error:
(define-error ’new-error "A new error" ’my-own-errors)

This error has several condition names: new-error, the narrowest classification; my-own-errors,
which we imagine is a wider classification; and all the conditions of my-own-errors which should
include error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period. This
is for consistency with the rest of Emacs.

Naturally, Emacs will never signal new-error on its own; only an explicit call to signal (see
[Definition of signal], page 118) in your code can do this:

(signal ’new-error ’(x y))
A new error: x, y

This error can be handled through any of its condition names. This example handles new-
error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)
(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names used
to match errors with handlers. An error symbol serves only as a convenient way to specify the
intended error message and list of condition names. It would be cumbersome to give signal a
list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease the
power of condition-case. Condition names make it possible to categorize errors at various
levels of generality when you write an error handler. Using error symbols alone would eliminate
all but the narrowest level of classification.

See Appendix F [Standard Errors], page 895, for a list of the main error symbols and their
conditions.

10.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data structure in an
inconsistent state; it permits you to make the data consistent again in the event of an error or
throw. (Another more specific cleanup construct that is used only for changes in buffer contents
is the atomic change group; Section 31.27 [Atomic Changes|, page 623.)

Chapter 10: Control Structures 124

unwind-protect body-form cleanup-forms. . . [Special Form]
unwind-protect executes body-form with a guarantee that the cleanup-forms will be eval-
uated if control leaves body-form, no matter how that happens. body-form may complete
normally, or execute a throw out of the unwind-protect, or cause an error; in all cases, the
cleanup-forms will be evaluated.

If body-form finishes normally, unwind-protect returns the value of body-form, after it
evaluates the cleanup-forms. If body-form does not finish, unwind-protect does not return
any value in the normal sense.

Only body-form is protected by the unwind-protect. If any of the cleanup-forms themselves
exits nonlocally (via a throw or an error), unwind-protect is not guaranteed to evaluate the
rest of them. If the failure of one of the cleanup-forms has the potential to cause trouble,
then protect it with another unwind-protect around that form.

The number of currently active unwind-protect forms counts, together with the number of
local variable bindings, against the limit max-specpdl-size (see [Local Variables], page 127).

For example, here we make an invisible buffer for temporary use, and make sure to kill it
before finishing:

(let ((buffer (get-buffer-create " *tempx*")))
(with-current-buffer buffer
(unwind-protect
body-form
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and dis-
pense with the variable buffer. However, the way shown above is safer, if body-form happens
to get an error after switching to a different buffer! (Alternatively, you could write a save-
current-buffer around body-form, to ensure that the temporary buffer becomes current again
in time to kill it.)

Emacs includes a standard macro called with-temp-buffer which expands into more or less
the code shown above (see [Current Buffer]|, page 460). Several of the macros defined in this
manual use unwind-protect in this way.

Here is an actual example derived from an FTP package. It creates a process (see Chapter 36
[Processes|, page 691) to try to establish a connection to a remote machine. As the function
ftp-login is highly susceptible to numerous problems that the writer of the function cannot
anticipate, it is protected with a form that guarantees deletion of the process in the event of
failure. Otherwise, Emacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect
(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))
(message "Logged in")
(error "Ftp login failed")))
(or win (and process (delete-process process)))))
This example has a small bug: if the user types C-g to quit, and the quit happens immediately

after the function ftp-setup-buffer returns but before the variable process is set, the process
will not be killed. There is no easy way to fix this bug, but at least it is very unlikely.

Chapter 11: Variables 125

11 Variables

A variable is a name used in a program to stand for a value. In Lisp, each variable is represented
by a Lisp symbol (see Chapter 8 [Symbols], page 93). The variable name is simply the symbol’s
name, and the variable’s value is stored in the symbol’s value cell'. See Section 8.1 [Symbol
Components|, page 93. In Emacs Lisp, the use of a symbol as a variable is independent of its
use as a function name.

As previously noted in this manual, a Lisp program is represented primarily by Lisp objects,
and only secondarily as text. The textual form of a Lisp program is given by the read syntax
of the Lisp objects that constitute the program. Hence, the textual form of a variable in a Lisp
program is written using the read syntax for the symbol representing the variable.

11.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just one value
at a time, and this value is in effect (at least for the moment) throughout the Lisp system. The
value remains in effect until you specify a new one. When a new value replaces the old one, no
trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq is a special form (see Section 9.1.7 [Special
Forms|, page 104); it does not evaluate its first argument, the name of the variable, but it does
evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol itself as an expression.
Thus,

x = (a b)
assuming the setq form shown above has already been executed.

If you do set the same variable again, the new value replaces the old one:

X
= (a b)
(setq x 4)
= 4
X
= 4

11.2 Variables that Never Change

In Emacs Lisp, certain symbols normally evaluate to themselves. These include nil and t,
as well as any symbol whose name starts with ‘:’ (these are called keywords). These symbols
cannot be rebound, nor can their values be changed. Any attempt to set or bind nil or t signals
a setting-constant error. The same is true for a keyword (a symbol whose name starts with
‘:7), if it is interned in the standard obarray, except that setting such a symbol to itself is not
an error.

nil = ’nil

= nil
(setq nil 500)
Attempt to set constant symbol: nil

L' To be precise, under the default dynamic scoping rule, the value cell always holds the variable’s current value,
but this is not the case under the lexical scoping rule. See Section 11.9 [Variable Scoping], page 133, for
details.

Chapter 11: Variables 126

keywordp object [Function]
function returns t if object is a symbol whose name starts with ‘:’, interned in the standard
obarray, and returns nil otherwise.

These constants are fundamentally different from the “constants” defined using the defconst
special form (see Section 11.5 [Defining Variables], page 128). A defconst form serves to inform
human readers that you do not intend to change the value of a variable, but Emacs does not
raise an error if you actually change it.

11.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Sometimes it
is useful to give a variable a local value—a value that takes effect only within a certain part of a
Lisp program. When a variable has a local value, we say that it is locally bound to that value,
and that it is a local variable.

For example, when a function is called, its argument variables receive local values, which are
the actual arguments supplied to the function call; these local bindings take effect within the
body of the function. To take another example, the let special form explicitly establishes local
bindings for specific variables, which take effect within the body of the let form.

We also speak of the global binding, which is where (conceptually) the global value is kept.

Establishing a local binding saves away the variable’s previous value (or lack of one). We
say that the previous value is shadowed. Both global and local values may be shadowed. If a
local binding is in effect, using setq on the local variable stores the specified value in the local
binding. When that local binding is no longer in effect, the previously shadowed value (or lack
of one) comes back.

A variable can have more than one local binding at a time (e.g., if there are nested let forms
that bind the variable). The current binding is the local binding that is actually in effect. It
determines the value returned by evaluating the variable symbol, and it is the binding acted on
by setq.

For most purposes, you can think of the current binding as the “innermost” local binding, or
the global binding if there is no local binding. To be more precise, a rule called the scoping rule
determines where in a program a local binding takes effect. The default scoping rule in Emacs
Lisp is called dynamic scoping, which simply states that the current binding at any given point
in the execution of a program is the most recently-created binding for that variable that still
exists. For details about dynamic scoping, and an alternative scoping rule called lexical scoping,
See Section 11.9 [Variable Scoping], page 133.

The special forms let and let* exist to create local bindings:

let (bindings. ..) forms. .. [Special Form]
This special form sets up local bindings for a certain set of variables, as specified by bindings,
and then evaluates all of the forms in textual order. Its return value is the value of the last
form in forms.

Each of the bindings is either (i) a symbol, in which case that symbol is locally bound to
nil; or (ii) a list of the form (symbol value-form), in which case symbol is locally bound
to the result of evaluating value-form. If value-form is omitted, nil is used.

All of the value-forms in bindings are evaluated in the order they appear and before binding
any of the symbols to them. Here is an example of this: z is bound to the old value of y,
which is 2, not the new value of y, which is 1.

(setq y 2)
= 2

Chapter 11: Variables 127

(let ((y 1)
(z y))
(list y 2))
= (1 2)

let* (bindings...) forms. .. [Special Form]
This special form is like 1let, but it binds each variable right after computing its local value,
before computing the local value for the next variable. Therefore, an expression in bindings
can refer to the preceding symbols bound in this let* form. Compare the following example
with the example above for let.
(setq y 2)
= 2

(letx ((y 1)
(z y)) ; Use the just-established value of y.

(list y 2))

= (11

Here is a complete list of the other facilities that create local bindings:
e Function calls (see Chapter 12 [Functions], page 150).
e Macro calls (see Chapter 13 [Macros|, page 173).
e condition-case (see Section 10.5.3 [Errors|, page 117).

Variables can also have buffer-local bindings (see Section 11.10 [Buffer-Local Variables],
page 137); a few variables have terminal-local bindings (see Section 28.2 [Multiple Terminals],
page 523). These kinds of bindings work somewhat like ordinary local bindings, but they are
localized depending on “where” you are in Emacs.

max-specpdl-size [User Option)]
This variable defines the limit on the total number of local variable bindings and unwind-
protect cleanups (see Section 10.5.4 [Cleaning Up from Nonlocal Exits|, page 123) that
are allowed before Emacs signals an error (with data "Variable binding depth exceeds
max-specpdl-size").
This limit, with the associated error when it is exceeded, is one way that Lisp avoids infinite
recursion on an ill-defined function. max-lisp-eval-depth provides another limit on depth

of nesting. See [Eval], page 108.

The default value is 1300. Entry to the Lisp debugger increases the value, if there is little
room left, to make sure the debugger itself has room to execute.

11.4 When a Variable is “Void”

We say that a variable is void if its symbol has an unassigned value cell (see Section 8.1 [Symbol
Components|, page 93).

Under Emacs Lisp’s default dynamic scoping rule (see Section 11.9 [Variable Scoping],
page 133), the value cell stores the variable’s current (local or global) value. Note that an
unassigned value cell is not the same as having nil in the value cell. The symbol nil is a Lisp
object and can be the value of a variable, just as any other object can be; but it is still a value.
If a variable is void, trying to evaluate the variable signals a void-variable error, instead of
returning a value.

Under the optional lexical scoping rule, the value cell only holds the variable’s global value—
the value outside of any lexical binding construct. When a variable is lexically bound, the local
value is determined by the lexical environment; hence, variables can have local values even if
their symbols’ value cells are unassigned.

Chapter 11: Variables 128

makunbound symbol [Function]
This function empties out the value cell of symbol, making the variable void. It returns
symbol.
If symbol has a dynamic local binding, makunbound voids the current binding, and this
voidness lasts only as long as the local binding is in effect. Afterwards, the previously
shadowed local or global binding is reexposed; then the variable will no longer be void,
unless the reexposed binding is void too.

Here are some examples (assuming dynamic binding is in effect):

(setq x 1) ; Put a value in the global binding.
=1
(et ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)
Symbol’s value as variable is void: x
X ; The global binding is unchanged.
=1

(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.
Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))

(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
= 2
boundp variable [Function]

This function returns t if variable (a symbol) is not void, and nil if it is void.
Here are some examples (assuming dynamic binding is in effect):

(boundp ’abracadabra) ; Starts out void.
= nil

(let ((abracadabra 5)) ; Locally bind it.

(boundp ’abracadabra))

=t

(boundp ’abracadabra) ; Still globally void.
= nil

(setq abracadabra 5) ; Make it globally nonvoid.
= 5

(boundp ’abracadabra)
=t

11.5 Defining Global Variables

A variable definition is a construct that announces your intention to use a symbol as a global
variable. It uses the special forms defvar or defconst, which are documented below.

A variable definition serves three purposes. First, it informs people who read the code that
the symbol is intended to be used a certain way (as a variable). Second, it informs the Lisp
system of this, optionally supplying an initial value and a documentation string. Third, it
provides information to programming tools such as etags, allowing them to find where the
variable was defined.

The difference between defconst and defvar is mainly a matter of intent, serving to inform
human readers of whether the value should ever change. Emacs Lisp does not actually prevent
you from changing the value of a variable defined with defconst. One notable difference between
the two forms is that def const unconditionally initializes the variable, whereas defvar initializes
it only if it is originally void.

Chapter 11: Variables 129

To define a customizable variable, you should use defcustom (which calls defvar as a sub-
routine). See Section 14.3 [Variable Definitions], page 183.

defvar symbol [value [doc-string]] [Special Form]
This special form defines symbol as a variable. Note that symbol is not evaluated; the symbol
to be defined should appear explicitly in the defvar form. The variable is marked as special,
meaning that it should always be dynamically bound (see Section 11.9 [Variable Scoping],
page 133).
If value is specified, and symbol is void (i.e., it has no dynamically bound value; see
Section 11.4 [Void Variables], page 127), then value is evaluated and symbol is set to the
result. But if symbol is not void, value is not evaluated, and symbol’s value is left unchanged.
If value is omitted, the value of symbol is not changed in any case.

If symbol has a buffer-local binding in the current buffer, defvar acts on the default value,
which is buffer-independent, rather than the buffer-local binding. It sets the default value if
the default value is void. See Section 11.10 [Buffer-Local Variables|, page 137.

If symbol is already lexically bound (e.g., if the defvar form occurs in a let form with lexical
binding enabled), then defvar sets the dynamic value. The lexical binding remains in effect
until its binding construct exits. See Section 11.9 [Variable Scoping|, page 133.

When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun arranges to set the variable unconditionally, without testing
whether its value is void.

If the doc-string argument is supplied, it specifies the documentation string for the variable
(stored in the symbol’s variable-documentation property). See Chapter 23 [Documenta-
tion], page 404.

Here are some examples. This form defines foo but does not initialize it:

(defvar foo)
= foo

This example initializes the value of bar to 23, and gives it a documentation string:

(defvar bar 23
"The normal weight of a bar.")
= bar

The defvar form returns symbol, but it is normally used at top level in a file where its value
does not matter.

defconst symbol value [doc-string] [Special Form]
This special form defines symbol as a value and initializes it. It informs a person reading your
code that symbol has a standard global value, established here, that should not be changed
by the user or by other programs. Note that symbol is not evaluated; the symbol to be
defined must appear explicitly in the defconst.

The defconst form, like defvar, marks the variable as special, meaning that it should always
be dynamically bound (see Section 11.9 [Variable Scoping], page 133). In addition, it marks
the variable as risky (see Section 11.11 [File Local Variables|, page 142).

defconst always evaluates value, and sets the value of symbol to the result. If symbol does
have a buffer-local binding in the current buffer, defconst sets the default value, not the
buffer-local value. (But you should not be making buffer-local bindings for a symbol that is
defined with defconst.)

An example of the use of defconst is Emacs’s definition of float-pi—the mathematical con-
stant pi, which ought not to be changed by anyone (attempts by the Indiana State Legislature
notwithstanding). As the second form illustrates, however, defconst is only advisory.

Chapter 11: Variables 130

(defconst float-pi 3.141592653589793 "The value of Pi.")
= float-pi

(setq float-pi 3)
= float-pi

float-pi
= 3

Warning: If you use a defconst or defvar special form while the variable has a local binding
(made with let, or a function argument), it sets the local binding rather than the global binding.
This is not what you usually want. To prevent this, use these special forms at top level in a
file, where normally no local binding is in effect, and make sure to load the file before making a
local binding for the variable.

11.6 Tips for Defining Variables Robustly

When you define a variable whose value is a function, or a list of functions, use a name that
ends in ‘-function’ or ‘-functions’, respectively.

There are several other variable name conventions; here is a complete list:

‘...-hook’
The variable is a normal hook (see Section 22.1 [Hooks|, page 356).

..—function’
The value is a function.

..—functions’
The value is a list of functions.

..—form’
The value is a form (an expression).

..~forms’
The value is a list of forms (expressions).

. .—predicate’
The value is a predicate—a function of one argument that returns non-nil for
“good” arguments and nil for “bad” arguments.

..—flag’
The value is significant only as to whether it is nil or not. Since such variables
often end up acquiring more values over time, this convention is not strongly rec-
ommended.

. .—program’
value i rogram name.
The value is a progra ame

.. .—command’
The value is a whole shell command.

...-switches’
The value specifies options for a command.

When you define a variable, always consider whether you should mark it as “safe” or “risky”;
see Section 11.11 [File Local Variables], page 142.

When defining and initializing a variable that holds a complicated value (such as a keymap
with bindings in it), it’s best to put the entire computation of the value into the defvar, like
this:

Chapter 11: Variables 131

(defvar my-mode-map
(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)
map)
docstring)
This method has several benefits. First, if the user quits while loading the file, the variable
is either still uninitialized or initialized properly, never in-between. If it is still uninitialized,
reloading the file will initialize it properly. Second, reloading the file once the variable is initial-
ized will not alter it; that is important if the user has run hooks to alter part of the contents

(such as, to rebind keys). Third, evaluating the defvar form with C-M-x will reinitialize the
map completely.

Putting so much code in the defvar form has one disadvantage: it puts the documentation
string far away from the line which names the variable. Here’s a safe way to avoid that:

(defvar my-mode-map nil
docstring)
(unless my-mode-map
(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)

(setq my-mode-map map)))

This has all the same advantages as putting the initialization inside the defvar, except that you
must type C-M-x twice, once on each form, if you do want to reinitialize the variable.

11.7 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it. See Section 9.1.2
[Symbol Forms], page 101.

Occasionally, you may want to reference a variable which is only determined at run time. In

that case, you cannot specify the variable name in the text of the program. You can use the
symbol-value function to extract the value.

symbol-value symbol [Function]
This function returns the value stored in symbol’s value cell. This is where the variable’s
current (dynamic) value is stored. If the variable has no local binding, this is simply its global
value. If the variable is void, a void-variable error is signaled.

If the variable is lexically bound, the value reported by symbol-value is not necessarily the
same as the variable’s lexical value, which is determined by the lexical environment rather
than the symbol’s value cell. See Section 11.9 [Variable Scoping|, page 133.

(setq abracadabra 5)
= 5

(setq foo 9)
= 9

;5 Here the symbol abracadabra
s is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))
= foo

Chapter 11: Variables 132

;3 Here, the value of abracadabra,
3 which is foo,
K is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value abracadabra))
= 9

(symbol-value ’abracadabra)
= b

11.8 Setting Variable Values

The usual way to change the value of a variable is with the special form setq. When you need
to compute the choice of variable at run time, use the function set.

setq [symbol form]. .. [Special Form]
This special form is the most common method of changing a variable’s value. Each symbol
is given a new value, which is the result of evaluating the corresponding form. The current
binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this argument
is automatically quoted. The ‘q’ in setq stands for “quoted”.
The value of the setq form is the value of the last form.

(setq x (1+ 2))

= 3
X ; X now has a global value.
= 3
(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
= 6
X ; The global value is unchanged.
= 3

Note that the first form is evaluated, then the first symbol is set, then the second form is
evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ %)) ; the value of y is computed.
= 11
set symbol value [Function]

This function puts value in the value cell of symbol. Since it is a function rather than a
special form, the expression written for symbol is evaluated to obtain the symbol to set. The
return value is value.

When dynamic variable binding is in effect (the default), set has the same effect as setq,
apart from the fact that set evaluates its symbol argument whereas setq does not. But
when a variable is lexically bound, set affects its dynamic value, whereas setq affects its
current (lexical) value. See Section 11.9 [Variable Scoping], page 133.

(set one 1)
Symbol’s value as variable is void: one
(set ’one 1)
=1
(set ’two ’one)
= one

Chapter 11: Variables 133

(set two 2) ; two evaluates to symbol one.
= 2
one ; So it is one that was set.
= 2
(let ((omne 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)
= 3
one
= 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.

(set > (x y) ’2)
Wrong type argument: symbolp, (x y)

11.9 Scoping Rules for Variable Bindings

When you create a local binding for a variable, that binding takes effect only within a limited
portion of the program (see Section 11.3 [Local Variables|, page 126). This section describes
exactly what this means.

Each local binding has a certain scope and extent. Scope refers to where in the textual
source code the binding can be accessed. Extent refers to when, as the program is executing,
the binding exists.

By default, the local bindings that Emacs creates are dynamic bindings. Such a binding
has dynamic scope, meaning that any part of the program can potentially access the variable
binding. It also has dynamic extent, meaning that the binding lasts only while the binding
construct (such as the body of a let form) is being executed.

Emacs can optionally create lexical bindings. A lexical binding has lexical scope, meaning
that any reference to the variable must be located textually within the binding construct?. It
also has indefinite extent, meaning that under some circumstances the binding can live on even
after the binding construct has finished executing, by means of special objects called closures.

The following subsections describe dynamic binding and lexical binding in greater detail, and
how to enable lexical binding in Emacs Lisp programs.

11.9.1 Dynamic Binding

By default, the local variable bindings made by Emacs are dynamic bindings. When a variable
is dynamically bound, its current binding at any point in the execution of the Lisp program is
simply the most recently-created dynamic local binding for that symbol, or the global binding
if there is no such local binding.

Dynamic bindings have dynamic scope and extent, as shown by the following example:

2 With some exceptions; for instance, a lexical binding can also be accessed from the Lisp debugger.

Chapter 11: Variables 134

(defvar x -99) ; x receives an initial value of —99.

(defun getx ()

X) ; x 1s used ‘“free” in this function.
(let ((x 1)) ; x is dynamically bound.
(getx))
= 1

;3 After the 1let form finishes, x reverts to its
;3 previous value, which is —99.

(getx)
= -99
The function getx refers to x. This is a “free” reference, in the sense that there is no binding
for x within that defun construct itself. When we call getx from within a let form in which x
is (dynamically) bound, it retrieves the local value (i.e., 1). But when we call getx outside the
let form, it retrieves the global value (i.e., —99).
Here is another example, which illustrates setting a dynamically bound variable using setq:
(defvar x -99) ; x receives an initial value of —99.

(defun addx ()
(setq x (1+ x))) ; Add 1 to x and return its new value.

(let ((x 1))
(addx)
(addx))
= 3 ; The two addx calls add to x twice.

;3 After the 1let form finishes, x reverts to its
;3 previous value, which is —99.

(addx)
= -98

Dynamic binding is implemented in Emacs Lisp in a simple way. Each symbol has a value
cell, which specifies its current dynamic value (or absence of value). See Section 8.1 [Symbol
Components|, page 93. When a symbol is given a dynamic local binding, Emacs records the
contents of the value cell (or absence thereof) in a stack, and stores the new local value in the
value cell. When the binding construct finishes executing, Emacs pops the old value off the
stack, and puts it in the value cell.

11.9.2 Proper Use of Dynamic Binding

Dynamic binding is a powerful feature, as it allows programs to refer to variables that are not
defined within their local textual scope. However, if used without restraint, this can also make
programs hard to understand. There are two clean ways to use this technique:

e If a variable has no global definition, use it as a local variable only within a binding construct,
such as the body of the let form where the variable was bound. If this convention is followed
consistently throughout a program, the value of the variable will not affect, nor be affected
by, any uses of the same variable symbol elsewhere in the program.

e Otherwise, define the variable with defvar, defconst, or defcustom. See Section 11.5
[Defining Variables|, page 128. Usually, the definition should be at top-level in an Emacs

Chapter 11: Variables 135

Lisp file. As far as possible, it should include a documentation string which explains the
meaning and purpose of the variable. You should also choose the variable’s name to avoid
name conflicts (see Section D.1 [Coding Conventions], page 862).

Then you can bind the variable anywhere in a program, knowing reliably what the effect
will be. Wherever you encounter the variable, it will be easy to refer back to the definition,
e.g., via the C-h v command (provided the variable definition has been loaded into Emacs).
See Section “Name Help” in The GNU Emacs Manual.

For example, it is common to use local bindings for customizable variables like case-fold-
search:

(defun search-for-abc ()
"Search for the string \"abc\", ignoring case differences."
(let ((case-fold-search nil))
(re-search-forward "abc")))

11.9.3 Lexical Binding

Lexical binding was introduced to Emacs, as an optional feature, in version 24.1. We expect
its importance to increase in the future. Lexical binding opens up many more opportunities
for optimization, so programs using it are likely to run faster in future Emacs versions. Lexical
binding is also more compatible with concurrency, which we want to add to Emacs in the future.
A lexically-bound variable has lexical scope, meaning that any reference to the variable must
be located textually within the binding construct. Here is an example (see the next subsection,
for how to actually enable lexical binding):
(et ((x 1)) ; x is lexically bound.
(+ x 3))
= 4

(defun getx ()

x) ; x is used ‘‘free” in this function.
(let ((x 1)) ; x is lexically bound.
(getx))

Symbol’s value as variable is void: x

Here, the variable x has no global value. When it is lexically bound within a let form, it can
be used in the textual confines of that let form. But it can not be used from within a getx
function called from the let form, since the function definition of getx occurs outside the let
form itself.

Here is how lexical binding works. Each binding construct defines a lexical environment,
specifying the symbols that are bound within the construct and their local values. When the
Lisp evaluator wants the current value of a variable, it looks first in the lexical environment; if
the variable is not specified in there, it looks in the symbol’s value cell, where the dynamic value
is stored.

(Internally, the lexical environment is an alist of symbol-value pairs, with the final element
in the alist being the symbol t rather than a cons cell. Such an alist can be passed as the second
argument to the eval function, in order to specify a lexical environment in which to evaluate a
form. See Section 9.4 [Eval], page 106. Most Emacs Lisp programs, however, should not interact
directly with lexical environments in this way; only specialized programs like debuggers.)

Lexical bindings have indefinite extent. Even after a binding construct has finished executing,
its lexical environment can be “kept around” in Lisp objects called closures. A closure is created
when you define a named or anonymous function with lexical binding enabled. See Section 12.9
[Closures], page 161, for details.

Chapter 11: Variables 136

When a closure is called as a function, any lexical variable references within its definition use
the retained lexical environment. Here is an example:
(defvar my-ticker nil) ; We will use this dynamically bound
; variable to store a closure.

(let ((x 0)) ; X is lexically bound.
(setq my-ticker (lambda ()
(setq x (1+ x)))))
= (closure ((x . 0) t) O
(setq x (1+ x)))

(funcall my-ticker)
=1

(funcall my-ticker)
= 2

(funcall my-ticker)
= 3

X ; Note that x has no global value.
Symbol’s value as variable is void: x

The let binding defines a lexical environment in which the variable x is locally bound to 0.
Within this binding construct, we define a lambda expression which increments x by one and
returns the incremented value. This lambda expression is automatically turned into a closure,
in which the lexical environment lives on even after the let binding construct has exited. Each
time we evaluate the closure, it increments x, using the binding of x in that lexical environment.

Note that functions like symbol-value, boundp, and set only retrieve or modify a variable’s
dynamic binding (i.e., the contents of its symbol’s value cell). Also, the code in the body of a
defun or defmacro cannot refer to surrounding lexical variables.

11.9.4 Using Lexical Binding

When loading an Emacs Lisp file or evaluating a Lisp buffer, lexical binding is enabled if the
buffer-local variable lexical-binding is non-nil:

lexical-binding [Variable]
If this buffer-local variable is non-nil, Emacs Lisp files and buffers are evaluated using lexical
binding instead of dynamic binding. (However, special variables are still dynamically bound;
see below.) If nil, dynamic binding is used for all local variables. This variable is typically
set for a whole Emacs Lisp file, as a file local variable (see Section 11.11 [File Local Variables],
page 142). Note that unlike other such variables, this one must be set in the first line of a
file.

When evaluating Emacs Lisp code directly using an eval call, lexical binding is enabled if the
lexical argument to eval is non-nil. See Section 9.4 [Eval|, page 106.

Even when lexical binding is enabled, certain variables will continue to be dynamically bound.
These are called special variables. Every variable that has been defined with defvar, defcustom
or defconst is a special variable (see Section 11.5 [Defining Variables|, page 128). All other
variables are subject to lexical binding.

special-variable-p symbol [Function]
This function returns non-nil if symbol is a special variable (i.e., it has a defvar, defcustom,
or defconst variable definition). Otherwise, the return value is nil.

Chapter 11: Variables 137

The use of a special variable as a formal argument in a function is discouraged. Doing so gives
rise to unspecified behavior when lexical binding mode is enabled (it may use lexical binding
sometimes, and dynamic binding other times).

Converting an Emacs Lisp program to lexical binding is easy. First, add a file-local variable
setting of lexical-binding to t in the header line of the Emacs Lisp source file (see Section 11.11
[File Local Variables|, page 142). Second, check that every variable in the program which needs
to be dynamically bound has a variable definition, so that it is not inadvertently bound lexically.

A simple way to find out which variables need a variable definition is to byte-compile the
source file. See Chapter 16 [Byte Compilation|, page 210. If a non-special variable is used
outside of a let form, the byte-compiler will warn about reference or assignment to a “free
variable”. If a non-special variable is bound but not used within a let form, the byte-compiler
will warn about an “unused lexical variable”. The byte-compiler will also issue a warning if you
use a special variable as a function argument.

(To silence byte-compiler warnings about unused variables, just use a variable name that start
with an underscore. The byte-compiler interprets this as an indication that this is a variable
known not to be used.)

11.10 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form or
another. Emacs, however, also supports additional, unusual kinds of variable binding, such as
buffer-local bindings, which apply only in one buffer. Having different values for a variable in
different buffers is an important customization method. (Variables can also have bindings that
are local to each terminal. See Section 28.2 [Multiple Terminals|, page 523.)

11.10.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The binding
is in effect when that buffer is current; otherwise, it is not in effect. If you set the variable while
a buffer-local binding is in effect, the new value goes in that binding, so its other bindings are
unchanged. This means that the change is visible only in the buffer where you made it.

The variable’s ordinary binding, which is not associated with any specific buffer, is called the
default binding. In most cases, this is the global binding.

A variable can have buffer-local bindings in some buffers but not in other buffers. The default
binding is shared by all the buffers that don’t have their own bindings for the variable. (This
includes all newly-created buffers.) If you set the variable in a buffer that does not have a
buffer-local binding for it, this sets the default binding, so the new value is visible in all the
buffers that see the default binding.

The most common use of buffer-local bindings is for major modes to change variables that
control the behavior of commands. For example, C mode and Lisp mode both set the variable
paragraph-start to specify that only blank lines separate paragraphs. They do this by making
the variable buffer-local in the buffer that is being put into C mode or Lisp mode, and then
setting it to the new value for that mode. See Section 22.2 [Major Modes], page 358.

The usual way to make a buffer-local binding is with make-local-variable, which is what
major mode commands typically use. This affects just the current buffer; all other buffers
(including those yet to be created) will continue to share the default value unless they are
explicitly given their own buffer-local bindings.

A more powerful operation is to mark the variable as automatically buffer-local by calling
make-variable-buffer-local. You can think of this as making the variable local in all buffers,
even those yet to be created. More precisely, the effect is that setting the variable automatically
makes the variable local to the current buffer if it is not already so. All buffers start out by

Chapter 11: Variables 138

sharing the default value of the variable as usual, but setting the variable creates a buffer-local
binding for the current buffer. The new value is stored in the buffer-local binding, leaving the
default binding untouched. This means that the default value cannot be changed with setq in
any buffer; the only way to change it is with setq-default.

Warning: When a variable has buffer-local bindings in one or more buffers, 1et rebinds the
binding that’s currently in effect. For instance, if the current buffer has a buffer-local value, let
temporarily rebinds that. If no buffer-local bindings are in effect, 1et rebinds the default value.
If inside the let you then change to a different current buffer in which a different binding is in
effect, you won’t see the let binding any more. And if you exit the 1et while still in the other
buffer, you won’t see the unbinding occur (though it will occur properly). Here is an example
to illustrate:

(setq foo ’g)

(set-buffer "a"

(make-local-variable ’foo)

(setq foo ’a)

(let ((foo ’temp))
;; foo = ’temp ; let binding in buffer ‘a’
(set-buffer "b")

;3 foo = g ; the global value since foo is not local in ‘b’
body. . .)
foo = g ; exiting restored the local value in buffer ‘a’,

; but we don’t see that in buffer ‘b’
(set-buffer "a") ; verify the local value was restored
foo = ’a

Note that references to foo in body access the buffer-local binding of buffer ‘b’.

When a file specifies local variable values, these become buffer-local values when you visit
the file. See Section “File Variables” in The GNU Emacs Manual.

A buffer-local variable cannot be made terminal-local (see Section 28.2 [Multiple Terminals],
page 523).
11.10.2 Creating and Deleting Buffer-Local Bindings

make-local-variable variable [Command|
This function creates a buffer-local binding in the current buffer for variable (a symbol).
Other buffers are not affected. The value returned is variable.

The buffer-local value of variable starts out as the same value variable previously had. If
variable was void, it remains void.

;3 In buffer ‘b1’:

(setq foo 5) ;5 Affects all buffers.
= b

(make-local-variable ’foo) ; Now it is local in ‘b1’.
= foo

foo ; That did not change
= 5 ; the value.

(setq foo 6) ; Change the value
= 6 ; in ‘b1’

foo

= 6

Chapter 11: Variables 139

;3 In buffer ‘b2’, the value hasn’t changed.
(with-current-buffer "b2"
foo)
= b5

Making a variable buffer-local within a let-binding for that variable does not work reliably,
unless the buffer in which you do this is not current either on entry to or exit from the let.
This is because let does not distinguish between different kinds of bindings; it knows only
which variable the binding was made for.

If the variable is terminal-local (see Section 28.2 [Multiple Terminals|, page 523), this function
signals an error. Such variables cannot have buffer-local bindings as well.

Warning: do not use make-local-variable for a hook variable. The hook variables are
automatically made buffer-local as needed if you use the local argument to add-hook or
remove-hook.

setq-local variable value [Macro]
This macro creates a buffer-local binding in the current buffer for variable, and gives it the
buffer-local value value. It is equivalent to calling make-local-variable followed by setq.
variable should be an unquoted symbol.

make-variable-buffer-local variable [Command]
This function marks variable (a symbol) automatically buffer-local, so that any subsequent
attempt to set it will make it local to the current buffer at the time. Unlike make-local-
variable, with which it is often confused, this cannot be undone, and affects the behavior
of the variable in all buffers.

A peculiar wrinkle of this feature is that binding the variable (with let or other binding
constructs) does not create a buffer-local binding for it. Only setting the variable (with set
or setq), while the variable does not have a let-style binding that was made in the current
buffer, does so.

If variable does not have a default value, then calling this command will give it a default value
of nil. If variable already has a default value, that value remains unchanged. Subsequently
calling makunbound on variable will result in a void buffer-local value and leave the default
value unaffected.

The value returned is variable.

Warning: Don’t assume that you should use make-variable-buffer-local for user-option
variables, simply because users might want to customize them differently in different buffers.
Users can make any variable local, when they wish to. It is better to leave the choice to
them.

The time to use make-variable-buffer-local is when it is crucial that no two buffers
ever share the same binding. For example, when a variable is used for internal purposes
in a Lisp program which depends on having separate values in separate buffers, then using
make-variable-buffer-local can be the best solution.

defvar-local variable value &optional docstring [Macro]
This macro defines variable as a variable with initial value value and docstring, and marks it
as automatically buffer-local. It is equivalent to calling defvar followed by make-variable-
buffer-local. variable should be an unquoted symbol.

local-variable-p variable &optional buffer [Function]
This returns t if variable is buffer-local in buffer buffer (which defaults to the current buffer);
otherwise, nil.

Chapter 11: Variables 140

local-variable-if-set-p variable &optional buffer [Function]
This returns t if variable either has a buffer-local value in buffer buffer, or is automatically
buffer-local. Otherwise, it returns nil. If omitted or nil, buffer defaults to the current
buffer.

buffer-local-value variable buffer [Function]
This function returns the buffer-local binding of variable (a symbol) in buffer buffer. If
variable does not have a buffer-local binding in buffer buffer, it returns the default value (see
Section 11.10.3 [Default Value|, page 141) of variable instead.

buffer-local-variables &optional buffer [Function]
This function returns a list describing the buffer-local variables in buffer buffer. (If buffer is
omitted, the current buffer is used.) Normally, each list element has the form (sym . val),
where sym is a buffer-local variable (a symbol) and val is its buffer-local value. But when a
variable’s buffer-local binding in buffer is void, its list element is just sym.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq 1lcl (buffer-local-variables))
;3 First, built-in variables local in all buffers:
= ((mark-active . nil)
(buffer-undo-list . nil)
(mode-name . "Fundamental")

; 5 Next, non-built-in buffer-local variables.
;3 This one is buffer-local and void:
foobar

;3 This one is buffer-local and nonvoid:
(bind-me . 69))

Note that storing new values into the CDRs of cons cells in this list does not change the
buffer-local values of the variables.

kill-local-variable variable [Command]|
This function deletes the buffer-local binding (if any) for variable (a symbol) in the current
buffer. As a result, the default binding of variable becomes visible in this buffer. This typically
results in a change in the value of variable, since the default value is usually different from
the buffer-local value just eliminated.

If you kill the buffer-local binding of a variable that automatically becomes buffer-local when
set, this makes the default value visible in the current buffer. However, if you set the variable
again, that will once again create a buffer-local binding for it.

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local variable
interactively, just as it is useful to create buffer-local variables interactively.

kill-all-local-variables [Function]
This function eliminates all the buffer-local variable bindings of the current buffer except for
variables marked as “permanent” and local hook functions that have a non-nil permanent-
local-hook property (see Section 22.1.2 [Setting Hooks|, page 357). As a result, the buffer
will see the default values of most variables.

This function also resets certain other information pertaining to the buffer: it sets the local
keymap to nil, the syntax table to the value of (standard-syntax-table), the case table to

Chapter 11: Variables 141

(standard-case-table), and the abbrev table to the value of fundamental-mode-abbrev-
table.

The very first thing this function does is run the normal hook change-major-mode-hook (see
below).

Every major mode command begins by calling this function, which has the effect of switching
to Fundamental mode and erasing most of the effects of the previous major mode. To ensure
that this does its job, the variables that major modes set should not be marked permanent.

kill-all-local-variables returns nil.

change-major-mode-hook [Variable]
The function kill-all-local-variables runs this normal hook before it does anything else.
This gives major modes a way to arrange for something special to be done if the user switches
to a different major mode. It is also useful for buffer-specific minor modes that should be
forgotten if the user changes the major mode.

For best results, make this variable buffer-local, so that it will disappear after doing its job
and will not interfere with the subsequent major mode. See Section 22.1 [Hooks|, page 356.

A buffer-local variable is permanent if the variable name (a symbol) has a permanent-local
property that is non-nil. Such variables are unaffected by kill-all-local-variables, and
their local bindings are therefore not cleared by changing major modes. Permanent locals are
appropriate for data pertaining to where the file came from or how to save it, rather than with
how to edit the contents.

11.10.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value, because
it is the value that is in effect whenever neither the current buffer nor the selected frame has its
own binding for the variable.

The functions default-value and setq-default access and change a variable’s default value
regardless of whether the current buffer has a buffer-local binding. For example, you could use
setq-default to change the default setting of paragraph-start for most buffers; and this
would work even when you are in a C or Lisp mode buffer that has a buffer-local value for this
variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any buffer-local value.

default-value symbol [Function]
This function returns symbol’s default value. This is the value that is seen in buffers and
frames that do not have their own values for this variable. If symbol is not buffer-local, this
is equivalent to symbol-value (see Section 11.7 [Accessing Variables|, page 131).

default-boundp symbol [Function]
The function default-boundp tells you whether symbol’s default value is nonvoid. If
(default-boundp ’foo) returns nil, then (default-value ’foo) would get an error.

default-boundp is to default-value as boundp is to symbol-value.

setq-default [symbol form]. .. [Special Form]
This special form gives each symbol a new default value, which is the result of evaluating the
corresponding form. It does not evaluate symbol, but does evaluate form. The value of the
setq-default form is the value of the last form.

If a symbol is not buffer-local for the current buffer, and is not marked automatically buffer-
local, setq-default has the same effect as setq. If symbol is buffer-local for the current
buffer, then this changes the value that other buffers will see (as long as they don’t have a
buffer-local value), but not the value that the current buffer sees.

Chapter 11: Variables 142

;3 In buffer ‘foo’:

(make-local-variable ’buffer-local)
= buffer-local

(setq buffer-local ’value-in-foo)
= value-in-foo

(setq-default buffer-local ’new-default)
= new-default

buffer-local
= value-in-foo

(default-value ’buffer-local)
= new-default

;3 In (the new) buffer ‘bar’
buffer-local
= new-default
(default-value ’buffer-local)
= new-default
(setq buffer-local ’another-default)
= another-default
(default-value ’buffer-local)
= another-default

;3 Back in buffer ‘foo’:
buffer-local
= value-in-foo
(default-value ’buffer-local)
= another-default

set-default symbol value [Function]
This function is like setq-default, except that symbol is an ordinary evaluated argument.

(set-default (car ’(a b c)) 23)
= 23

(default-value ’a)
= 23

11.11 File Local Variables

A file can specify local variable values; Emacs uses these to create buffer-local bindings for
those variables in the buffer visiting that file. See Section “Local Variables in Files” in The
GNU Emacs Manual, for basic information about file-local variables. This section describes the
functions and variables that affect how file-local variables are processed.

If a file-local variable could specify an arbitrary function or Lisp expression that would
be called later, visiting a file could take over your Emacs. Emacs protects against this by
automatically setting only those file-local variables whose specified values are known to be safe.
Other file-local variables are set only if the user agrees.

For additional safety, read-circle is temporarily bound to nil when Emacs reads file-local
variables (see Section 18.3 [Input Functions|, page 248). This prevents the Lisp reader from

)

recognizing circular and shared Lisp structures (see Section 2.5 [Circular Objects], page 23).

enable-local-variables [User Option)]
This variable controls whether to process file-local variables. The possible values are:

Chapter 11: Variables 143

t (the default)
Set the safe variables, and query (once) about any unsafe variables.

:safe Set only the safe variables and do not query.
:all Set all the variables and do not query.
nil Don’t set any variables.

anything else
Query (once) about all the variables.

inhibit-local-variables-regexps [Variable]
This is a list of regular expressions. If a file has a name matching an element of this list, then
it is not scanned for any form of file-local variable. For examples of why you might want to
use this, see Section 22.2.2 [Auto Major Mode], page 361.

hack-local-variables &optional mode-only [Function]
This function parses, and binds or evaluates as appropriate, any local variables specified by
the contents of the current buffer. The variable enable-local-variables has its effect here.
However, this function does not look for the ‘mode:’ local variable in the ‘-*-’ line. set-
auto-mode does that, also taking enable-local-variables into account (see Section 22.2.2
[Auto Major Mode], page 361).

This function works by walking the alist stored in file-local-variables-alist and ap-
plying each local variable in turn. It calls before-hack-local-variables-hook and hack-
local-variables-hook before and after applying the variables, respectively. It only calls
the before-hook if the alist is non-nil; it always calls the other hook. This function ignores
a ‘mode’ element if it specifies the same major mode as the buffer already has.

If the optional argument mode-only is non-nil, then all this function does is return a symbol
specifying the major mode, if the ‘=x-’ line or the local variables list specifies one, and nil
otherwise. It does not set the mode nor any other file-local variable.

file-local-variables-alist [Variable]
This buffer-local variable holds the alist of file-local variable settings. Each element of the
alist is of the form (var . value), where var is a symbol of the local variable and value is
its value. When Emacs visits a file, it first collects all the file-local variables into this alist,
and then the hack-local-variables function applies them one by one.

before-hack-local-variables-hook [Variable]
FEmacs calls this hook immediately before applying file-local variables stored in file-local-
variables-alist.

hack-local-variables-hook [Variable]
FEmacs calls this hook immediately after it finishes applying file-local variables stored in
file-local-variables-alist.

You can specify safe values for a variable with a safe-local-variable property. The prop-
erty has to be a function of one argument; any value is safe if the function returns non-nil
given that value. Many commonly-encountered file variables have safe-local-variable prop-
erties; these include fill-column, fill-prefix, and indent-tabs-mode. For boolean-valued
variables that are safe, use booleanp as the property value.

When defining a user option using def custom, you can set its safe-local-variable property
by adding the arguments :safe function to defcustom (see Section 14.3 [Variable Definitions],
page 183).

Chapter 11: Variables 144

safe-local-variable-values [User Option)]
This variable provides another way to mark some variable values as safe. It is a list of cons
cells (var . val), where var is a variable name and val is a value which is safe for that
variable.

When Emacs asks the user whether or not to obey a set of file-local variable specifications,
the user can choose to mark them as safe. Doing so adds those variable/value pairs to
safe-local-variable-values, and saves it to the user’s custom file.

safe-local-variable-p sym val [Function]
This function returns non-nil if it is safe to give sym the value val, based on the above
criteria.

Some variables are considered risky. If a variable is risky, it is never entered automatically
into safe-local-variable-values; Emacs always queries before setting a risky variable, unless
the user explicitly allows a value by customizing safe-local-variable-values directly.

Any variable whose name has a non-nil risky-local-variable property is considered
risky. When you define a user option using defcustom, you can set its risky-local-
variable property by adding the arguments :risky value to defcustom (see Section 14.3
[Variable Definitions|, page 183). In addition, any variable whose name ends in any of
‘~command’, ‘-frame-alist’, ‘~function’, ‘-functions’, ‘~hook’, ‘~hooks’, ‘-form’, ‘~forms’,
‘-map’, ‘-map-alist’, ‘-mode-alist’, ‘-program’, or ‘-predicate’ is automatically considered
risky. The variables ‘font-lock-keywords’, ‘font-lock-keywords’ followed by a digit, and
‘font-lock-syntactic-keywords’ are also considered risky.

risky-local-variable-p sym [Function]
This function returns non-nil if sym is a risky variable, based on the above criteria.

ignored-local-variables [Variable]
This variable holds a list of variables that should not be given local values by files. Any value
specified for one of these variables is completely ignored.

The ‘Eval:’ “variable” is also a potential loophole, so Emacs normally asks for confirmation
before handling it.

enable-local-eval [User Option]
This variable controls processing of ‘Eval:’ in ‘—*-’ lines or local variables lists in files being
visited. A value of t means process them unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is maybe.

safe-local-eval-forms [User Option]
This variable holds a list of expressions that are safe to evaluate when found in the ‘Eval:’
“variable” in a file local variables list.

If the expression is a function call and the function has a safe-local-eval-function prop-
erty, the property value determines whether the expression is safe to evaluate. The property
value can be a predicate to call to test the expression, a list of such predicates (it’s safe if any
predicate succeeds), or t (always safe provided the arguments are constant).

Text properties are also potential loopholes, since their values could include functions to call.
So Emacs discards all text properties from string values specified for file-local variables.

Chapter 11: Variables 145

11.12 Directory Local Variables

A directory can specify local variable values common to all files in that directory; Emacs uses
these to create buffer-local bindings for those variables in buffers visiting any file in that directory.
This is useful when the files in the directory belong to some project and therefore share the same
local variables.

There are two different methods for specifying directory local variables: by putting them in
a special file, or by defining a project class for that directory.

dir-locals-file [Constant]
This constant is the name of the file where Emacs expects to find the directory-local variables.
The name of the file is .dir-locals.el®. A file by that name in a directory causes Emacs
to apply its settings to any file in that directory or any of its subdirectories (optionally, you
can exclude subdirectories; see below). If some of the subdirectories have their own .dir-
locals.el files, Emacs uses the settings from the deepest file it finds starting from the file’s
directory and moving up the directory tree. The file specifies local variables as a specially
formatted list; see Section “Per-directory Local Variables” in The GNU Emacs Manual, for
more details.

hack-dir-local-variables [Function]
This function reads the .dir-locals.el file and stores the directory-local variables in file-
local-variables-alist that is local to the buffer visiting any file in the directory, without
applying them. It also stores the directory-local settings in dir-locals-class-alist, where
it defines a special class for the directory in which .dir-locals.el file was found. This func-
tion works by calling dir-locals-set-class-variables and dir-locals-set-directory-
class, described below.

hack-dir-local-variables-non-file-buffer [Function]
This function looks for directory-local variables, and immediately applies them in the current
buffer. It is intended to be called in the mode commands for non-file buffers, such as Dired
buffers, to let them obey directory-local variable settings. For non-file buffers, Emacs looks
for directory-local variables in default-directory and its parent directories.

dir-locals-set-class-variables class variables [Function]
This function defines a set of variable settings for the named class, which is a symbol. You
can later assign the class to one or more directories, and Emacs will apply those variable
settings to all files in those directories. The list in variables can be of one of the two forms:
(major-mode . alist) or (directory . list). With the first form, if the file’s buffer turns
on a mode that is derived from major-mode, then the all the variables in the associated alist
are applied; alist should be of the form (name . value). A special value nil for major-mode
means the settings are applicable to any mode. In alist, you can use a special name: subdirs.
If the associated value is nil, the alist is only applied to files in the relevant directory, not
to those in any subdirectories.

With the second form of variables, if directory is the initial substring of the file’s directory,
then list is applied recursively by following the above rules; list should be of one of the two
forms accepted by this function in variables.

dir-locals-set-directory-class directory class &optional mtime [Function]
This function assigns class to all the files in directory and its subdirectories. Thereafter,
all the variable settings specified for class will be applied to any visited file in directory and
its children. class must have been already defined by dir-locals-set-class-variables.

3 The MS-DOS version of Emacs uses _dir-locals.el instead, due to limitations of the DOS filesystems.

Chapter 11: Variables 146

Emacs uses this function internally when it loads directory variables from a .dir-locals.el
file. In that case, the optional argument mtime holds the file modification time (as returned
by file-attributes). Emacs uses this time to check stored local variables are still valid. If
you are assigning a class directly, not via a file, this argument should be nil.

dir-locals-class-alist [Variable]
This alist holds the class symbols and the associated variable settings. It is updated by
dir-locals-set-class-variables.

dir-locals-directory-cache [Variable]
This alist holds directory names, their assigned class names, and modification times of the
associated directory local variables file (if there is one). The function dir-locals-set-
directory-class updates this list.

enable-dir-local-variables [Variable]
If nil, directory-local variables are ignored. This variable may be useful for modes that
want to ignore directory-locals while still respecting file-local variables (see Section 11.11
[File Local Variables|, page 142).

11.13 Variable Aliases

It is sometimes useful to make two variables synonyms, so that both variables always have
the same value, and changing either one also changes the other. Whenever you change the
name of a variable—either because you realize its old name was not well chosen, or because its
meaning has partly changed—it can be useful to keep the old name as an alias of the new one
for compatibility. You can do this with defvaralias.

defvaralias new-alias base-variable &optional docstring [Function]
This function defines the symbol new-alias as a variable alias for symbol base-variable. This
means that retrieving the value of new-alias returns the value of base-variable, and changing
the value of new-alias changes the value of base-variable. The two aliased variable names
always share the same value and the same bindings.

If the docstring argument is non-nil, it specifies the documentation for new-alias; otherwise,
the alias gets the same documentation as base-variable has, if any, unless base-variable is
itself an alias, in which case new-alias gets the documentation of the variable at the end of
the chain of aliases.

This function returns base-variable.

Variable aliases are convenient for replacing an old name for a variable with a new name.
make-obsolete-variable declares that the old name is obsolete and therefore that it may be
removed at some stage in the future.

make-obsolete-variable obsolete-name current-name when &optional [Function]
access-type
This function makes the byte compiler warn that the variable obsolete-name is obsolete. If
current-name is a symbol, it is the variable’s new name; then the warning message says to
use current-name instead of obsolete-name. If current-name is a string, this is the message
and there is no replacement variable. when should be a string indicating when the variable
was first made obsolete (usually a version number string).

The optional argument access-type, if non-nil, should should specify the kind of access that
will trigger obsolescence warnings; it can be either get or set.

You can make two variables synonyms and declare one obsolete at the same time using the
macro define-obsolete-variable-alias.

Chapter 11: Variables 147

define-obsolete-variable-alias obsolete-name current-name &optional [Macro]
when docstring
This macro marks the variable obsolete-name as obsolete and also makes it an alias for the
variable current-name. It is equivalent to the following:

(defvaralias obsolete-name current-name docstring)
(make-obsolete-variable obsolete—-name current-name when)

indirect-variable variable [Function]
This function returns the variable at the end of the chain of aliases of variable. If variable is
not a symbol, or if variable is not defined as an alias, the function returns variable.

This function signals a cyclic-variable-indirection error if there is a loop in the chain
of symbols.

(defvaralias ’foo ’bar)
(indirect-variable ’foo)

= bar
(indirect-variable ’bar)

= bar
(setq bar 2)
bar

= 2
foo

= 2
(setq foo 0)
bar

= 0
foo

= 0

11.14 Variables with Restricted Values

Ordinary Lisp variables can be assigned any value that is a valid Lisp object. However, certain
Lisp variables are not defined in Lisp, but in C. Most of these variables are defined in the C
code using DEFVAR_LISP. Like variables defined in Lisp, these can take on any value. However,
some variables are defined using DEFVAR_INT or DEFVAR_BOOL. See [Writing Emacs Primitives],
page 883, in particular the description of functions of the type syms_of_filename, for a brief
discussion of the C implementation.

Variables of type DEFVAR_BOOL can only take on the values nil or t. Attempting to assign
them any other value will set them to t:

(let ((display-hourglass 5))
display-hourglass)
= t

byte-boolean-vars [Variable]
This variable holds a list of all variables of type DEFVAR_BOOL.

Variables of type DEFVAR_INT can take on only integer values. Attempting to assign them
any other value will result in an error:

(setq undo-1limit 1000.0)
Wrong type argument: integerp, 1000.0

Chapter 11: Variables 148

11.15 Generalized Variables

A generalized variable or place form is one of the many places in Lisp memory where values can
be stored. The simplest place form is a regular Lisp variable. But the CARs and CDRs of lists,
elements of arrays, properties of symbols, and many other locations are also places where Lisp
values are stored.

Generalized variables are analogous to “lvalues” in the C language, where ‘x = a[i]’ gets an
element from an array and ‘a[i] = x’ stores an element using the same notation. Just as certain
forms like a[i] can be lvalues in C, there is a set of forms that can be generalized variables in
Lisp.

11.15.1 The setf Macro

The setf macro is the most basic way to operate on generalized variables. The setf form is
like setq, except that it accepts arbitrary place forms on the left side rather than just symbols.
For example, (setf (car a) b) sets the car of a to b, doing the same operation as (setcar a
b), but without having to remember two separate functions for setting and accessing every type
of place.

setf [place form]. .. [Macro]
This macro evaluates form and stores it in place, which must be a valid generalized variable
form. If there are several place and form pairs, the assignments are done sequentially just as
with setq. setf returns the value of the last form.

The following Lisp forms will work as generalized variables, and so may appear in the place
argument of setf:

e A symbol naming a variable. In other words, (setf x y) is exactly equivalent to (setq x
y), and setq itself is strictly speaking redundant given that setf exists. Many programmers
continue to prefer setq for setting simple variables, though, purely for stylistic or historical
reasons. The macro (setf x y) actually expands to (setq x y), so there is no performance
penalty for using it in compiled code.

e A call to any of the following standard Lisp functions:

aref cddr symbol-function
car elt symbol-plist
caar get symbol-value
cadr gethash

cdr nth

cdar nthcdr

e A call to any of the following Emacs-specific functions:

default-value process-get
frame-parameter process-sentinel
terminal-parameter window-buffer
keymap-parent window-display-table
match-data window-dedicated-p
overlay-get window-hscroll
overlay-start window-parameter
overlay-end window-point
process-buffer window-start

process-filter

setf signals an error if you pass a place form that it does not know how to handle.

Note that for nthedr, the list argument of the function must itself be a valid place form. For
example, (setf (nthcdr 0 foo) 7) will set foo itself to 7.

The macros push (see Section 5.5 [List Variables|, page 63) and pop (see Section 5.3 [List
Elements|, page 58) can manipulate generalized variables, not just lists. (pop place) removes
and returns the first element of the list stored in place. It is analogous to (progl (car place)

Chapter 11: Variables 149

(setf place (cdr place))), except that it takes care to evaluate all subforms only once. (push
x place) inserts x at the front of the list stored in place. It is analogous to (setf place (cons
x place)), except for evaluation of the subforms. Note that push and pop on an nthcdr place
can be used to insert or delete at any position in a list.

The c1-1ib library defines various extensions for generalized variables, including additional
setf places. See Section “Generalized Variables” in Common Lisp Extensions.

11.15.2 Defining new setf forms

This section describes how to define new forms that setf can operate on.

gv-define-simple-setter name setter &optional fix-return [Macro]
This macro enables you to easily define setf methods for simple cases. name is the name
of a function, macro, or special form. You can use this macro whenever name has a di-
rectly corresponding setter function that updates it, e.g., (gv-define-simple-setter car
setcar).

This macro translates a call of the form
(setf (name args...) value)
into
(setter args... value)

Such a setf call is documented to return value. This is no problem with, e.g., car and
setcar, because setcar returns the value that it set. If your setter function does not return
value, use a non-nil value for the fix-return argument of gv-define-simple-setter. This
expands into something equivalent to

(let ((temp value))
(setter args... temp)
temp)

so ensuring that it returns the correct result.

gv-define-setter name arglist &rest body [Macro]
This macro allows for more complex setf expansions than the previous form. You may need
to use this form, for example, if there is no simple setter function to call, or if there is one
but it requires different arguments to the place form.

This macro expands the form (setf (name args...) value) by first binding the setf ar-
gument forms (value args...) according to arglist, and then executing body. body should
return a Lisp form that does the assignment, and finally returns the value that was set. An
example of using this macro is:

(gv-define-setter caar (val x) ‘(setcar (car ,x) ,val))

For more control over the expansion, see the macro gv-define-expander. The macro gv-
letplace can be useful in defining macros that perform similarly to setf; for example, the incf
macro of Common Lisp. Consult the source file gv.el for more details.

Common Lisp note: Common Lisp defines another way to specify the setf behavior
of a function, namely “setf functions”, whose names are lists (setf name) rather
than symbols. For example, (defun (setf foo) ...) defines the function that is
used when setf is applied to foo. Emacs does not support this. It is a compile-
time error to use setf on a form that has not already had an appropriate expansion
defined. In Common Lisp, this is not an error since the function (setf func) might
be defined later.

Chapter 12: Functions 150

12 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what functions
are, how they accept arguments, and how to define them.

12.1 What Is a Function?

In a general sense, a function is a rule for carrying out a computation given input values called
arguments. The result of the computation is called the value or return value of the function.
The computation can also have side effects, such as lasting changes in the values of variables or
the contents of data structures.

In most computer languages, every function has a name. But in Lisp, a function in the
strictest sense has no name: it is an object which can optionally be associated with a symbol
(e.g., car) that serves as the function name. See Section 12.3 [Function Names], page 154. When
a function has been given a name, we usually also refer to that symbol as a “function” (e.g., we
refer to “the function car”). In this manual, the distinction between a function name and the
function object itself is usually unimportant, but we will take note wherever it is relevant.

Certain function-like objects, called special forms and macros, also accept arguments to carry
out computations. However, as explained below, these are not considered functions in Emacs
Lisp.

Here are important terms for functions and function-like objects:

lambda expression
A function (in the strict sense, i.e., a function object) which is written in Lisp. These
are described in the following section.

primitive A function which is callable from Lisp but is actually written in C. Primitives are
also called built-in functions, or subrs. Examples include functions like car and
append. In addition, all special forms (see below) are also considered primitives.

Usually, a function is implemented as a primitive because it is a fundamental part
of Lisp (e.g., car), or because it provides a low-level interface to operating system
services, or because it needs to run fast. Unlike functions defined in Lisp, primitives
can be modified or added only by changing the C sources and recompiling Emacs.
See Section E.6 [Writing Emacs Primitives], page 880.

special form
A primitive that is like a function but does not evaluate all of its arguments in
the usual way. It may evaluate only some of the arguments, or may evaluate them
in an unusual order, or several times. Examples include if, and, and while. See
Section 9.1.7 [Special Forms], page 104.

macro A construct defined in Lisp, which differs from a function in that it translates a Lisp
expression into another expression which is to be evaluated instead of the original
expression. Macros enable Lisp programmers to do the sorts of things that special
forms can do. See Chapter 13 [Macros], page 173.

command An object which can be invoked via the command-execute primitive, usually due
to the user typing in a key sequence bound to that command. See Section 20.3
[Interactive Call], page 289. A command is usually a function; if the function is
written in Lisp, it is made into a command by an interactive form in the function
definition (see Section 20.2 [Defining Commands|, page 284). Commands that are
functions can also be called from Lisp expressions, just like other functions.

Keyboard macros (strings and vectors) are commands also, even though they are not
functions. See Section 20.16 [Keyboard Macros|, page 321. We say that a symbol

Chapter 12: Functions 151

is a command if its function cell contains a command (see Section 8.1 [Symbol
Components|, page 93); such a named command can be invoked with M-x.

closure A function object that is much like a lambda expression, except that it also encloses
an “environment” of lexical variable bindings. See Section 12.9 [Closures]|, page 161.

byte-code function
A function that has been compiled by the byte compiler. See Section 2.3.16 [Byte-
Code Type], page 20.

)

autoload object
A place-holder for a real function. If the autoload object is called, Emacs loads the
file containing the definition of the real function, and then calls the real function.
See Section 15.5 [Autoload], page 201.

You can use the function functionp to test if an object is a function:

functionp object [Function]
This function returns t if object is any kind of function, i.e., can be passed to funcall. Note
that functionp returns t for symbols that are function names, and returns nil for special
forms.

Unlike functionp, the next three functions do not treat a symbol as its function definition.

subrp object [Function]
This function returns t if object is a built-in function (i.e., a Lisp primitive).
(subrp ’message) ; message is a symbol,
= nil ; not a subr object.
(subrp (symbol-function ’message))
=t
byte-code-function-p object [Function]

This function returns t if object is a byte-code function. For example:

(byte-code-function-p (symbol-function ’next-line))
=t

subr-arity subr [Function]
This function provides information about the argument list of a primitive, subr. The returned
value is a pair (min . max). min is the minimum number of args. max is the maximum
number or the symbol many, for a function with &rest arguments, or the symbol unevalled
if subr is a special form.

12.2 Lambda Expressions

A lambda expression is a function object written in Lisp. Here is an example:

(lambda (x)
"Return the hyperbolic cosine of X."
(* 0.5 (+ (exp x) (exp (- x)))))

In Emacs Lisp, such a list is a valid expression which evaluates to a function object.

A lambda expression, by itself, has no name; it is an anonymous function. Although lambda
expressions can be used this way (see Section 12.7 [Anonymous Functions|, page 159), they
are more commonly associated with symbols to make named functions (see Section 12.3 [Func-
tion Names], page 154). Before going into these details, the following subsections describe the

components of a lambda expression and what they do.

Chapter 12: Functions 152

12.2.1 Components of a Lambda Expression
A lambda expression is a list that looks like this:

(lambda (arg-variables...)
[documentation-string]
[interactive-declaration]
body-forms. . .)

The first element of a lambda expression is always the symbol lambda. This indicates that
the list represents a function. The reason functions are defined to start with lambda is so that
other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols—the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided. See
Section 11.3 [Local Variables], page 126.

The documentation string is a Lisp string object placed within the function definition to
describe the function for the Emacs help facilities. See Section 12.2.4 [Function Documentation],
page 154.

The interactive declaration is a list of the form (interactive code-string). This declares
how to provide arguments if the function is used interactively. Functions with this declaration
are called commands; they can be called using M-x or bound to a key. Functions not intended
to be called in this way should not have interactive declarations. See Section 20.2 [Defining
Commands|, page 284, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of the
function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The value
returned by the function is the value returned by the last element of the body.

12.2.2 A Simple Lambda Expression Example
Consider the following example:

(lambda (a b ¢) (+ a b c))
We can call this function by passing it to funcall, like this:

(funcall (lambda (a b c) (+ a b c))
12 3)

This call evaluates the body of the lambda expression with the variable a bound to 1, b bound
to 2, and ¢ bound to 3. Evaluation of the body adds these three numbers, producing the result
6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:

(funcall (lambda (a b c) (+ a b c))
1 (x23) (-5 4))

This evaluates the arguments 1, (x 2 3), and (- 5 4) from left to right. Then it applies the
lambda expression to the argument values 1, 6 and 1 to produce the value 8.

As these examples show, you can use a form with a lambda expression as its CAR to make
local variables and give them values. In the old days of Lisp, this technique was the only way to
bind and initialize local variables. But nowadays, it is clearer to use the special form let for this
purpose (see Section 11.3 [Local Variables|, page 126). Lambda expressions are mainly used as
anonymous functions for passing as arguments to other functions (see Section 12.7 [Anonymous
Functions], page 159), or stored as symbol function definitions to produce named functions (see
Section 12.3 [Function Names], page 154).

Chapter 12: Functions 153

12.2.3 Other Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument variables, so
it must be called with three arguments: if you try to call it with only two arguments or four
arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted. For
example, the function substring accepts three arguments—a string, the start index and the
end index—but the third argument defaults to the length of the string if you omit it. It is also
convenient for certain functions to accept an indefinite number of arguments, as the functions
list and + do.

To specify optional arguments that may be omitted when a function is called, simply include
the keyword &optional before the optional arguments. To specify a list of zero or more extra
arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:

(required-vars. ..

q

[koptional optional-vars...]
[krest rest-var])

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any actual
arguments beyond that unless the lambda list uses &rest. In that case, there may be any
number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always default
tonil. There is no way for the function to distinguish between an explicit argument of nil and
an omitted argument. However, the body of the function is free to consider nil an abbreviation
for some other meaningful value. This is what substring does; nil as the third argument to
substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default value
to use when an optional argument is omitted; Emacs Lisp always uses nil. Emacs
Lisp does not support “supplied-p” variables that tell you whether an argument was
explicitly passed.

For example, an argument list that looks like this:
(a2 b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more arguments
are provided, ¢ and d are bound to them respectively; any arguments after the first four are
collected into a list and e is bound to that list. If there are only two arguments, c is nil; if two
or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make sense.
To see why this must be so, suppose that ¢ in the example were optional and d were required.
Suppose three actual arguments are given; which variable would the third argument be for?
Would it be used for the ¢, or for d? One can argue for both possibilities. Similarly, it makes
no sense to have any more arguments (either required or optional) after a &rest argument.

Here are some examples of argument lists and proper calls:

(funcall (lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.
= 2
(funcall (lambda (n &optional nl) ; One required and one optional:

(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.

Chapter 12: Functions 154

12)
= 3
(funcall (lambda (n &rest ns) ; One required and one rest:
(+ n (apply ’+ ns))) ; 1 or more arguments.
12345)
= 15

12.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda list.
This string does not affect execution of the function; it is a kind of comment, but a systematized
comment which actually appears inside the Lisp world and can be used by the Emacs help
facilities. See Chapter 23 [Documentation|, page 404, for how the documentation string is
accessed.

It is a good idea to provide documentation strings for all the functions in your program, even
those that are called only from within your program. Documentation strings are like comments,
except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos displays
just this first line. It should consist of one or two complete sentences that summarize the
function’s purpose.

The start of the documentation string is usually indented in the source file, but since these
spaces come before the starting double-quote, they are not part of the string. Some people make
a practice of indenting any additional lines of the string so that the text lines up in the program
source. That is a mistake. The indentation of the following lines is inside the string; what looks
nice in the source code will look ugly when displayed by the help commands.

You may wonder how the documentation string could be optional, since there are required
components of the function that follow it (the body). Since evaluation of a string returns that
string, without any side effects, it has no effect if it is not the last form in the body. Thus, in
practice, there is no confusion between the first form of the body and the documentation string;
if the only body form is a string then it serves both as the return value and as the documentation.

The last line of the documentation string can specify calling conventions different from the
actual function arguments. Write text like this:

\(fn arglist)

following a blank line, at the beginning of the line, with no newline following it inside the
documentation string. (The ‘\’ is used to avoid confusing the Emacs motion commands.) The
calling convention specified in this way appears in help messages in place of the one derived
from the actual arguments of the function.

This feature is particularly useful for macro definitions, since the arguments written in a
macro definition often do not correspond to the way users think of the parts of the macro call.

12.3 Naming a Function

A symbol can serve as the name of a function. This happens when the symbol’s function
cell (see Section 8.1 [Symbol Components|, page 93) contains a function object (e.g., a lambda
expression). Then the symbol itself becomes a valid, callable function, equivalent to the function
object in its function cell.

The contents of the function cell are also called the symbol’s function definition. The pro-
cedure of using a symbol’s function definition in place of the symbol is called symbol function
indirection; see Section 9.1.4 [Function Indirection], page 102. If you have not given a symbol a
function definition, its function cell is said to be void, and it cannot be used as a function.

Chapter 12: Functions 155

In practice, nearly all functions have names, and are referred to by their names. You can
create a named Lisp function by defining a lambda expression and putting it in a function cell
(see Section 12.8 [Function Cells|, page 160). However, it is more common to use the defun
special form, described in the next section.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. Also, a named Lisp function can easily refer to itself—it can be recursive. Fur-
thermore, primitives can only be referred to textually by their names, since primitive function
objects (see Section 2.3.15 [Primitive Function Type|, page 19) have no read syntax.

A function need not have a unique name. A given function object usually appears in the
function cell of only one symbol, but this is just a convention. It is easy to store it in several
symbols using fset; then each of the symbols is a valid name for the same function.

Note that a symbol used as a function name may also be used as a variable; these two uses
of a symbol are independent and do not conflict. (This is not the case in some dialects of Lisp,
like Scheme.)

12.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a function,
and it is done with the defun macro.

defun name args [doc] [declare] [interactive] body. . . [Macro]
defun is the usual way to define new Lisp functions. It defines the symbol name as a function
with argument list args and body forms given by body. Neither name nor args should be
quoted.

doc, if present, should be a string specifying the function’s documentation string (see
Section 12.2.4 [Function Documentation], page 154). declare, if present, should be a declare
form specifying function metadata (see Section 12.13 [Declare Form|, page 169). interactive,
if present, should be an interactive form specifying how the function is to be called inter-

actively (see Section 20.3 [Interactive Call|, page 289).
The return value of defun is undefined.
Here are some examples:

(defun foo () 5)
(foo)
- 5

(defun bar (a &optional b &rest c)
(1ist a b ¢))

(bar 1 2 3 4 5)
= (1 2 (8345))

(bar 1)
= (1 nil nil)

(bar)

Wrong number of arguments.

(defun capitalize-backwards ()
"Upcase the last letter of the word at point."
(interactive)
(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))

Chapter 12: Functions 156

Be careful not to redefine existing functions unintentionally. defun redefines even primitive
functions such as car without any hesitation or notification. Emacs does not prevent you
from doing this, because redefining a function is sometimes done deliberately, and there is no
way to distinguish deliberate redefinition from unintentional redefinition.

defalias name definition &optional doc [Function]
This function defines the symbol name as a function, with definition definition (which can
be any valid Lisp function). Its return value is undefined.

If doc is non-nil, it becomes the function documentation of name. Otherwise, any documen-
tation provided by definition is used.

Internally, defalias normally uses fset to set the definition. If name has a defalias-
fset-function property, however, the associated value is used as a function to call in place
of fset.

The proper place to use defalias is where a specific function name is being defined—
especially where that name appears explicitly in the source file being loaded. This is because
defalias records which file defined the function, just like defun (see Section 15.9 [Unloading],
page 207).

By contrast, in programs that manipulate function definitions for other purposes, it is better
to use fset, which does not keep such records. See Section 12.8 [Function Cells], page 160.

You cannot create a new primitive function with defun or defalias, but you can use them
to change the function definition of any symbol, even one such as car or x-popup-menu whose
normal definition is a primitive. However, this is risky: for instance, it is next to impossible
to redefine car without breaking Lisp completely. Redefining an obscure function such as x-
popup-menu is less dangerous, but it still may not work as you expect. If there are calls to the
primitive from C code, they call the primitive’s C definition directly, so changing the symbol’s
definition will have no effect on them.

See also defsubst, which defines a function like defun and tells the Lisp compiler to perform
inline expansion on it. See Section 12.12 [Inline Functions|, page 168.

12.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call them, i.e.,
tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example, evaluating
the list (concat "a" "b") calls the function concat with arguments "a" and "b". See Chapter 9
[Evaluation], page 100, for a description of evaluation.

When you write a list as an expression in your program, you specify which function to call,
and how many arguments to give it, in the text of the program. Usually that’s just what you
want. Occasionally you need to compute at run time which function to call. To do that, use the
function funcall. When you also need to determine at run time how many arguments to pass,
use apply.

funcall function &rest arguments [Function]
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated before
funcall is called. This means that you can use any expression to obtain the function to be
called. It also means that funcall does not see the expressions you write for the arguments,
only their values. These values are not evaluated a second time in the act of calling function;
the operation of funcall is like the normal procedure for calling a function, once its arguments
have already been evaluated.

Chapter 12: Functions 157

The argument function must be either a Lisp function or a primitive function. Special forms
and macros are not allowed, because they make sense only when given the “unevaluated”
argument expressions. funcall cannot provide these because, as we saw above, it never
knows them in the first place.

(setq f ’list)

= list
(funcall f ’x ’y ’z)
= (xy 2)
(funcall f ’x ’y ’(z))
= (xy (=)

(funcall ’and t nil)
Invalid function: #<subr and>

Compare these examples with the examples of apply.

apply function &rest arguments [Function]
apply calls function with arguments, just like funcall but with one difference: the last of
arguments is a list of objects, which are passed to function as separate arguments, rather than
a single list. We say that apply spreads this list so that each individual element becomes an
argument.

apply returns the result of calling function. As with funcall, function must either be a Lisp
function or a primitive function; special forms and macros do not make sense in apply.

(setq f ’list)
= list
(apply £ ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))
= 10
(apply ’+ (1 2 3 4))
= 10

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxyz)

For an interesting example of using apply, see [Definition of mapcar|, page 158.

Sometimes it is useful to fix some of the function’s arguments at certain values, and leave the
rest of arguments for when the function is actually called. The act of fixing some of the function’s
arguments is called partial application of the function!. The result is a new function that accepts
the rest of arguments and calls the original function with all the arguments combined.

Here’s how to do partial application in Emacs Lisp:

apply-partially func &rest args [Function]
This function returns a new function which, when called, will call func with the list of
arguments composed from args and additional arguments specified at the time of the call. If
func accepts n arguments, then a call to apply-partially with m < n arguments will produce
a new function of n - m arguments.

Here’s how we could define the built-in function 1+, if it didn’t exist, using apply-partially
and +, another built-in function:

This is related to, but different from currying, which transforms a function that takes multiple arguments in
such a way that it can be called as a chain of functions, each one with a single argument.

Chapter 12: Functions 158

(defalias ’1+ (apply-partially ’+ 1)
"Increment argument by one.")
(1+ 10)
= 11

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the argument.
Here are two different kinds of no-op function:

identity arg [Function]
This function returns arg and has no side effects.

ignore &rest args [Function]
This function ignores any arguments and returns nil.

Some functions are user-visible commands, which can be called interactively (usually by a key
sequence). It is possible to invoke such a command exactly as though it was called interactively,
by using the call-interactively function. See Section 20.3 [Interactive Call], page 289.

12.6 Mapping Functions

A mapping function applies a given function (not a special form or macro) to each element of
a list or other collection. Emacs Lisp has several such functions; this section describes mapcar,
mapc, and mapconcat, which map over a list. See [Definition of mapatoms], page 96, for the
function mapatoms which maps over the symbols in an obarray. See [Definition of maphash],
page 90, for the function maphash which maps over key/value associations in a hash table.

These mapping functions do not allow char-tables because a char-table is a sparse array whose
nominal range of indices is very large. To map over a char-table in a way that deals properly with
its sparse nature, use the function map-char-table (see Section 6.6 [Char-Tables|, page 83).

mapcar function sequence [Function]
mapcar applies function to each element of sequence in turn, and returns a list of the results.

The argument sequence can be any kind of sequence except a char-table; that is, a list, a
vector, a bool-vector, or a string. The result is always a list. The length of the result is the
same as the length of sequence. For example:

(mapcar ’car ’((a b) (c d) (e £)))
= (a c e)

(mapcar 1+ [1 2 31)
= (2 3 4)

(mapcar ’string "abc")
= ("a" "b" "c")

;3 Call each function in my-hooks.
(mapcar ’funcall my-hooks)

Chapter 12: Functions 159

(defun mapcar* (function &rest args)
"Apply FUNCTION to successive cars of all ARGS.
Return the list of results."
;3 If no list is exhausted,
(if (not (memg nil args))
;3 apply function to CARs.
(cons (apply function (mapcar ’car args))
(apply ’mapcar* function
;5 Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) (1 2 3 4))
= ((a. 1) (.2 (c. 3))

mapc function sequence [Function]
mapc is like mapcar except that function is used for side-effects only—the values it returns
are ignored, not collected into a list. mapc always returns sequence.

mapconcat function sequence separator [Function]
mapconcat applies function to each element of sequence: the results, which must be strings,
are concatenated. Between each pair of result strings, mapconcat inserts the string separator.
Usually separator contains a space or comma or other suitable punctuation.

The argument function must be a function that can take one argument and return a string.
The argument sequence can be any kind of sequence except a char-table; that is, a list, a
vector, a bool-vector, or a string.

(mapconcat ’symbol-name
’(The cat in the hat)
n ||)
= "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"
"ll)
= "IBM.9111"

12.7 Anonymous Functions

Although functions are usually defined with defun and given names at the same time, it is some-
times convenient to use an explicit lambda expression—an anonymous function. Anonymous
functions are valid wherever function names are. They are often assigned as variable values, or
as arguments to functions; for instance, you might pass one as the function argument to mapcar,
which applies that function to each element of a list (see Section 12.6 [Mapping Functions],
page 158). See [describe-symbols example|, page 405, for a realistic example of this.

When defining a lambda expression that is to be used as an anonymous function, you can in
principle use any method to construct the list. But typically you should use the lambda macro,
or the function special form, or the #’ read syntax:

lambda args [doc] [interactive] body. . . [Macro]
This macro returns an anonymous function with argument list args, documentation string
doc (if any), interactive spec interactive (if any), and body forms given by body.

In effect, this macro makes lambda forms “self-quoting”: evaluating a form whose CAR is
lambda yields the form itself:

Chapter 12: Functions 160

(lambda (x) (* x x))
= (lambda (x) (* x x))

The lambda form has one other effect: it tells the Emacs evaluator and byte-compiler that
its argument is a function, by using function as a subroutine (see below).

function function-object [Special Form]
This special form returns function-object without evaluating it. In this, it is similar to quote
(see Section 9.2 [Quoting], page 105). But unlike quote, it also serves as a note to the
Emacs evaluator and byte-compiler that function-object is intended to be used as a function.
Assuming function-object is a valid lambda expression, this has two effects:

e When the code is byte-compiled, function-object is compiled into a byte-code function
object (see Chapter 16 [Byte Compilation], page 210).

e When lexical binding is enabled, function-object is converted into a closure. See
Section 12.9 [Closures|, page 161.

The read syntax #’ is a short-hand for using function. The following forms are all equivalent:

(lambda (x) (* x x))
(function (lambda (x) (* x x)))
#’ (lambda (x) (* x x))

In the following example, we define a change-property function that takes a function as its
third argument, followed by a double-property function that makes use of change-property
by passing it an anonymous function:

(defun change-property (symbol prop function)
(let ((value (get symbol prop)))
(put symbol prop (funcall function value))))

(defun double-property (symbol prop)
(change-property symbol prop (lambda (x) (* 2 x))))

Note that we do not quote the lambda form.

If you compile the above code, the anonymous function is also compiled. This would not
happen if, say, you had constructed the anonymous function by quoting it as a list:
(defun double-property (symbol prop)
(change-property symbol prop ’(lambda (x) (* 2 x))))
In that case, the anonymous function is kept as a lambda expression in the compiled code. The
byte-compiler cannot assume this list is a function, even though it looks like one, since it does
not know that change-property intends to use it as a function.

12.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol. The
functions described here access, test, and set the function cell of symbols.

See also the function indirect-function. See [Definition of indirect-function], page 103.

symbol-function symbol [Function]
This returns the object in the function cell of symbol. It does not check that the returned
object is a legitimate function.

If the function cell is void, the return value is nil. To distinguish between a function cell
that is void and one set to nil, use fboundp (see below).
(defun bar (n) (+ n 2))
(symbol-function ’bar)
= (lambda (n) (+ n 2))

Chapter 12: Functions 161

(fset ’baz ’bar)
= bar
(symbol-function ’baz)
= bar

If you have never given a symbol any function definition, we say that that symbol’s function
cell is void. In other words, the function cell does not have any Lisp object in it. If you try to
call the symbol as a function, Emacs signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void are
Lisp objects, and can be stored into a function cell just as any other object can be (and they
can be valid functions if you define them in turn with defun). A void function cell contains no
object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

fboundp symbol [Function]
This function returns t if the symbol has an object in its function cell, nil otherwise. It does
not check that the object is a legitimate function.

fmakunbound symbol [Function]
This function makes symbol’s function cell void, so that a subsequent attempt to access
this cell will cause a void-function error. It returns symbol. (See also makunbound, in
Section 11.4 [Void Variables], page 127.)

(defun foo (x) x)
(foo 1)
=1
(fmakunbound ’foo)
= foo
(foo 1)
Symbol’s function definition is void: foo

fset symbol definition [Function]
This function stores definition in the function cell of symbol. The result is definition. Nor-
mally definition should be a function or the name of a function, but this is not checked. The
argument symbol is an ordinary evaluated argument.

The primary use of this function is as a subroutine by constructs that define or alter functions,
like defun or advice-add (see Section 12.10 [Advising Functions], page 162). You can also
use it to give a symbol a function definition that is not a function, e.g., a keyboard macro
(see Section 20.16 [Keyboard Macros|, page 321):

;3 Define a named keyboard macro.
(fset ’kill-two-lines "\"u2\"k")
= n\'~u2\~kn
It you wish to use fset to make an alternate name for a function, consider using defalias
instead. See [Definition of defalias|, page 156.

12.9 Closures

As explained in Section 11.9 [Variable Scoping], page 133, Emacs can optionally enable lexical
binding of variables. When lexical binding is enabled, any named function that you create (e.g.,
with defun), as well as any anonymous function that you create using the lambda macro or the
function special form or the #’ syntax (see Section 12.7 [Anonymous Functions], page 159), is
automatically converted into a closure.

Chapter 12: Functions 162

A closure is a function that also carries a record of the lexical environment that existed when
the function was defined. When it is invoked, any lexical variable references within its definition
use the retained lexical environment. In all other respects, closures behave much like ordinary
functions; in particular, they can be called in the same way as ordinary functions.

See Section 11.9.3 [Lexical Binding], page 135, for an example of using a closure.

Currently, an Emacs Lisp closure object is represented by a list with the symbol closure
as the first element, a list representing the lexical environment as the second element, and the
argument list and body forms as the remaining elements:

;3 lexical binding is enabled.
(lambda (x) (* x %))
= (closure (t) (x) (*x x x))

However, the fact that the internal structure of a closure is “exposed” to the rest of the Lisp
world is considered an internal implementation detail. For this reason, we recommend against
directly examining or altering the structure of closure objects.

12.10 Advising Emacs Lisp Functions

When you need to modify a function defined in another library, or when you need to modify a
hook like foo-function, a process filter, or basically any variable or object field which holds a
function value, you can use the appropriate setter function, such as fset or defun for named
functions, setq for hook variables, or set-process-filter for process filters, but those are
often too blunt, completely throwing away the previous value.

The advice feature lets you add to the existing definition of a function, by advising the
function. This is a cleaner method than redefining the whole function.

Emacs’s advice system provides two sets of primitives for that: the core set, for function values
held in variables and object fields (with the corresponding primitives being add-function and
remove-function) and another set layered on top of it for named functions (with the main
primitives being advice-add and advice-remove).

For example, in order to trace the calls to the process filter of a process proc, you could use:

(defun my-tracing-function (proc string)
(message "Proc %S received %S" proc string))

(add-function :before (process-filter proc) #’my-tracing-function)

This will cause the process’s output to be passed to my-tracing-function before being
passed to the original process filter. my-tracing-function receives the same arguments as the
original function. When you’re done with it, you can revert to the untraced behavior with:

(remove-function (process-filter proc) #’my-tracing-function)

Similarly, if you want to trace the execution of the function named display-buffer, you
could use:

(defun his-tracing-function (orig-fun &rest args)
(message "display-buffer called with args %S" args)
(let ((res (apply orig-fun args)))

(message "display-buffer returned %S" res)
res))

(advice-add ’display-buffer :around #’his-tracing-function)

Here, his-tracing-function is called instead of the original function and receives the origi-
nal function (additionally to that function’s arguments) as argument, so it can call it if and when
it needs to. When you're tired of seeing this output, you can revert to the untraced behavior
with:

Chapter 12: Functions 163

(advice-remove ’display-buffer #’his-tracing-function)

The arguments :before and :around used in the above examples specify how the two func-
tions are composed, since there are many different ways to do it. The added function is also
called an advice.

12.10.1 Primitives to manipulate advices

add-function where place function &optional props [Macro]
This macro is the handy way to add the advice function to the function stored in place (see
Section 11.15 [Generalized Variables], page 148).

where determines how function is composed with the existing function, e.g. whether function
should be called before, or after the original function. See Section 12.10.3 [Advice combina-
tors|, page 165, for the list of available ways to compose the two functions.

When modifying a variable (whose name will usually end with -function), you can choose
whether function is used globally or only in the current buffer: if place is just a symbol,
then function is added to the global value of place. Whereas if place is of the form (local
symbol), where symbol is an expression which returns the variable name, then function will
only be added in the current buffer. Finally, if you want to modify a lexical variable, you will
have to use (var variable).

Every function added with add-function can be accompanied by an association list of prop-
erties props. Currently only two of those properties have a special meaning;:

name This gives a name to the advice, which remove-function can use to identify
which function to remove. Typically used when function is an anonymous func-
tion.

depth This specifies how to order the advices, in case several advices are present. By

default, the depth is 0. A depth of 100 indicates that this advice should be kept
as deep as possible, whereas a depth of -100 indicates that it should stay as the
outermost advice. When two advices specify the same depth, the most recently
added advice will be outermost.

For a :before advice, being outermost means that this advice will be run first,
before any other advice, whereas being innermost means that it will run right
before the original function, with no other advice run between itself and the
original function. Similarly, for an :after advice innermost means that it will
run right after the original function, with no other advice run in between, whereas
outermost means that it will be run very last after all other advices. An innermost
:override advice will only override the original function and other advices will
apply to it, whereas an outermost :override advice will override not only the
original function but all other advices applied to it as well.

If function is not interactive, then the combined function will inherit the interactive spec, if
any, of the original function. Else, the combined function will be interactive and will use the
interactive spec of function. One exception: if the interactive spec of function is a function
(rather than an expression or a string), then the interactive spec of the combined function will
be a call to that function with as sole argument the interactive spec of the original function.
To interpret the spec received as argument, use advice-eval-interactive-spec.

Note: The interactive spec of function will apply to the combined function and should hence
obey the calling convention of the combined function rather than that of function. In many
cases, it makes no difference since they are identical, but it does matter for :around, :filter-
args, and filter-return, where function.

Chapter 12: Functions 164

remove-function place function [Macro]
This macro removes function from the function stored in place. This only works if function
was added to place using add-function.

function is compared with functions added to place using equal, to try and make it work
also with lambda expressions. It is additionally compared also with the name property of
the functions added to place, which can be more reliable than comparing lambda expressions
using equal.

advice-function-member-p advice function-def [Function]
Return non-nil if advice is already in function-def. Like for remove-function above, instead
of advice being the actual function, it can also be the name of the piece of advice.

advice-function-mapc f function-def [Function]
Call the function f for every advice that was added to function-def. f is called with two
arguments: the advice function and its properties.

advice-eval-interactive-spec spec [Function]
Evaluate the interactive spec just like an interactive call to a function with such a spec would,
and then return the corresponding list of arguments that was built. E.g. (advice-eval-
interactive-spec "r\nP") will return a list of three elements, containing the boundaries of
the region and the current prefix argument.

12.10.2 Advising Named Functions

A common use of advice is for named functions and macros. You could just use add-function
as in:
(add-function :around (symbol-function ’fun) #’his-tracing-function)

But you should use advice-add and advice-remove for that instead. This separate set
of functions to manipulate pieces of advice applied to named functions, offers the following
extra features compared to add-function: they know how to deal with macros and autoloaded
functions, they let describe-function preserve the original docstring as well as document the
added advice, and they let you add and remove advices before a function is even defined.

advice-add can be useful for altering the behavior of existing calls to an existing function
without having to redefine the whole function. However, it can be a source of bugs, since existing
callers to the function may assume the old behavior, and work incorrectly when the behavior
is changed by advice. Advice can also cause confusion in debugging, if the person doing the
debugging does not notice or remember that the function has been modified by advice.

For these reasons, advice should be reserved for the cases where you cannot modify a func-
tion’s behavior in any other way. If it is possible to do the same thing via a hook, that is
preferable (see Section 22.1 [Hooks|, page 356). If you simply want to change what a partic-
ular key does, it may be better to write a new command, and remap the old command’s key
bindings to the new one (see Section 21.13 [Remapping Commands|, page 338). In particular,
Emacs’s own source files should not put advice on functions in Emacs. (There are currently a
few exceptions to this convention, but we aim to correct them.)

Special forms (see Section 9.1.7 [Special Forms|, page 104) cannot be advised, however macros
can be advised, in much the same way as functions. Of course, this will not affect code that
has already been macro-expanded, so you need to make sure the advice is installed before the
macro is expanded.

It is possible to advise a primitive (see Section 12.1 [What Is a Function|, page 150), but
one should typically not do so, for two reasons. Firstly, some primitives are used by the advice
mechanism, and advising them could cause an infinite recursion. Secondly, many primitives are
called directly from C, and such calls ignore advice; hence, one ends up in a confusing situation

Chapter 12: Functions 165

where some calls (occurring from Lisp code) obey the advice and other calls (from C code) do
not.

advice-add symbol where function &optional props [Function]
Add the advice function to the named function symbol. where and props have the same
meaning as for add-function (see Section 12.10.1 [Core Advising Primitives|, page 163).

advice-remove symbol function [Function]
Remove the advice function from the named function symbol. function can also be the name
of an advice.

advice-member-p function symbol [Function]
Return non-nil if the advice function is already in the named function symbol. function can
also be the name of an advice.

advice-mapc function symbol [Function]
Call function for every advice that was added to the named function symbol. function is
called with two arguments: the advice function and its properties.

12.10.3 Ways to compose advices

Here are the different possible values for the where argument of add-function and advice-add,
specifying how the advice function and the original function should be composed.

:before Call function before the old function. Both functions receive the same arguments,
and the return value of the composition is the return value of the old function. More
specifically, the composition of the two functions behaves like:

(lambda (&rest r) (apply function r) (apply oldfun r))

(add-function :before funvar function) is comparable for single-function hooks
to (add-hook ’hookvar function) for normal hooks.

:after Call function after the old function. Both functions receive the same arguments, and
the return value of the composition is the return value of the old function. More
specifically, the composition of the two functions behaves like:

(lambda (&rest r) (progl (apply oldfun r) (apply function r)))

(add-function :after funvar function) is comparable for single-function hooks
to (add-hook ’hookvar function ’append) for normal hooks.

:override
This completely replaces the old function with the new one. The old function can
of course be recovered if you later call remove-function.

:around Call function instead of the old function, but provide the old function as an extra
argument to function. This is the most flexible composition. For example, it lets you
call the old function with different arguments, or many times, or within a let-binding,
or you can sometimes delegate the work to the old function and sometimes override
it completely. More specifically, the composition of the two functions behaves like:

(lambda (&rest r) (apply function oldfun r))

:before-while
Call function before the old function and don’t call the old function if function
returns nil. Both functions receive the same arguments, and the return value
of the composition is the return value of the old function. More specifically, the
composition of the two functions behaves like:

Chapter 12: Functions 166

(lambda (&rest r) (and (apply function r) (apply oldfun r)))

(add-function :before-while funvar function) 1is comparable for single-
function hooks to (add-hook ’hookvar function) when hookvar is run via
run-hook-with-args-until-failure.

:before-until
Call function before the old function and only call the old function if function returns
nil. More specifically, the composition of the two functions behaves like:

(lambda (&rest r) (or (apply function r) (apply oldfun r)))

(add-function :before-until funvar function) 1is comparable for single-
function hooks to (add-hook ’hookvar function) when hookvar is run via
run-hook-with-args-until-success.

:after—-while
Call function after the old function and only if the old function returned non-nil.
Both functions receive the same arguments, and the return value of the composi-
tion is the return value of function. More specifically, the composition of the two
functions behaves like:

(lambda (&rest r) (and (apply oldfun r) (apply function r)))

(add-function :after-while funvar function) is comparable for single-function
hooks to (add-hook ’hookvar function ’append) when hookvar is run via run-
hook-with-args-until-failure.

rafter-until
Call function after the old function and only if the old function returned nil. More
specifically, the composition of the two functions behaves like:

(lambda (&rest r) (or (apply oldfun r) (apply function r)))

(add-function :after-until funvar function) is comparable for single-function
hooks to (add-hook ’hookvar function ’append) when hookvar is run via run-
hook-with-args-until-success.

:filter-args
Call function first and use the result (which should be a list) as the new arguments
to pass to the old function. More specifically, the composition of the two functions
behaves like:

(lambda (&rest r) (apply oldfun (funcall function r)))

:filter-return
Call the old function first and pass the result to function. More specifically, the
composition of the two functions behaves like:

(lambda (&rest r) (funcall function (apply oldfun r)))

12.10.4 Adapting code using the old defadvice

A lot of code uses the old defadvice mechanism, which is largely made obsolete by the new
advice-add, whose implementation and semantics is significantly simpler.

An old advice such as:

(defadvice previous-line (before next-line-at-end
(&optional arg try-vscroll))
"Insert an empty line when moving up from the top line."
(if (and next-line-add-newlines (= arg 1)
(save-excursion (beginning-of-line) (bobp)))
(progn

Chapter 12: Functions 167

(beginning-of-line)
(newline))))
could be translated in the new advice mechanism into a plain function:

(defun previous-line--next-line-at-end (&optional arg try-vscroll)
"Insert an empty line when moving up from the top line."
(if (and next-line-add-newlines (= arg 1)
(save-excursion (beginning-of-line) (bobp)))
(progn
(beginning-of-line)
(newline))))
Obviously, this does not actually modify previous-line. For that the old advice needed:
(ad-activate ’previous-line)
whereas the new advice mechanism needs:
(advice-add ’previous-line :before #’previous-line--next-line-at-end)

Note that ad-activate had a global effect: it activated all pieces of advice enabled for that
specified function. If you wanted to only activate or deactivate a particular advice, you needed
to enable or disable that advice with ad-enable-advice and ad-disable-advice. The new
mechanism does away with this distinction.

An around advice such as:

(defadvice foo (around foo-around)
"Ignore case in ‘foo’."
(let ((case-fold-search t))
ad-do-it))
(ad-activate ’foo)
could translate into:

(defun foo--foo-around (orig-fun &rest args)
"Ignore case in ‘foo’."
(let ((case-fold-search t))
(apply orig-fun args)))
(advice-add ’foo :around #’foo--foo-around)

Regarding the advice’s class, note that the new :before is not quite equivalent to the old
before, because in the old advice you could modify the function’s arguments (e.g., with ad-
set-arg), and that would affect the argument values seen by the original function, whereas in
the new :before, modifying an argument via setq in the advice has no effect on the arguments
seen by the original function. When porting a before advice which relied on this behavior,
you’ll need to turn it into a new :around or :filter-args advice instead.

Similarly an old after advice could modify the returned value by changing ad-return-
value, whereas a new :after advice cannot, so when porting such an old after advice, you’ll
need to turn it into a new :around or :filter-return advice instead.

12.11 Declaring Functions Obsolete

You can mark a named function as obsolete, meaning that it may be removed at some point in
the future. This causes Emacs to warn that the function is obsolete whenever it byte-compiles
code containing that function, and whenever it displays the documentation for that function.
In all other respects, an obsolete function behaves like any other function.

The easiest way to mark a function as obsolete is to put a (declare (obsolete ...)) form
in the function’s defun definition. See Section 12.13 [Declare Form|, page 169. Alternatively,
you can use the make-obsolete function, described below.

Chapter 12: Functions 168

A macro (see Chapter 13 [Macros|, page 173) can also be marked obsolete with make-
obsolete; this has the same effects as for a function. An alias for a function or macro can
also be marked as obsolete; this makes the alias itself obsolete, not the function or macro which
it resolves to.

make-obsolete obsolete-name current-name &optional when [Function]
This function marks obsolete-name as obsolete. obsolete-name should be a symbol naming
a function or macro, or an alias for a function or macro.

If current-name is a symbol, the warning message says to use current-name instead of
obsolete-name. current-name does not need to be an alias for obsolete-name; it can be a
different function with similar functionality. current-name can also be a string, which serves
as the warning message. The message should begin in lower case, and end with a period. It
can also be nil, in which case the warning message provides no additional details.

If provided, when should be a string indicating when the function was first made obsolete—for
example, a date or a release number.

define-obsolete-function-alias obsolete-name current-name &optional [Macro]
when doc
This convenience macro marks the function obsolete-name obsolete and also defines it as an
alias for the function current-name. It is equivalent to the following;:

(defalias obsolete-name current-name doc)
(make-obsolete obsolete-name current-name when)

In addition, you can mark a certain a particular calling convention for a function as obsolete:

set-advertised-calling-convention function signature when [Function]
This function specifies the argument list signature as the correct way to call function. This
causes the Emacs byte compiler to issue a warning whenever it comes across an Emacs Lisp
program that calls function any other way (however, it will still allow the code to be byte
compiled). when should be a string indicating when the variable was first made obsolete
(usually a version number string).

For instance, in old versions of Emacs the sit-for function accepted three arguments, like
this
(sit-for seconds milliseconds nodisp)

However, calling sit-for this way is considered obsolete (see Section 20.10 [Waiting],
page 315). The old calling convention is deprecated like this:

(set-advertised-calling-convention
’sit-for ’(seconds &optional nodisp) "22.1")

12.12 Inline Functions

An inline function is a function that works just like an ordinary function, except for one thing:
when you byte-compile a call to the function (see Chapter 16 [Byte Compilation], page 210),
the function’s definition is expanded into the caller. To define an inline function, use defsubst
instead of defun.

defsubst name args [doc| [declare] [interactive] body. . . [Macro]
This macro defines an inline function. Its syntax is exactly the same as defun (see Section 12.4
[Defining Functions], page 155).

Making a function inline often makes its function calls run faster. But it also has disadvan-
tages. For one thing, it reduces flexibility; if you change the definition of the function, calls
already inlined still use the old definition until you recompile them.

Chapter 12: Functions 169

Another disadvantage is that making a large function inline can increase the size of compiled
code both in files and in memory. Since the speed advantage of inline functions is greatest for
small functions, you generally should not make large functions inline.

Also, inline functions do not behave well with respect to debugging, tracing, and advising
(see Section 12.10 [Advising Functions], page 162). Since ease of debugging and the flexibility
of redefining functions are important features of Emacs, you should not make a function inline,
even if it’s small, unless its speed is really crucial, and you’ve timed the code to verify that using
defun actually has performance problems.

It’s possible to define a macro to expand into the same code that an inline function would
execute (see Chapter 13 [Macros|, page 173). But the macro would be limited to direct use in
expressions—a macro cannot be called with apply, mapcar and so on. Also, it takes some work
to convert an ordinary function into a macro. To convert it into an inline function is easy; just
replace defun with defsubst. Since each argument of an inline function is evaluated exactly
once, you needn’t worry about how many times the body uses the arguments, as you do for
macros.

After an inline function is defined, its inline expansion can be performed later on in the same
file, just like macros.

12.13 The declare Form

declare is a special macro which can be used to add “meta” properties to a function or macro:
for example, marking it as obsolete, or giving its forms a special TAB indentation convention in
Emacs Lisp mode.

declare specs. . . [Macro]
This macro ignores its arguments and evaluates to nil; it has no run-time effect. However,
when a declare form occurs in the declare argument of a defun or defsubst function
definition (see Section 12.4 [Defining Functions|, page 155) or a defmacro macro definition
(see Section 13.4 [Defining Macros|, page 175), it appends the properties specified by specs to
the function or macro. This work is specially performed by defun, defsubst, and defmacro.

Each element in specs should have the form (property args...), which should not be
quoted. These have the following effects:

(advertised-calling-convention signature when)
This acts like a call to set-advertised-calling-convention (see Section 12.11
[Obsolete Functions|, page 167); signature specifies the correct argument list for
calling the function or macro, and when should be a string indicating when the
old argument list was first made obsolete.

(debug edebug-form-spec)
This is valid for macros only. When stepping through the macro with Edebug, use
edebug-form-spec. See Section 17.2.15.1 [Instrumenting Macro Calls|, page 237.

(doc-string n)
This is used when defining a function or macro which itself will be used to define
entities like functions, macros, or variables. It indicates that the nth argument,
if any, should be considered as a documentation string.

(indent indent-spec)
Indent calls to this function or macro according to indent-spec. This is typically
used for macros, though it works for functions too. See Section 13.6 [Indenting
Macros|, page 179.

Chapter 12: Functions 170

(obsolete current-name when)
Mark the function or macro as obsolete, similar to a call to make-obsolete (see
Section 12.11 [Obsolete Functions]|, page 167). current-name should be a symbol
(in which case the warning message says to use that instead), a string (specifying
the warning message), or nil (in which case the warning message gives no extra
details). when should be a string indicating when the function or macro was first
made obsolete.

(compiler-macro expander)

This can only be used for functions, and tells the compiler to use expander as
an optimization function. When encountering a call to the function, of the form
(function args...), the macro expander will call expander with that form as
well as with args. .., and expander can either return a new expression to use
instead of the function call, or it can return just the form unchanged, to indicate
that the function call should be left alone. expander can be a symbol, or it can
be a form (lambda (arg) body) in which case arg will hold the original function
call expression, and the (unevaluated) arguments to the function can be accessed
using the function’s formal arguments.

(gv-expander expander)
Declare expander to be the function to handle calls to the macro (or function)
as a generalized variable, similarly to gv-define-expander. expander can be a
symbol or it can be of the form (lambda (arg) body) in which case that function
will additionally have access to the macro (or function)’s arguments.

(gv-setter setter)
Declare setter to be the function to handle calls to the macro (or function) as
a generalized variable. setter can be a symbol in which case it will be passed
to gv-define-simple-setter, or it can be of the form (lambda (arg) body) in
which case that function will additionally have access to the macro (or function)’s
arguments and it will passed to gv-define-setter.

12.14 Telling the Compiler that a Function is Defined

Byte-compiling a file often produces warnings about functions that the compiler doesn’t know
about (see Section 16.6 [Compiler Errors|, page 214). Sometimes this indicates a real problem,
but usually the functions in question are defined in other files which would be loaded if that
code is run. For example, byte-compiling fortran.el used to warn:

In end of data:
fortran.el:2152:1:Warning: the function ‘gud-find-c-expr’ is not
known to be defined.

In fact, gud-find-c-expr is only used in the function that Fortran mode uses for the local
value of gud-find-expr-function, which is a callback from GUD; if it is called, the GUD
functions will be loaded. When you know that such a warning does not indicate a real problem,
it is good to suppress the warning. That makes new warnings which might mean real problems
more visible. You do that with declare-function.

All you need to do is add a declare-function statement before the first use of the function
in question:

(declare-function gud-find-c-expr "gud.el" nil)

This says that gud-find-c-expr is defined in gud.el (the ‘.el’ can be omitted). The
compiler takes for granted that that file really defines the function, and does not check.

The optional third argument specifies the argument list of gud-find-c-expr. In this case,
it takes no arguments (nil is different from not specifying a value). In other cases, this might

Chapter 12: Functions 171

be something like (file &optional overwrite). You don’t have to specify the argument list,
but if you do the byte compiler can check that the calls match the declaration.

declare-function function file &optional arglist fileonly [Macro]
Tell the byte compiler to assume that function is defined, with arguments arglist, and that
the definition should come from the file file. fileonly non-nil means only check that file
exists, not that it actually defines function.

To verify that these functions really are declared where declare-function says they are,
use check-declare-file to check all declare-function calls in one source file, or use check-
declare-directory check all the files in and under a certain directory.

These commands find the file that ought to contain a function’s definition using locate-
library; if that finds no file, they expand the definition file name relative to the directory of
the file that contains the declare-function call.

You can also say that a function is a primitive by specifying a file name ending in ‘.c’ or
‘.m’. This is useful only when you call a primitive that is defined only on certain systems. Most
primitives are always defined, so they will never give you a warning.

Sometimes a file will optionally use functions from an external package. If you prefix the
filename in the declare-function statement with ‘ext:’; then it will be checked if it is found,
otherwise skipped without error.

There are some function definitions that ‘check-declare’ does not understand (e.g.,
defstruct and some other macros). In such cases, you can pass a non-nil fileonly argument to
declare-function, meaning to only check that the file exists, not that it actually defines the
function. Note that to do this without having to specify an argument list, you should set the
arglist argument to t (because nil means an empty argument list, as opposed to an unspecified
one).

12.15 Determining whether a Function is Safe to Call

Some major modes, such as SES, call functions that are stored in user files. (See Info file ses,
node ‘Top’, for more information on SES.) User files sometimes have poor pedigrees—you can
get a spreadsheet from someone you’ve just met, or you can get one through email from someone
you’ve never met. So it is risky to call a function whose source code is stored in a user file until
you have determined that it is safe.

unsafep form &optional unsafep-vars [Function]
Returns nil if form is a safe Lisp expression, or returns a list that describes why it might be
unsafe. The argument unsafep-vars is a list of symbols known to have temporary bindings
at this point; it is mainly used for internal recursive calls. The current buffer is an implicit
argument, which provides a list of buffer-local bindings.

Being quick and simple, unsafep does a very light analysis and rejects many Lisp expressions
that are actually safe. There are no known cases where unsafep returns nil for an unsafe
expression. However, a “safe” Lisp expression can return a string with a display property,
containing an associated Lisp expression to be executed after the string is inserted into a buffer.
This associated expression can be a virus. In order to be safe, you must delete properties from
all strings calculated by user code before inserting them into buffers.

12.16 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 12.5 [Calling Functions], page 156.

Chapter 12: Functions 172

autoload See Section 15.5 [Autoload], page 201.

call-interactively
See Section 20.3 [Interactive Call], page 289.

called-interactively-p
See Section 20.4 [Distinguish Interactive], page 290.

commandp See Section 20.3 [Interactive Call], page 289.

documentation
See Section 23.2 [Accessing Documentation], page 405.

eval See Section 9.4 [Eval|, page 106.

funcall See Section 12.5 [Calling Functions|, page 156.
function See Section 12.7 [Anonymous Functions], page 159.
ignore See Section 12.5 [Calling Functions], page 156.

indirect-function
See Section 9.1.4 [Function Indirection], page 102.

interactive
See Section 20.2.1 [Using Interactive], page 284.

interactive-p
See Section 20.4 [Distinguish Interactive], page 290.

mapatoms See Section 8.3 [Creating Symbols|, page 94.
mapcar See Section 12.6 [Mapping Functions], page 158.

map-char-table
See Section 6.6 [Char-Tables|, page 83.

mapconcat
See Section 12.6 [Mapping Functions], page 158.

undefined
See Section 21.11 [Functions for Key Lookup|, page 334.

Chapter 13: Macros 173

13 Macros

Macros enable you to define new control constructs and other language features. A macro is
defined much like a function, but instead of telling how to compute a value, it tells how to
compute another Lisp expression which will in turn compute the value. We call this expression
the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the arguments,
not on the argument values as functions do. They can therefore construct an expansion con-
taining these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the sake of
speed, consider using an inline function instead. See Section 12.12 [Inline Functions|, page 168.

13.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much like the ++
operator in C. We would like to write (inc x) and have the effect of (setq x (1+ x)). Here’s
a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc %), the argument var is the symbol x—not the value of x, as
it would be in a function. The body of the macro uses this to construct the expansion, which is
(setq x (1+ x)). Once the macro definition returns this expansion, Lisp proceeds to evaluate
it, thus incrementing x.

macrop object [Function]
This predicate tests whether its argument is a macro, and returns t if so, nil otherwise.

13.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name of the
macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one crucial
difference: the macro arguments are the actual expressions appearing in the macro call. They
are not evaluated before they are given to the macro definition. By contrast, the arguments of
a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is in-
voked. The argument variables of the macro are bound to the argument values from the macro
call, or to a list of them in the case of a &rest argument. And the macro body executes and
returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned by
the macro body is an alternate Lisp expression, also known as the expansion of the macro. The
Lisp interpreter proceeds to evaluate the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other macros.
It may even be a call to the same macro, though this is unusual.

Note that Emacs tries to expand macros when loading an uncompiled Lisp file. This is not
always possible, but if it is, it speeds up subsequent execution. See Section 15.1 [How Programs
Do Loading], page 197.

You can see the expansion of a given macro call by calling macroexpand.

Chapter 13: Macros 174

macroexpand form &optional environment [Function]
This function expands form, if it is a macro call. If the result is another macro call, it
is expanded in turn, until something which is not a macro call results. That is the value
returned by macroexpand. If form is not a macro call to begin with, it is returned as given.

Note that macroexpand does not look at the subexpressions of form (although some macro
definitions may do so). Even if they are macro calls themselves, macroexpand does not
expand them.

The function macroexpand does not expand calls to inline functions. Normally there is no
need for that, since a call to an inline function is no harder to understand than a call to an
ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the currently
defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(1ist ’setq var (list ’1+ var)))

(macroexpand ’(inc r))
= (setq r (1+ r))

(defmacro inc2 (varl var2)
(list ’progn (list ’inc varl) (list ’inc var2)))

(macroexpand ’(inc2 r s))
= (progn (inc r) (inc s)) ; inc not expanded here.

macroexpand-all form &optional environment [Function]
macroexpand-all expands macros like macroexpand, but will look for and expand all macros
in form, not just at the top-level. If no macros are expanded, the return value is eq to form.

Repeating the example used for macroexpand above with macroexpand-all, we see that
macroexpand-all does expand the embedded calls to inc:

(macroexpand-all ’(inc2 r s))
= (progn (setq r (1+ r)) (setq s (1+ s)))

13.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then evaluate
the expansion. Why not have the macro body produce the desired results directly? The reason
has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls the
macro definition just as the interpreter would, and receives an expansion. But instead of eval-
uating this expansion, it compiles the expansion as if it had appeared directly in the program.
As a result, the compiled code produces the value and side effects intended for the macro, but
executes at full compiled speed. This would not work if the macro body computed the value
and side effects itself—they would be computed at compile time, which is not useful.

In order for compilation of macro calls to work, the macros must already be defined in Lisp
when the calls to them are compiled. The compiler has a special feature to help you do this: if
a file being compiled contains a defmacro form, the macro is defined temporarily for the rest of
the compilation of that file.

Byte-compiling a file also executes any require calls at top-level in the file, so you can
ensure that necessary macro definitions are available during compilation by requiring the files
that define them (see Section 15.7 [Named Features|, page 205). To avoid loading the macro

Chapter 13: Macros 175

definition files when someone runs the compiled program, write eval-when-compile around the
require calls (see Section 16.5 [Eval During Compile|, page 213).

13.4 Defining Macros

A Lisp macro object is a list whose CAR is macro, and whose CDR is a function. Expansion of
the macro works by applying the function (with apply) to the list of unevaluated arguments
from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this is
never done, because it does not make sense to pass an anonymous macro to functionals such as
mapcar. In practice, all Lisp macros have names, and they are almost always defined with the
defmacro macro.

defmacro name args [doc] [declare] body. . . [Macro]
defmacro defines the symbol name (which should not be quoted) as a macro that looks like
this:
(macro lambda args . body)

(Note that the CDR of this list is a lambda expression.) This macro object is stored in the
function cell of name. The meaning of args is the same as in a function, and the keywords
&rest and &optional may be used (see Section 12.2.3 [Argument List|, page 153). Neither
name nor args should be quoted. The return value of defmacro is undefined.

doc, if present, should be a string specifying the macro’s documentation string. declare, if
present, should be a declare form specifying metadata for the macro (see Section 12.13
[Declare Form]|, page 169). Note that macros cannot have interactive declarations, since they
cannot be called interactively.

Macros often need to construct large list structures from a mixture of constants and noncon-
stant parts. To make this easier, use the ‘¢’ syntax (see Section 9.3 [Backquote|, page 106). For
example:

(defmacro t-becomes-nil (variable)
‘(if (eq ,variable t)
(setq ,variable nil)))

(t-becomes-nil foo)
= (if (eq foo t) (setq foo nil))

The body of a macro definition can include a declare form, which specifies additional prop-
erties about the macro. See Section 12.13 [Declare Form], page 169.

13.5 Common Problems Using Macros

Macro expansion can have counterintuitive consequences. This section describes some important
consequences that can lead to trouble, and rules to follow to avoid trouble.

13.5.1 Wrong Time

The most common problem in writing macros is doing some of the real work prematurely—while
expanding the macro, rather than in the expansion itself. For instance, one real package had
this macro definition:

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)
(set-buffer-multibyte arg)))
With this erroneous macro definition, the program worked fine when interpreted but failed
when compiled. This macro definition called set-buffer-multibyte during compilation, which

Chapter 13: Macros 176

was wrong, and then did nothing when the compiled package was run. The definition that the
programmer really wanted was this:

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)
‘(set-buffer-multibyte ,arg)))

This macro expands, if appropriate, into a call to set-buffer-multibyte that will be executed
when the compiled program is actually run.

13.5.2 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments will be
evaluated when the expansion is executed. The following macro (used to facilitate iteration)
illustrates the problem. This macro allows us to write a “for” loop construct.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))
(cons ’while
(cons (list ’<= var final)
(append body (list (list ’inc var)))))))

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\nJ%d %d" i square)))
—
(let (1 1))
(while (k= i 3)
(setq square (* i i))
(princ (format "\n%d %d" i square))

(inc 1)))
-1 1
-2 4
-3 9
= nil

The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely ignored.
The idea is that you will write noise words (such as from, to, and do) in those positions in the
macro call.

Here’s an equivalent definition simplified through use of backquote:

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
‘(let ((,var ,init))
(while (<= ,var ,final)
,0body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that final is
evaluated on every iteration. If final is a constant, this is not a problem. If it is a more complex
form, say (long-complex-calculation x), this can slow down the execution significantly. If
final has side effects, executing it more than once is probably incorrect.

Chapter 13: Macros 177

A well-designed macro definition takes steps to avoid this problem by producing an expansion
that evaluates the argument expressions exactly once unless repeated evaluation is part of the
intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((1 1)
(max 3))
(while (<= i max)
(setq square (x i i))
(princ (format "%d %d" i square))
(inc 1)))
Here is a macro definition that creates this expansion:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)
(max ,final))
(while (<= ,var max)
,@body
(inc ,var))))

Unfortunately, this fix introduces another problem, described in the following section.

13.5.3 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max which
the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do
(let ((this (frob x)))
(if (< max this)
(setq max this)))))
The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 8.3
[Creating Symbols|, page 94). The uninterned symbol can be bound and referred to just like
any other symbol, but since it is created by for, we know that it cannot already appear in the
user’s program. Since it is not interned, there is no way the user can put it into the program
later. It will never appear anywhere except where put by for. Here is a definition of for that
works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))
‘(let ((,var ,init)
(,tempvar ,final))
(while (<= ,var ,tempvar)
,@body
(inc ,var)))))
This creates an uninterned symbol named max and puts it in the expansion instead of the usual
interned symbol max that appears in expressions ordinarily.

13.5.4 Evaluating Macro Arguments in Expansion

Another problem can happen if the macro definition itself evaluates any of the macro argument
expressions, such as by calling eval (see Section 9.4 [Eval|, page 106). If the argument is
supposed to refer to the user’s variables, you may have trouble if the user happens to use a

Chapter 13: Macros 178

variable with the same name as one of the macro arguments. Inside the macro body, the macro
argument binding is the most local binding of this variable, so any references inside the form
being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(list ’setq (eval a) t))
(setq x ’b)
(foo x) — (setq b t)
=t ; and b has been set.
;3 but
(setq a ’c)
(foo a) +— (setq a t)
=t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts with
the macro argument variable a.

Another problem with calling eval in a macro definition is that it probably won’t do what
you intend in a compiled program. The byte compiler runs macro definitions while compiling
the program, when the program’s own computations (which you might have wished to access
with eval) don’t occur and its local variable bindings don’t exist.

To avoid these problems, don’t evaluate an argument expression while computing the macro
expansion. Instead, substitute the expression into the macro expansion, so that its value will be
computed as part of executing the expansion. This is how the other examples in this chapter
work.

13.5.5 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it is evalu-
ated in an interpreted function, but is expanded only once (during compilation) for a compiled
function. If the macro definition has side effects, they will work differently depending on how
many times the macro is expanded.

Therefore, you should avoid side effects in computation of the macro expansion, unless you
really know what you are doing.

One special kind of side effect can’t be avoided: constructing Lisp objects. Almost all macro
expansions include constructed lists; that is the whole point of most macros. This is usually
safe; there is just one case where you must be careful: when the object you construct is part of
a quoted constant in the macro expansion.

If the macro is expanded just once, in compilation, then the object is constructed just once,
during compilation. But in interpreted execution, the macro is expanded each time the macro
call runs, and this means a new object is constructed each time.

In most clean Lisp code, this difference won’t matter. It can matter only if you perform
side-effects on the objects constructed by the macro definition. Thus, to avoid trouble, avoid
side effects on objects constructed by macro definitions. Here is an example of how such side
effects can get you into trouble:

(defmacro empty-object ()
(list ’quote (comns nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))
(if condition
(setcar object condition))
object))

Chapter 13: Macros 179

If initialize is interpreted, a new list (nil) is constructed each time initialize is called.
Thus, no side effect survives between calls. If initialize is compiled, then the macro empty-
object is expanded during compilation, producing a single “constant” (nil) that is reused and
altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny kind of
constant, not as a memory allocation construct. You wouldn’t use setcar on a constant such
as ’(nil), so naturally you won’t use it on (empty-object) either.

13.6 Indenting Macros

Within a macro definition, you can use the declare form (see Section 13.4 [Defining Macros],
page 175) to specify how TAB should indent calls to the macro. An indentation specification is
written like this:

(declare (indent indent-spec))

Here are the possibilities for indent-spec:

nil This is the same as no property—use the standard indentation pattern.
defun Handle this function like a ‘def’ construct: treat the second line as the start of a
body.

an integer, number

The first number arguments of the function are distinguished arguments; the rest are
considered the body of the expression. A line in the expression is indented according
to whether the first argument on it is distinguished or not. If the argument is part
of the body, the line is indented lisp-body-indent more columns than the open-
parenthesis starting the containing expression. If the argument is distinguished and
is either the first or second argument, it is indented twice that many extra columns.
If the argument is distinguished and not the first or second argument, the line uses
the standard pattern.

a symbol, symbol
symbol should be a function name; that function is called to calculate the indentation
of a line within this expression. The function receives two arguments:

pos The position at which the line being indented begins.

state The value returned by parse-partial-sexp (a Lisp primitive for in-
dentation and nesting computation) when it parses up to the beginning
of this line.

It should return either a number, which is the number of columns of indentation for
that line, or a list whose car is such a number. The difference between returning a
number and returning a list is that a number says that all following lines at the same
nesting level should be indented just like this one; a list says that following lines
might call for different indentations. This makes a difference when the indentation
is being computed by C-M-gq; if the value is a number, C-M-q need not recalculate
indentation for the following lines until the end of the list.

Chapter 14: Customization Settings 180

14 Customization Settings

Users of Emacs can customize variables and faces without writing Lisp code, by using the
Customize interface. See Section “Easy Customization” in The GNU Emacs Manual. This
chapter describes how to define customization items that users can interact with through the
Customize interface.

Customization items include customizable variables, which are defined with the defcustom
macro; customizable faces, which are defined with defface (described separately in
Section 37.12.2 [Defining Faces|, page 754); and customization groups, defined with defgroup,
which act as containers for groups of related customization items.

14.1 Common Item Keywords

The customization declarations that we will describe in the next few sections—defcustom,
defgroup, etc.—all accept keyword arguments (see Section 11.2 [Constant Variables|, page 125)
for specifying various information. This section describes keywords that apply to all types of
customization declarations.

All of these keywords, except :tag, can be used more than once in a given item. Each use
of the keyword has an independent effect. The keyword :tag is an exception because any given
item can only display one name.

:tag label
Use label, a string, instead of the item’s name, to label the item in customization
menus and buffers. Don’t use a tag which is substantially different from the item’s
real name; that would cause confusion.

:group group
Put this customization item in group group. When you use :group in a defgroup,
it makes the new group a subgroup of group.

If you use this keyword more than once, you can put a single item into more than
one group. Displaying any of those groups will show this item. Please don’t overdo
this, since the result would be annoying.

:1link link-data
Include an external link after the documentation string for this item. This is a
sentence containing a button that references some other documentation.

There are several alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in " (emacs)Top". The link appears as ‘[Manuall’ in the cus-
tomization buffer and enters the built-in Info reader on info-node.

(info-link info-node)
Like custom-manual except that the link appears in the customization
buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the URL. The link ap-
pears in the customization buffer as url and invokes the WWW browser
specified by browse-url-browser-function.

(emacs-commentary-link library)
Link to the commentary section of a library; library is a string which
specifies the library name. See Section D.8 [Library Headers|, page 871.

Chapter 14: Customization Settings 181

(emacs-library-link library)
Link to an Emacs Lisp library file; library is a string which specifies the
library name.

(file-link file)
Link to a file; file is a string which specifies the name of the file to visit
with find-file when the user invokes this link.

(function-link function)
Link to the documentation of a function; function is a string which
specifies the name of the function to describe with describe-function
when the user invokes this link.

(variable-link variable)
Link to the documentation of a variable; variable is a string which
specifies the name of the variable to describe with describe-variable
when the user invokes this link.

(custom-group-link group)
Link to another customization group. Invoking it creates a new cus-
tomization buffer for group.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-1link :tag "foo"
"(emacs)Top") makes a link to the Emacs manual which appears in the buffer as
‘foo’.

You can use this keyword more than once, to add multiple links.

:load file
Load file file (a string) before displaying this customization item (see Chapter 15
[Loading], page 197). Loading is done with load, and only if the file is not already
loaded.

:require feature
Execute (require ’feature) when your saved customizations set the value of this
item. feature should be a symbol.

The most common reason to use :require is when a variable enables a feature such
as a minor mode, and just setting the variable won’t have any effect unless the code
which implements the mode is loaded.

:version version
This keyword specifies that the item was first introduced in Emacs version version,
or that its default value was changed in that version. The value version must be a
string.

:package-version ’ (package . version)
This keyword specifies that the item was first introduced in package version version,
or that its meaning or default value was changed in that version. This keyword
takes priority over :version.

package should be the official name of the package, as a symbol (e.g., MH-E). version
should be a string. If the package package is released as part of Emacs, package and
version should appear in the value of customize-package-emacs-version-alist.

Packages distributed as part of Emacs that use the :package-version keyword must also
update the customize-package-emacs-version-alist variable.

Chapter 14: Customization Settings 182

customize-package-emacs-version-alist [Variable]
This alist provides a mapping for the versions of Emacs that are associated with versions of
a package listed in the :package-version keyword. Its elements are:

(package (pversion . eversion)...)
For each package, which is a symbol, there are one or more elements that contain a package
version pversion with an associated Emacs version eversion. These versions are strings. For
example, the MH-E package updates this alist with the following:

(add-to-list ’customize-package-emacs-version-alist

>(MH-E ("6.0" . "22.1") ("6.1" . "22.1") ("7.0" . "22.1")
(n7.1u . ||22‘1n) (ll7'2ll . II22.1II) (Il7.3II . Il22'1ll)
(n7'4u . ||22.1n) (us'ou . n22'1u)))

The value of package needs to be unique and it needs to match the package value appearing
in the :package-version keyword. Since the user might see the value in an error message,
a good choice is the official name of the package, such as MH-E or Gnus.

14.2 Defining Customization Groups

Each Emacs Lisp package should have one main customization group which contains all the
options, faces and other groups in the package. If the package has a small number of options
and faces, use just one group and put everything in it. When there are more than twenty or so
options and faces, then you should structure them into subgroups, and put the subgroups under
the package’s main customization group. It is OK to put some of the options and faces in the
package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one or
more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

defgroup group members doc [keyword value]. . . [Macro]
Declare group as a customization group containing members. Do not quote the symbol group.
The argument doc specifies the documentation string for the group.

The argument members is a list specifying an initial set of customization items to be members
of the group. However, most often members is nil, and you specify the group’s members by
using the :group keyword when defining those members.

If you want to specify group members through members, each element should have the form
(name widget). Here name is a symbol, and widget is a widget type for editing that symbol.
Useful widgets are custom-variable for a variable, custom-face for a face, and custom-
group for a group.

When you introduce a new group into Emacs, use the :version keyword in the defgroup;
then you need not use it for the individual members of the group.

In addition to the common keywords (see Section 14.1 [Common Keywords], page 180), you
can also use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, and the customizable
variable custom-unlispify-remove-prefixes is non-nil, the item’s tag will
omit prefix. A group can have any number of prefixes.

custom-unlispify-remove-prefixes [User Option)]
If this variable is non-nil, the prefixes specified by a group’s :prefix keyword are omitted
from tag names, whenever the user customizes the group.

Chapter 14: Customization Settings 183

The default value is nil, i.e., the prefix-discarding feature is disabled. This is because
discarding prefixes often leads to confusing names for options and faces.

14.3 Defining Customization Variables

Customizable variables, also called user options, are global Lisp variables whose values can be set
through the Customize interface. Unlike other global variables, which are defined with defvar
(see Section 11.5 [Defining Variables|, page 128), customizable variables are defined using the
defcustom macro. In addition to calling defvar as a subroutine, defcustom states how the
variable should be displayed in the Customize interface, the values it is allowed to take, etc.

defcustom option standard doc [keyword value]. . . [Macro]
This macro declares option as a user option (i.e., a customizable variable). You should not
quote option.

The argument standard is an expression that specifies the standard value for option. Eval-
uating the defcustom form evaluates standard, but does not necessarily bind the option to
that value. If option already has a default value, it is left unchanged. If the user has already
saved a customization for option, the user’s customized value is installed as the default value.
Otherwise, the result of evaluating standard is installed as the default value.

Like defvar, this macro marks option as a special variable, meaning that it should always
be dynamically bound. If option is already lexically bound, that lexical binding remains in
effect until the binding construct exits. See Section 11.9 [Variable Scoping], page 133.

The expression standard can be evaluated at various other times, too—whenever the cus-
tomization facility needs to know option’s standard value. So be sure to use an expression
which is harmless to evaluate at any time.

The argument doc specifies the documentation string for the variable.

If a defcustom does not specify any :group, the last group defined with defgroup in the
same file will be used. This way, most defcustom do not need an explicit :group.

When you evaluate a defcustom form with C-M-x in Emacs Lisp mode (eval-defun), a
special feature of eval-defun arranges to set the variable unconditionally, without testing
whether its value is void. (The same feature applies to defvar, see Section 11.5 [Defining
Variables], page 128.) Using eval-defun on a defcustom that is already defined calls the
:set function (see below), if there is one.

If you put a defcustom in a pre-loaded Emacs Lisp file (see Section E.1 [Building Emacs],
page 874), the standard value installed at dump time might be incorrect, e.g., because another
variable that it depends on has not been assigned the right value yet. In that case, use custom-
reevaluate-setting, described below, to re-evaluate the standard value after Emacs starts

up.

In addition to the keywords listed in Section 14.1 [Common Keywords], page 180, this macro
accepts the following keywords:

:type type
Use type as the data type for this option. It specifies which values are legitimate,
and how to display the value (see Section 14.4 [Customization Types|, page 186).

:options value-list
Specify the list of reasonable values for use in this option. The user is not restricted
to using only these values, but they are offered as convenient alternatives.

This is meaningful only for certain types, currently including hook, plist and alist.
See the definition of the individual types for a description of how to use :options.

Chapter 14: Customization Settings 184

:set setfunction
Specify setfunction as the way to change the value of this option when using the
Customize interface. The function setfunction should take two arguments, a symbol
(the option name) and the new value, and should do whatever is necessary to update
the value properly for this option (which may not mean simply setting the option
as a Lisp variable); preferably, though, it should not modify its value argument
destructively. The default for setfunction is set-default.

If you specify this keyword, the variable’s documentation string should describe how
to do the same job in hand-written Lisp code.

:get getfunction
Specify getfunction as the way to extract the value of this option. The function
getfunction should take one argument, a symbol, and should return whatever cus-
tomize should use as the “current value” for that symbol (which need not be the
symbol’s Lisp value). The default is default-value.

You have to really understand the workings of Custom to use :get correctly. It is
meant for values that are treated in Custom as variables but are not actually stored
in Lisp variables. It is almost surely a mistake to specify getfunction for a value
that really is stored in a Lisp variable.

:initialize function
function should be a function used to initialize the variable when the defcustom
is evaluated. It should take two arguments, the option name (a symbol) and the
value. Here are some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable, but do not
reinitialize it if it is already non-void.

custom-initialize-default
Like custom-initialize-set, but use the function set-default to set
the variable, instead of the variable’s :set function. This is the usual
choice for a variable whose :set function enables or disables a minor
mode; with this choice, defining the variable will not call the minor
mode function, but customizing the variable will do so.

custom-initialize-reset
Always use the :set function to initialize the variable. If the variable is
already non-void, reset it by calling the :set function using the current
value (returned by the :get method). This is the default :initialize
function.

custom-initialize-changed
Use the :set function to initialize the variable, if it is already set or has
been customized; otherwise, just use set-default.

custom-initialize-safe-set

custom-initialize-safe-default
These functions behave like custom-initialize-set (custom-
initialize-default, respectively), but catch errors. If an error
occurs during initialization, they set the wvariable to nil using
set-default, and signal no error.
These functions are meant for options defined in pre-loaded files, where

the standard expression may signal an error because some required vari-
able or function is not yet defined. The value normally gets updated in

Chapter 14: Customization Settings 185

startup.el, ignoring the value computed by defcustom. After startup,
if one unsets the value and reevaluates the defcustom, the standard ex-
pression can be evaluated without error.

:risky value
Set the variable’s risky-local-variable property to value (see Section 11.11 [File
Local Variables|, page 142).

:safe function
Set the variable’s safe-local-variable property to function (see Section 11.11
[File Local Variables], page 142).

:set-after variables
When setting variables according to saved customizations, make sure to set the
variables variables before this one; i.e., delay setting this variable until after those
others have been handled. Use :set-after if setting this variable won’t work prop-
erly unless those other variables already have their intended values.

It is useful to specify the :require keyword for an option that “turns on” a certain feature.
This causes Emacs to load the feature, if it is not already loaded, whenever the option is set. See
Section 14.1 [Common Keywords|, page 180. Here is an example, from the library saveplace.el:

(defcustom save-place nil
"Non-nil means automatically save place in each file..."
:type ’boolean
:require ’saveplace
:group ’save-place)

If a customization item has a type such as hook or alist, which supports :options, you
can add additional values to the list from outside the defcustom declaration by calling custom-
add-frequent-value. For example, if you define a function my-lisp-mode-initialization
intended to be called from emacs-1isp-mode-hook, you might want to add that to the list of
reasonable values for emacs-1isp-mode-hook, but not by editing its definition. You can do it
thus:

(custom-add-frequent-value ’emacs-lisp-mode-hook
‘my-lisp-mode-initialization)

custom-add-frequent-value symbol value [Function]
For the customization option symbol, add value to the list of reasonable values.

The precise effect of adding a value depends on the customization type of symbol.

Internally, defcustom uses the symbol property standard-value to record the expression for
the standard value, saved-value to record the value saved by the user with the customization
buffer, and customized-value to record the value set by the user with the customization buffer,
but not saved. See Section 8.4 [Symbol Properties|, page 97. These properties are lists, the car
of which is an expression that evaluates to the value.

custom-reevaluate-setting symbol [Function]
This function re-evaluates the standard value of symbol, which should be a user option
declared via defcustom. If the variable was customized, this function re-evaluates the saved
value instead. Then it sets the user option to that value (using the option’s :set property if
that is defined).

This is useful for customizable options that are defined before their value could be computed
correctly. For example, during startup Emacs calls this function for some user options that
were defined in pre-loaded Emacs Lisp files, but whose initial values depend on information
available only at run-time.

Chapter 14: Customization Settings 186

custom-variable-p arg [Function]
This function returns non-nil if arg is a customizable variable. A customizable variable is
either a variable that has a standard-value or custom-autoload property (usually meaning
it was declared with defcustom), or an alias for another customizable variable.

14.4 Customization Types

When you define a user option with defcustom, you must specify its customization type. That
is a Lisp object which describes (1) which values are legitimate and (2) how to display the value
in the customization buffer for editing.

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated, but only once when the defcustom is executed, so it isn’t useful for the
value to vary. Normally we use a quoted constant. For example:

(defcustom diff-command "diff"
"The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number of
arguments, depending on the symbol. Between the type symbol and its arguments, you can
optionally write keyword-value pairs (see Section 14.4.4 [Type Keywords|, page 192).

Some type symbols do not use any arguments; those are called simple types. For a simple
type, if you do not use any keyword-value pairs, you can omit the parentheses around the type
symbol. For example just string as a customization type is equivalent to (string).

All customization types are implemented as widgets; see Section “Introduction” in The Emacs
Widget Library, for details.
14.4.1 Simple Types

This section describes all the simple customization types. For several of these customization
types, the customization widget provides inline completion with C-M-i or M-TAB.

sexp The value may be any Lisp object that can be printed and read back. You can use
sexp as a fall-back for any option, if you don’t want to take the time to work out a
more specific type to use.

integer The value must be an integer.

number The value must be a number (floating point or integer).

float The value must be floating point.

string The value must be a string. The customization buffer shows the string without
delimiting ‘"’ characters or ‘\’ quotes.

regexp Like string except that the string must be a valid regular expression.

character

The value must be a character code. A character code is actually an integer, but
this type shows the value by inserting the character in the buffer, rather than by
showing the number.

file The value must be a file name. The widget provides completion.

(file :must-match t)
The value must be a file name for an existing file. The widget provides completion.

Chapter 14: Customization Settings 187

directory
The value must be a directory name. The widget provides completion.

hook The value must be a list of functions. This customization type is used for hook
variables. You can use the :options keyword in a hook variable’s defcustom to
specify a list of functions recommended for use in the hook; See Section 14.3 [Variable
Definitions|, page 183.

symbol The value must be a symbol. It appears in the customization buffer as the symbol

name. The widget provides completion.

function The value must be either a lambda expression or a function name. The widget
provides completion for function names.

variable The value must be a variable name. The widget provides completion.
face The value must be a symbol which is a face name. The widget provides completion.

boolean The value is boolean—either nil or t. Note that by using choice and const
together (see the next section), you can specify that the value must be nil or t, but
also specify the text to describe each value in a way that fits the specific meaning
of the alternative.

key-sequence
The value is a key sequence. The customization buffer shows the key sequence using
the same syntax as the kbd function. See Section 21.1 [Key Sequences|, page 323.

coding-system
The value must be a coding-system name, and you can do completion with M-TAB.
color The value must be a valid color name. The widget provides completion for color

names, as well as a sample and a button for selecting a color name from a list of
color names shown in a *Colors* buffer.

14.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build new
types from other types or from specified data. The specified types or data are called the argu-
ments of the composite type. The composite type normally looks like this:

(constructor arguments...)
but you can also add keyword-value pairs before the arguments, like this:

(constructor {keyword value}... arguments...)

Here is a table of constructors and how to use them to write composite types:

(cons car-type cdr-type)
The value must be a cons cell, its CAR must fit car-type, and its CDR must fit cdr-
type. For example, (cons string symbol) is a customization type which matches
values such as ("foo" . foo).

In the customization buffer, the CAR and CDR are displayed and edited separately,
each according to their specified type.

(1ist element-types...)
The value must be a list with exactly as many elements as the element-types given;
and each element must fit the corresponding element-type.

For example, (1ist integer string function) describes a list of three elements;
the first element must be an integer, the second a string, and the third a function.
In the customization buffer, each element is displayed and edited separately, accord-
ing to the type specified for it.

Chapter 14: Customization Settings 188

(group element-types...)
This works like 1ist except for the formatting of text in the Custom buffer. list
labels each element value with its tag; group does not.

(vector element-types...)
Like 1ist except that the value must be a vector instead of a list. The elements
work the same as in list.

(alist :key-type key-type :value-type value-type)
The value must be a list of cons-cells, the CAR of each cell representing a key of
customization type key-type, and the CDR of the same cell representing a value of
customization type value-type. The user can add and delete key/value pairs, and
edit both the key and the value of each pair.

If omitted, key-type and value-type default to sexp.

The user can add any key matching the specified key type, but you can give some
keys a preferential treatment by specifying them with the : options (see Section 14.3
[Variable Definitions|, page 183). The specified keys will always be shown in the
customize buffer (together with a suitable value), with a checkbox to include or
exclude or disable the key/value pair from the alist. The user will not be able to
edit the keys specified by the :options keyword argument.

The argument to the :options keywords should be a list of specifications for reason-
able keys in the alist. Ordinarily, they are simply atoms, which stand for themselves.
For example:

ZOptiOIlS ’("fOO" "bar" "baz")

specifies that there are three “known” keys, namely "foo", "bar" and "baz", which
will always be shown first.

You may want to restrict the value type for specific keys, for example, the value
associated with the "bar" key can only be an integer. You can specify this by using
a list instead of an atom in the list. The first element will specify the key, like before,
while the second element will specify the value type. For example:
:options ’("foo" ("bar" integer) "baz")
Finally, you may want to change how the key is presented. By default, the key is
simply shown as a const, since the user cannot change the special keys specified
with the :options keyword. However, you may want to use a more specialized
type for presenting the key, like function-item if you know it is a symbol with a
function binding. This is done by using a customization type specification instead
of a symbol for the key.
:options ’("foo"
((function-item some-function) integer)
"baz")
Many alists use lists with two elements, instead of cons cells. For example,
(defcustom list-alist
> (("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE).")
instead of
(defcustom cons-alist
>(("foo" . 1) ("bar" . 2) ("baz" . 3))
"Each element is a cons-cell (KEY . VALUE).")
Because of the way lists are implemented on top of cons cells, you can treat list-
alist in the example above as a cons cell alist, where the value type is a list with
a single element containing the real value.

Chapter 14: Customization Settings 189

(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE)."
:type ’(alist :value-type (group integer)))
The group widget is used here instead of 1ist only because the formatting is better
suited for the purpose.

Similarly, you can have alists with more values associated with each key, using
variations of this trick:

(defcustom person-data ’(("brian" 50 t)
("dorith" 55 nil)
("ken" 52 t))
"Alist of basic info about people.
Each element has the form (NAME AGE MALE-FLAG)."
:type ’(alist :value-type (group integer boolean)))

(plist :key-type key-type :value-type value-type)
This customization type is similar to alist (see above), except that (i) the infor-
mation is stored as a property list, (see Section 5.9 [Property Lists|, page 76), and
(ii) key-type, if omitted, defaults to symbol rather than sexp.

(choice alternative-types...)
The value must fit one of alternative-types. For example, (choice integer string)
allows either an integer or a string.

In the customization buffer, the user selects an alternative using a menu, and can
then edit the value in the usual way for that alternative.

Normally the strings in this menu are determined automatically from the choices;
however, you can specify different strings for the menu by including the :tag key-
word in the alternatives. For example, if an integer stands for a number of spaces,
while a string is text to use verbatim, you might write the customization type this
way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal text’.

In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword. See
Section 14.4.4 [Type Keywords], page 192.

If some values are covered by more than one of the alternatives, customize will
choose the first alternative that the value fits. This means you should always list
the most specific types first, and the most general last. Here’s an example of proper
usage:
(choice (const :tag "Off" nil)
symbol (sexp :tag "Other"))

This way, the special value nil is not treated like other symbols, and symbols are
not treated like other Lisp expressions.

(radio element-types...)
This is similar to choice, except that the choices are displayed using ‘radio buttons’
rather than a menu. This has the advantage of displaying documentation for the
choices when applicable and so is often a good choice for a choice between constant
functions (function-item customization types).

(const value)
The value must be value—nothing else is allowed.

Chapter 14: Customization Settings 190

The main use of const is inside of choice. For example, (choice integer (const
nil)) allows either an integer or nil.

:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(const :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and foo means “ask”.

(other value)
This alternative can match any Lisp value, but if the user chooses this alternative,
that selects the value value.

The main use of other is as the last element of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(other :tag "Ask" foo))
describes a variable for which t means yes, nil means no, and anything else means
“ask”. If the user chooses ‘Ask’ from the menu of alternatives, that specifies the
value foo; but any other value (not t, nil or foo) displays as ‘Ask’, just like foo.

(function-item function)
Like const, but used for values which are functions. This displays the documenta-
tion string as well as the function name. The documentation string is either the one
you specify with :doc, or function’s own documentation string.

(variable-item variable)
Like const, but used for values which are variable names. This displays the docu-
mentation string as well as the variable name. The documentation string is either
the one you specify with :doc, or variable’s own documentation string.

(set types...)
The value must be a list, and each element of the list must match one of the types
specified.

This appears in the customization buffer as a checklist, so that each of types may
have either one corresponding element or none. It is not possible to specify two
different elements that match the same one of types. For example, (set integer
symbol) allows one integer and/or one symbol in the list; it does not allow multiple
integers or multiple symbols. As a result, it is rare to use nonspecific types such as
integer in a set.

Most often, the types in a set are const types, as shown here:

(set (const :bold) (const :italic))
Sometimes they describe possible elements in an alist:

(set (cons :tag "Height" (const height) integer)

(cons :tag "Width" (const width) integer))
That lets the user specify a height value optionally and a width value optionally.
(repeat element-type)

The value must be a list and each element of the list must fit the type element-type.

This appears in the customization buffer as a list of elements, with ‘[INS]’ and
‘[DEL]’ buttons for adding more elements or removing elements.

(restricted-sexp :match-alternatives criteria)
This is the most general composite type construct. The value may be any Lisp object
that satisfies one of criteria. criteria should be a list, and each element should be
one of these possibilities:

Chapter 14: Customization Settings 191

e A predicate—that is, a function of one argument that has no side effects, and
returns either nil or non-nil according to the argument. Using a predicate in
the list says that objects for which the predicate returns non-nil are acceptable.

e A quoted constant—that is, > object. This sort of element in the list says that
object itself is an acceptable value.

For example,

(restricted-sexp :match-alternatives
(integerp ’t ’nil))

allows integers, t and nil as legitimate values.

The customization buffer shows all legitimate values using their read syntax, and
the user edits them textually.

Here is a table of the keywords you can use in keyword-value pairs in a composite type:

:tag tag Use tag as the name of this alternative, for user communication purposes. This is
useful for a type that appears inside of a choice.

:match-alternatives criteria
Use criteria to match possible values. This is used only in restricted-sexp.

rargs argument-1ist
Use the elements of argument-list as the arguments of the type construct. For
instance, (const :args (foo)) is equivalent to (const foo). You rarely need to
write :args explicitly, because normally the arguments are recognized automatically
as whatever follows the last keyword-value pair.

14.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of a 1ist
or vector customization type. You use it by adding :inline t to a type specification which is
contained in a list or vector specification.

Normally, each entry in a 1list or vector type specification describes a single element type.
But when an entry contains :inline t, the value it matches is merged directly into the con-
taining sequence. For example, if the entry matches a list with three elements, those become
three elements of the overall sequence. This is analogous to ‘,@" in a backquote construct (see
Section 9.3 [Backquote], page 106).

For example, to specify a list whose first element must be baz and whose remaining arguments
should be zero or more of foo and bar, use this customization type:

(list (const baz) (set :inline t (const foo) (const bar)))
This matches values such as (baz), (baz foo), (baz bar) and (baz foo bar).

When the element-type is a choice, you use :inline not in the choice itself, but in (some
of) the alternatives of the choice. For example, to match a list which must start with a file
name, followed either by the symbol t or two strings, use this customization type:

(1ist file
(choice (const t)
(1ist :inline t string string)))

If the user chooses the first alternative in the choice, then the overall list has two elements and
the second element is t. If the user chooses the second alternative, then the overall list has three
elements and the second and third must be strings.

Chapter 14: Customization Settings 192

14.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name symbol.
Here are the keywords you can use, and their meanings:

:value default

Provide a default value.

If nil is not a valid value for the alternative, then it is essential to specify a valid
default with :value.

If you use this for a type that appears as an alternative inside of choice; it specifies
the default value to use, at first, if and when the user selects this alternative with
the menu in the customization buffer.

Of course, if the actual value of the option fits this alternative, it will appear showing
the actual value, not default.

:format format-string

This string will be inserted in the buffer to represent the value corresponding to the
type. The following ‘%’ escapes are available for use in format-string:

‘% [buttoni]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is
a function which takes two arguments—the widget which the button
appears in, and the event.

There is no way to specify two different buttons with different actions.

‘%{samplel}’
Show sample in a special face specified by :sample-face.

v’ Substitute the item’s value. How the value is represented depends on
the kind of item, and (for variables) on the customization type.

hd’ Substitute the item’s documentation string.

AN Like ‘%4d’, but if the documentation string is more than one line, add a
button to control whether to show all of it or just the first line.

e’ Substitute the tag here. You specify the tag with the :tag keyword.
s Display a literal ‘% .

:action action

Perform action if the user clicks on a button.

:button-face face

Use the face face (a face name or a list of face names) for button text displayed with

/2 A I

:button-prefix prefix
:button-suffix suffix

‘tag tag

These specify the text to display before and after a button. Each can be:
nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

Chapter 14: Customization Settings 193

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value for
:format, and use ‘%d’ or ‘4h’ in that value.

The usual reason to specify a documentation string for a type is to provide more
information about the meanings of alternatives inside a :choice type or the parts
of some other composite type.

:help-echo motion-doc
When you move to this item with widget-forward or widget-backward, it will
display the string motion-doc in the echo area. In addition, motion-doc is used as
the mouse help-echo string and may actually be a function or form evaluated to
yield a help string. If it is a function, it is called with one argument, the widget.

:match function
Specify how to decide whether a value matches the type. The corresponding value,
function, should be a function that accepts two arguments, a widget and a value; it
should return non-nil if the value is acceptable.

:validate function
Specify a validation function for input. function takes a widget as an argument, and
should return nil if the widget’s current value is valid for the widget. Otherwise, it
should return the widget containing the invalid data, and set that widget’s :error
property to a string explaining the error.

14.4.5 Defining New Types

In the previous sections we have described how to construct elaborate type specifications for
defcustom. In some cases you may want to give such a type specification a name. The obvious
case is when you are using the same type for many user options: rather than repeat the spec-
ification for each option, you can give the type specification a name, and use that name each
defcustom. The other case is when a user option’s value is a recursive data structure. To make
it possible for a datatype to refer to itself, it needs to have a name.

Since custom types are implemented as widgets, the way to define a new customize type is to
define a new widget. We are not going to describe the widget interface here in details, see Section
“Introduction” in The Emacs Widget Library, for that. Instead we are going to demonstrate
the minimal functionality needed for defining new customize types by a simple example.

(define-widget ’binary-tree-of-string ’lazy

"A binary tree made of cons-cells and strings."

:offset 4

:tag "Node"

:type ’(choice (string :tag "Leaf" :value "")

(cons :tag "Interior"

:value (""" . "")
binary-tree-of-string
binary-tree-of-string)))

(defcustom foo-bar ""
"Sample variable holding a binary tree of strings."
:type ’binary-tree-of-string)

The function to define a new widget is called define-widget. The first argument is the
symbol we want to make a new widget type. The second argument is a symbol representing an
existing widget, the new widget is going to be defined in terms of difference from the existing wid-
get. For the purpose of defining new customization types, the lazy widget is perfect, because it
accepts a :type keyword argument with the same syntax as the keyword argument to defcustom

Chapter 14: Customization Settings 194

with the same name. The third argument is a documentation string for the new widget. You
will be able to see that string with the M-x widget-browse RET binary-tree-of-string RET
command.

After these mandatory arguments follow the keyword arguments. The most important is
:type, which describes the data type we want to match with this widget. Here a binary-tree-
of-string is described as being either a string, or a cons-cell whose car and cdr are themselves
both binary-tree-of-string. Note the reference to the widget type we are currently in the
process of defining. The :tag attribute is a string to name the widget in the user interface, and
the :offset argument is there to ensure that child nodes are indented four spaces relative to
the parent node, making the tree structure apparent in the customization buffer.

The defcustom shows how the new widget can be used as an ordinary customization type.

The reason for the name lazy is that the other composite widgets convert their inferior
widgets to internal form when the widget is instantiated in a buffer. This conversion is recursive,
so the inferior widgets will convert their inferior widgets. If the data structure is itself recursive,
this conversion is an infinite recursion. The lazy widget prevents the recursion: it convert its
:type argument only when needed.

14.5 Applying Customizations

The following functions are responsible for installing the user’s customization settings for vari-
ables and faces, respectively. When the user invokes ‘Save for future sessions’ in the Cus-
tomize interface, that takes effect by writing a custom-set-variables and/or a custom-set-
faces form into the custom file, to be evaluated the next time Emacs starts.

custom-set-variables &rest args [Function]
This function installs the variable customizations specified by args. Each argument in args
should have the form

(var expression [now [request [comment]]])

var is a variable name (a symbol), and expression is an expression which evaluates to the
desired customized value.

If the defcustom form for var has been evaluated prior to this custom-set-variables call,
expression is immediately evaluated, and the variable’s value is set to the result. Otherwise,
expression is stored into the variable’s saved-value property, to be evaluated when the
relevant defcustom is called (usually when the library defining that variable is loaded into
Emacs).

The now, request, and comment entries are for internal use only, and may be omitted. now,
if non-nil, means to set the variable’s value now, even if the variable’s defcustom form has
not been evaluated. request is a list of features to be loaded immediately (see Section 15.7
[Named Features|, page 205). comment is a string describing the customization.

custom-set-faces &rest args [Function]
This function installs the face customizations specified by args. Each argument in args should
have the form

(face spec [now [comment]])

face is a face name (a symbol), and spec is the customized face specification for that face
(see Section 37.12.2 [Defining Faces], page 754).

The now and comment entries are for internal use only, and may be omitted. now, if non-nil,
means to install the face specification now, even if the defface form has not been evaluated.
comment is a string describing the customization.

Chapter 14: Customization Settings 195

14.6 Custom Themes

Custom themes are collections of settings that can be enabled or disabled as a unit. See Section
“Custom Themes” in The GNU Emacs Manual. Each Custom theme is defined by an Emacs
Lisp source file, which should follow the conventions described in this section. (Instead of writing
a Custom theme by hand, you can also create one using a Customize-like interface; see Section
“Creating Custom Themes” in The GNU Emacs Manual.)

A Custom theme file should be named foo-theme.el, where foo is the theme name. The
first Lisp form in the file should be a call to deftheme, and the last form should be a call to
provide-theme.

deftheme theme &optional doc [Macro]
This macro declares theme (a symbol) as the name of a Custom theme. The optional argu-
ment doc should be a string describing the theme; this is the description shown when the
user invokes the describe-theme command or types ? in the ‘*Custom Themes*’ buffer.

Two special theme names are disallowed (using them causes an error): user is a “dummy”
theme that stores the user’s direct customization settings, and changed is a “dummy” theme
that stores changes made outside of the Customize system.

provide-theme theme [Macro]
This macro declares that the theme named theme has been fully specified.

In between deftheme and provide-theme are Lisp forms specifying the theme settings: usu-
ally a call to custom-theme-set-variables and/or a call to custom-theme-set-faces.

custom-theme-set-variables theme &rest args [Function]
This function specifies the Custom theme theme’s variable settings. theme should be a
symbol. Each argument in args should be a list of the form

(var expression [now [request [comment]]])

where the list entries have the same meanings as in custom-set-variables. See Section 14.5
[Applying Customizations], page 194.

custom-theme-set-faces theme &rest args [Function]
This function specifies the Custom theme theme’s face settings. theme should be a symbol.
Each argument in args should be a list of the form

(face spec [now [comment]])

where the list entries have the same meanings as in custom-set-faces. See Section 14.5
[Applying Customizations], page 194.

)

In theory, a theme file can also contain other Lisp forms, which would be evaluated when
loading the theme, but that is “bad form”. To protect against loading themes containing mali-
cious code, Emacs displays the source file and asks for confirmation from the user before loading
any non-built-in theme for the first time.

The following functions are useful for programmatically enabling and disabling themes:

custom-theme-p theme [Function]
This function return a non-nil value if theme (a symbol) is the name of a Custom theme (i.e.,
a Custom theme which has been loaded into Emacs, whether or not the theme is enabled).
Otherwise, it returns nil.

custom-known-themes [Variable]
The value of this variable is a list of themes loaded into Emacs. Each theme is represented
by a Lisp symbol (the theme name). The default value of this variable is a list containing

Chapter 14: Customization Settings 196

two “dummy” themes: (user changed). The changed theme stores settings made before
any Custom themes are applied (e.g., variables set outside of Customize). The user theme
stores settings the user has customized and saved. Any additional themes declared with the
deftheme macro are added to the front of this list.

load-theme theme &optional no-confirm no-enable [Command]|
This function loads the Custom theme named theme from its source file, looking for the
source file in the directories specified by the variable custom-theme-load-path. See Section
“Custom Themes” in The GNU Emacs Manual. It also enables the theme (unless the optional
argument no-enable is non-nil), causing its variable and face settings to take effect. It
prompts the user for confirmation before loading the theme, unless the optional argument
no-confirm is non-nil.

enable-theme theme [Command|
This function enables the Custom theme named theme. It signals an error if no such theme

has been loaded.

disable-theme theme [Command]|
This function disables the Custom theme named theme. The theme remains loaded, so that
a subsequent call to enable-theme will re-enable it.

Chapter 15: Loading 197

15 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the form
of Lisp objects. Emacs finds and opens the file, reads the text, evaluates each form, and then
closes the file. Such a file is also called a Lisp library.

The load functions evaluate all the expressions in a file just as the eval-buffer function
evaluates all the expressions in a buffer. The difference is that the load functions read and
evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled code.
Fach form in the file is called a top-level form. There is no special format for the forms in a
loadable file; any form in a file may equally well be typed directly into a buffer and evaluated
there. (Indeed, most code is tested this way.) Most often, the forms are function definitions and
variable definitions.

For on-demand loading of external libraries, see Section 38.20 [Dynamic Libraries|, page 836.

15.1 How Programs Do Loading

Emacs Lisp has several interfaces for loading. For example, autoload creates a placeholder
object for a function defined in a file; trying to call the autoloading function loads the file to
get the function’s real definition (see Section 15.5 [Autoload], page 201). require loads a file
if it isn’t already loaded (see Section 15.7 [Named Features|, page 205). Ultimately, all these
facilities call the load function to do the work.

load filename &optional missing-ok nomessage nosuffix must-suffix [Function]
This function finds and opens a file of Lisp code, evaluates all the forms in it, and closes the
file.

To find the file, 1load first looks for a file named filename.elc, that is, for a file whose name
is filename with the extension ‘.elc’ appended. If such a file exists, it is loaded. If there is
no file by that name, then load looks for a file named filename.el. If that file exists, it is
loaded. Finally, if neither of those names is found, load looks for a file named filename with
nothing appended, and loads it if it exists. (The load function is not clever about looking
at filename. In the perverse case of a file named foo.el.el, evaluation of (load "foo.el")
will indeed find it.)

If Auto Compression mode is enabled, as it is by default, then if 1load can not find a file, it
searches for a compressed version of the file before trying other file names. It decompresses
and loads it if it exists. It looks for compressed versions by appending each of the suffixes
in jka-compr-load-suffixes to the file name. The value of this variable must be a list of
strings. Its standard value is (".gz").

3)

If the optional argument nosuffix is non-nil, then load does not try the suffixes ‘.elc
and ‘.el’. In this case, you must specify the precise file name you want, except that, if
Auto Compression mode is enabled, load will still use jka-compr-load-suffixes to find
compressed versions. By specifying the precise file name and using t for nosuffix, you can
prevent file names like foo.el.el from being tried.

If the optional argument must-suffix is non-nil, then load insists that the file name used
must end in either ‘.el’ or ‘.elc’ (possibly extended with a compression suffix), unless it
contains an explicit directory name.

If the option load-prefer-newer is non-nil, then when searching suffixes, load selects
whichever version of a file (‘.elc’, ‘.el’, etc.) has been modified most recently.

If filename is a relative file name, such as foo or baz/foo.bar, load searches for the file using
the variable load-path. It appends filename to each of the directories listed in load-path,

Chapter 15: Loading 198

and loads the first file it finds whose name matches. The current default directory is tried
only if it is specified in load-path, where nil stands for the default directory. load tries all
three possible suffixes in the first directory in load-path, then all three suffixes in the second
directory, and so on. See Section 15.3 [Library Search], page 199.

Whatever the name under which the file is eventually found, and the directory where Emacs
found it, Emacs sets the value of the variable 1oad-file-name to that file’s name.

If you get a warning that foo.elc is older than foo.el, it means you should consider recom-
piling foo.el. See Chapter 16 [Byte Compilation], page 210.

When loading a source file (not compiled), load performs character set translation just as
Emacs would do when visiting the file. See Section 32.10 [Coding Systems|, page 636.

When loading an uncompiled file, Emacs tries to expand any macros that the file contains
(see Chapter 13 [Macros|, page 173). We refer to this as eager macro expansion. Doing this
(rather than deferring the expansion until the relevant code runs) can significantly speed up
the execution of uncompiled code. Sometimes, this macro expansion cannot be done, owing
to a cyclic dependency. In the simplest example of this, the file you are loading refers to a
macro defined in another file, and that file in turn requires the file you are loading. This
is generally harmless. Emacs prints a warning (‘Eager macro-expansion skipped due to
cycle...’) giving details of the problem, but it still loads the file, just leaving the macro
unexpanded for now. You may wish to restructure your code so that this does not happen.
Loading a compiled file does not cause macroexpansion, because this should already have
happened during compilation. See Section 13.3 [Compiling Macros|, page 174.

Messages like ‘Loading foo...’” and ‘Loading foo...done’ appear in the echo area during
loading unless nomessage is non-nil.

Any unhandled errors while loading a file terminate loading. If the load was done for the
sake of autoload, any function definitions made during the loading are undone.

If 1oad can’t find the file to load, then normally it signals the error file-error (with ‘Cannot
open load file filename’). But if missing-ok is non-nil, then load just returns nil.

You can use the variable load-read-function to specify a function for load to use instead
of read for reading expressions. See below.

load returns t if the file loads successfully.

load-file filename [Command]
This command loads the file filename. If filename is a relative file name, then the current
default directory is assumed. This command does not use load-path, and does not ap-
pend suffixes. However, it does look for compressed versions (if Auto Compression Mode is
enabled). Use this command if you wish to specify precisely the file name to load.

load-library library [Command|
This command loads the library named library. It is equivalent to load, except for the way
it reads its argument interactively. See Section “Lisp Libraries” in The GNU Emacs Manual.

load-in-progress [Variable]
This variable is non-nil if Emacs is in the process of loading a file, and it is nil otherwise.

load-file-name [Variable]
When Emacs is in the process of loading a file, this variable’s value is the name of that file,
as Emacs found it during the search described earlier in this section.

load-read-function [Variable]
This variable specifies an alternate expression-reading function for load and eval-region to
use instead of read. The function should accept one argument, just as read does.

Chapter 15: Loading 199

Normally, the variable’s value is nil, which means those functions should use read.

Instead of using this variable, it is cleaner to use another, newer feature: to pass the function
as the read-function argument to eval-region. See [Eval|, page 107.

For information about how load is used in building Emacs, see Section E.1 [Building Emacs],
page 874.

15.2 Load Suffixes

We now describe some technical details about the exact suffixes that load tries.

load-suffixes [Variable]
This is a list of suffixes indicating (compiled or source) Emacs Lisp files. It should not
include the empty string. load uses these suffixes in order when it appends Lisp suffixes to
the specified file name. The standard value is (".elc" ".el") which produces the behavior
described in the previous section.

load-file-rep-suffixes [Variable]
This is a list of suffixes that indicate representations of the same file. This list should normally
start with the empty string. When load searches for a file it appends the suffixes in this list,
in order, to the file name, before searching for another file.

Enabling Auto Compression mode appends the suffixes in jka-compr-load-suffixes to
this list and disabling Auto Compression mode removes them again. The standard value of
load-file-rep-suffixes if Auto Compression mode is disabled is (""). Given that the
standard value of jka-compr-load-suffixes is (".gz"), the standard value of load-file-
rep-suffixes if Auto Compression mode is enabled is ("" ".gz").

get-load-suffixes [Function]
This function returns the list of all suffixes that load should try, in order, when its must-
suffix argument is non-nil. This takes both load-suffixes and load-file-rep-suffixes
into account. If load-suffixes, jka-compr-load-suffixes and load-file-rep-suffixes

all have their standard values, this function returns (".elc" ".elc.gz" ".el" ".el.gz")
if Auto Compression mode is enabled and (".elc" ".el") if Auto Compression mode is
disabled.

To summarize, load normally first tries the suffixes in the value of (get-load-suffixes)
and then those in load-file-rep-suffixes. If nosuffix is non-nil, it skips the former group,
and if must-suffix is non-nil, it skips the latter group.

load-prefer-newer [User Option]
If this option is non-nil, then rather than stopping at the first suffix that exists, load tests
them all, and uses whichever file is the newest.

15.3 Library Search

When Emacs loads a Lisp library, it searches for the library in a list of directories specified by
the variable load-path.

load-path [Variable]
The value of this variable is a list of directories to search when loading files with load. Each
element is a string (which must be a directory name) or nil (which stands for the current
working directory).

When Emacs starts up, it sets up the value of load-path in several steps. First, it initializes
load-path using default locations set when Emacs was compiled. Normally, this is a directory
something like

Chapter 15: Loading 200

"/usr/local/share/emacs/version/lisp"

(In this and the following examples, replace /usr/local with the installation prefix appro-
priate for your Emacs.) These directories contain the standard Lisp files that come with Emacs.
If Emacs cannot find them, it will not start correctly.

If you run Emacs from the directory where it was built—that is, an executable that has
not been formally installed—Emacs instead initializes load-path using the lisp directory in
the directory containing the sources from which it was built. If you built Emacs in a separate
directory from the sources, it also adds the lisp directories from the build directory. (In all cases,
elements are represented as absolute file names.)

Unless you start Emacs with the -—-no-site-1isp option, it then adds two more site-1lisp
directories to the front of load-path. These are intended for locally installed Lisp files, and are
normally of the form:

"/usr/local/share/emacs/version/site-1lisp"
and
"/usr/local/share/emacs/site-1lisp"

The first one is for locally installed files for a specific Emacs version; the second is for locally
installed files meant for use with all installed Emacs versions. (If Emacs is running uninstalled,
it also adds site-1lisp directories from the source and build directories, if they exist. Normally
these directories do not contain site-lisp directories.)

If the environment variable EMACSLOADPATH is set, it modifies the above initialization proce-
dure. Emacs initializes 1load-path based on the value of the environment variable.

The syntax of EMACSLOADPATH is the same as used for PATH; directory names are separated
by ‘:7 (or ‘;’, on some operating systems). Here is an example of how to set EMACSLOADPATH
variable (from a sh-style shell):

export EMACSLOADPATH=/home/foo/.emacs.d/lisp:

An empty element in the value of the environment variable, whether trailing (as in the above
example), leading, or embedded, is replaced by the default value of load-path as determined by
the standard initialization procedure. If there are no such empty elements, then EMACSLOADPATH
specifies the entire load-path. You must include either an empty element, or the explicit path
to the directory containing the standard Lisp files, else Emacs will not function. (Another way
to modify load-path is to use the -L command-line option when starting Emacs; see below.)

For each directory in load-path, Emacs then checks to see if it contains a file subdirs.el,
and if so, loads it. The subdirs.el file is created when Emacs is built/installed, and contains
code that causes Emacs to add any subdirectories of those directories to load-path. Both
immediate subdirectories and subdirectories multiple levels down are added. But it excludes
subdirectories whose names do not start with a letter or digit, and subdirectories named RCS or
CVS, and subdirectories containing a file named .nosearch.

Next, Emacs adds any extra load directories that you specify using the -L command-line op-
tion (see Section “Action Arguments” in The GNU Emacs Manual). It also adds the directories
where optional packages are installed, if any (see Section 39.1 [Packaging Basics|, page 838).

It is common to add code to one’s init file (see Section 38.1.2 [Init File], page 808) to add
one or more directories to load-path. For example:

(push "7/.emacs.d/lisp" load-path)

Dumping Emacs uses a special value of load-path. If you use a site-load.el or site-
init.el file to customize the dumped Emacs (see Section E.1 [Building Emacs], page 874), any
changes to load-path that these files make will be lost after dumping.

Chapter 15: Loading 201

locate-library library &optional nosuffix path interactive-call [Command]
This command finds the precise file name for library library. It searches for the library in
the same way load does, and the argument nosuffix has the same meaning as in load: don’t
add suffixes ‘.elc’ or ‘.el’ to the specified name library.

If the path is non-nil, that list of directories is used instead of load-path.

When locate-library is called from a program, it returns the file name as a string. When
the user runs locate-library interactively, the argument interactive-call is t, and this tells
locate-library to display the file name in the echo area.

list-load-path-shadows &optional stringp [Command]|
This command shows a list of shadowed Emacs Lisp files. A shadowed file is one that will
not normally be loaded, despite being in a directory on load-path, due to the existence of
another similarly-named file in a directory earlier on load-path.

For instance, suppose load-path is set to
("/opt/emacs/site-1lisp" "/usr/share/emacs/23.3/1lisp")
and that both these directories contain a file named foo.el. Then (require ’foo) never

loads the file in the second directory. Such a situation might indicate a problem in the way
Emacs was installed.

When called from Lisp, this function prints a message listing the shadowed files, instead of
displaying them in a buffer. If the optional argument stringp is non-nil, it instead returns
the shadowed files as a string.

15.4 Loading Non-ASCII Characters

When Emacs Lisp programs contain string constants with non-ASCII characters, these can be
represented within Emacs either as unibyte strings or as multibyte strings (see Section 32.1 [Text
Representations|, page 626). Which representation is used depends on how the file is read into
Emacs. Ifit is read with decoding into multibyte representation, the text of the Lisp program will
be multibyte text, and its string constants will be multibyte strings. If a file containing Latin-1
characters (for example) is read without decoding, the text of the program will be unibyte text,

and its string constants will be unibyte strings. See Section 32.10 [Coding Systems|, page 636.

In most Emacs Lisp programs, the fact that non-ASCII strings are multibyte strings should
not be noticeable, since inserting them in unibyte buffers converts them to unibyte automatically.
However, if this does make a difference, you can force a particular Lisp file to be interpreted as
unibyte by writing ‘coding: raw-text’ in a local variables section. With that designator, the
file will unconditionally be interpreted as unibyte. This can matter when making keybindings
to non-ASCII characters written as 7vliteral.

15.5 Autoload

The autoload facility lets you register the existence of a function or macro, but put off loading
the file that defines it. The first call to the function automatically loads the proper library, in
order to install the real definition and other associated code, then runs the real definition as if it
had been loaded all along. Autoloading can also be triggered by looking up the documentation
of the function or macro (see Section 23.1 [Documentation Basics|, page 404).

There are two ways to set up an autoloaded function: by calling autoload, and by writing
a special “magic” comment in the source before the real definition. autoload is the low-level
primitive for autoloading; any Lisp program can call autoload at any time. Magic comments
are the most convenient way to make a function autoload, for packages installed along with
Emacs. These comments do nothing on their own, but they serve as a guide for the command
update-file-autoloads, which constructs calls to autoload and arranges to execute them
when Emacs is built.

Chapter 15: Loading 202

autoload function filename &optional docstring interactive type [Function]
This function defines the function (or macro) named function so as to load automatically from
filename. The string filename specifies the file to load to get the real definition of function.

If filename does not contain either a directory name, or the suffix .el or .elc, this function
insists on adding one of these suffixes, and it will not load from a file whose name is just
filename with no added suffix. (The variable load-suffixes specifies the exact required
suffixes.)

The argument docstring is the documentation string for the function. Specifying the doc-
umentation string in the call to autoload makes it possible to look at the documentation
without loading the function’s real definition. Normally, this should be identical to the
documentation string in the function definition itself. If it isn’t, the function definition’s
documentation string takes effect when it is loaded.

If interactive is non-nil, that says function can be called interactively. This lets completion in
M-x work without loading function’s real definition. The complete interactive specification is
not given here; it’s not needed unless the user actually calls function, and when that happens,
it’s time to load the real definition.

You can autoload macros and keymaps as well as ordinary functions. Specify type as macro
if function is really a macro. Specify type as keymap if function is really a keymap. Various
parts of Emacs need to know this information without loading the real definition.

An autoloaded keymap loads automatically during key lookup when a prefix key’s binding
is the symbol function. Autoloading does not occur for other kinds of access to the keymap.
In particular, it does not happen when a Lisp program gets the keymap from the value of a
variable and calls define-key; not even if the variable name is the same symbol function.

If function already has a non-void function definition that is not an autoload object, this
function does nothing and returns nil. Otherwise, it constructs an autoload object (see
Section 2.3.17 [Autoload Type], page 20), and stores it as the function definition for function.
The autoload object has this form:

(autoload filename docstring interactive type)
For example,

(symbol-function ’run-prolog)
= (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documentation
string in the emacs/etc/DOC file (see Section 23.1 [Documentation Basics|, page 404), t means
the function is interactive, and nil that it is not a macro or a keymap.

autoloadp object [Function]
This function returns non-nil if object is an autoload object. For example, to check if
run-prolog is defined as an autoloaded function, evaluate

(autoloadp (symbol-function ’run-prolog))

The autoloaded file usually contains other definitions and may require or provide one or more
features. If the file is not completely loaded (due to an error in the evaluation of its contents),
any function definitions or provide calls that occurred during the load are undone. This is to
ensure that the next attempt to call any function autoloading from this file will try again to load
the file. If not for this, then some of the functions in the file might be defined by the aborted
load, but fail to work properly for the lack of certain subroutines not loaded successfully because
they come later in the file.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

Chapter 15: Loading 203

A magic autoload comment (often called an autoload cookie) consists of ‘; ; ; ###autoload’,
on a line by itself, just before the real definition of the function in its autoloadable source
file. The command M-x update-file-autoloads writes a corresponding autoload call into
loaddefs.el. (The string that serves as the autoload cookie and the name of the file generated
by update-file-autoloads can be changed from the above defaults, see below.) Building
Emacs loads 1loaddefs.el and thus calls autoload. M-x update-directory-autoloads is even
more powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into loaddefs.el. The form following
the magic comment is copied verbatim, except if it is one of the forms which the autoload facility
handles specially (e.g., by conversion into an autoload call). The forms which are not copied
verbatim are the following:

Definitions for function or function-like objects:
defun and defmacro; also cl-defun and cl-defmacro (see Section “Argument
Lists” in Common Lisp Extensions), and define-overloadable-function (see the
commentary in mode-local.el).

Definitions for major or minor modes:
define-minor-mode, define-globalized-minor-mode, define-generic-mode,
define-derived-mode, easy-mmode-define-minor-mode, easy-mmode-define-
global-mode, define-compilation-mode, and define-global-minor-mode.

Other definition types:
defcustom, defgroup, defclass (see EIEIO), and define-skeleton (see the com-
mentary in skeleton.el).

You can also use a magic comment to execute a form at build time without executing it when
the file itself is loaded. To do this, write the form on the same line as the magic comment.
Since it is in a comment, it does nothing when you load the source file; but M-x update-file-
autoloads copies it to loaddefs.el, where it is executed while building Emacs.

The following example shows how doctor is prepared for autoloading with a magic comment:

;5 s ###autoload
(defun doctor ()
"Switch to *doctor* buffer and start giving psychotherapy."
(interactive)
(switch-to-buffer "*doctor*")
(doctor-mode))

Here’s what that produces in loaddefs.el:

(autoload (quote doctor) "doctor" "\
Switch to *doctor* buffer and start giving psychotherapy.

\(fn)" t nil)

The backslash and newline immediately following the double-quote are a convention used only
in the preloaded uncompiled Lisp files such as loaddefs.el; they tell make-docfile to put the
documentation string in the etc/DOC file. See Section E.1 [Building Emacs|, page 874. See also
the commentary in 1ib-src/make-docfile.c. ‘(fn)’ in the usage part of the documentation
string is replaced with the function’s name when the various help functions (see Section 23.5
[Help Functions], page 409) display it.

If you write a function definition with an unusual macro that is not one of the known and
recognized function definition methods, use of an ordinary magic autoload comment would copy
the whole definition into loaddefs.el. That is not desirable. You can put the desired autoload
call into loaddefs.el instead by writing this:

Chapter 15: Loading 204

;5 s ##t#autoload (autoload ’foo "myfile")
(mydefunmacro foo

.2)

You can use a non-default string as the autoload cookie and have the corresponding autoload
calls written into a file whose name is different from the default loaddefs.el. Emacs provides
two variables to control this:

generate-autoload-cookie [Variable]
The value of this variable should be a string whose syntax is a Lisp comment. M-x update-
file-autoloads copies the Lisp form that follows the cookie into the autoload file it gener-
ates. The default value of this variable is "; ; ;###autoload".

generated-autoload-file [Variable]
The value of this variable names an Emacs Lisp file where the autoload calls should go. The
default value is loaddefs.el, but you can override that, e.g., in the “Local Variables” section
of a .el file (see Section 11.11 [File Local Variables|, page 142). The autoload file is assumed
to contain a trailer starting with a formfeed character.

The following function may be used to explicitly load the library specified by an autoload
object:

autoload-do-load autoload &optional name macro-only [Function]
This function performs the loading specified by autoload, which should be an autoload object.
The optional argument name, if non-nil, should be a symbol whose function value is autoload;
in that case, the return value of this function is the symbol’s new function value. If the value
of the optional argument macro-only is macro, this function avoids loading a function, only
a macro.

15.6 Repeated Loading

You can load a given file more than once in an Emacs session. For example, after you have
rewritten and reinstalled a function definition by editing it in a buffer, you may wish to return
to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name. If you
rewrite a file that you intend to save and reinstall, you need to byte-compile the new version;
otherwise Emacs will load the older, byte-compiled file instead of your newer, non-compiled
file! If that happens, the message displayed when loading the file includes, ‘(compiled; note,
source is newer)’, to remind you to recompile it.

When writing the forms in a Lisp library file, keep in mind that the file might be loaded
more than once. For example, think about whether each variable should be reinitialized when
you reload the library; defvar does not change the value if the variable is already initialized.
(See Section 11.5 [Defining Variables|, page 128.)

The simplest way to add an element to an alist is like this:

(push ’(leif-mode " Leif") minor-mode-alist)
But this would add multiple elements if the library is reloaded. To avoid the problem, use
add-to-1list (see Section 5.5 [List Variables|, page 63):

(add-to-list ’minor-mode-alist ’(leif-mode " Leif"))

Occasionally you will want to test explicitly whether a library has already been loaded. If
the library uses provide to provide a named feature, you can use featurep earlier in the file

to test whether the provide call has been executed before (see Section 15.7 [Named Features],
page 205). Alternatively, you could use something like this:

Chapter 15: Loading 205

(defvar foo-was-loaded nil)

(unless foo-was-loaded
execute-first-time-only
(setq foo-was-loaded t))

15.7 Features

provide and require are an alternative to autoload for loading files automatically. They work
in terms of named features. Autoloading is triggered by calling a specific function, but a feature
is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The file
that defines them should provide the feature. Another program that uses them may ensure they
are defined by requiring the feature. This loads the file of definitions if it hasn’t been loaded
already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals an
error.

For example, in idlwave.el, the definition for idlwave-complete-filename includes the
following code:

(defun idlwave-complete-filename ()
"Use the comint stuff to complete a file name."
(require ’comint)
(let* ((comint-file-name-chars "~/A-Za-z0-9+Q@:_.$#/={F\\-")
(comint-completion-addsuffix nil)
)

(comint-dynamic-complete-filename)))

The expression (require ’comint) loads the file comint.el if it has not yet been loaded,
ensuring that comint-dynamic-complete-filename is defined. Features are normally named
after the files that provide them, so that require need not be given the file name. (Note that it
is important that the require statement be outside the body of the let. Loading a library while
its variables are let-bound can have unintended consequences, namely the variables becoming
unbound after the let exits.)

The comint.el file contains the following top-level expression:
(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth know
that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that file
(see Chapter 16 [Byte Compilation], page 210) as well as when you load it. This is in case the
required package contains macros that the byte compiler must know about. It also avoids byte
compiler warnings for functions and variables defined in the file loaded with require.

Although top-level calls to require are evaluated during byte compilation, provide calls are
not. Therefore, you can ensure that a file of definitions is loaded before it is byte-compiled by
including a provide followed by a require for the same feature, as in the following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.
(require ’my-feature) ; Evaluated by byte compiler.

Chapter 15: Loading 206

The compiler ignores the provide, then processes the require by loading the file in question.
Loading the file does execute the provide call, so the subsequent require call does nothing
when the file is loaded.

provide feature &optional subfeatures [Function]
This function announces that feature is now loaded, or being loaded, into the current Emacs
session. This means that the facilities associated with feature are or will be available for
other Lisp programs.

The direct effect of calling provide is if not already in features then to add feature to the
front of that list and call any eval-after-load code waiting for it (see Section 15.10 [Hooks
for Loading], page 208). The argument feature must be a symbol. provide returns feature.

If provided, subfeatures should be a list of symbols indicating a set of specific subfeatures
provided by this version of feature. You can test the presence of a subfeature using featurep.
The idea of subfeatures is that you use them when a package (which is one feature) is complex
enough to make it useful to give names to various parts or functionalities of the package,
which might or might not be loaded, or might or might not be present in a given version. See
Section 36.17.3 [Network Feature Testing], page 717, for an example.

features
= (bar bish)

(provide ’foo)
= foo
features
= (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the evaluation
of its contents, any function definitions or provide calls that occurred during the load are
undone. See Section 15.5 [Autoload], page 201.

require feature &optional filename noerror [Function]
This function checks whether feature is present in the current Emacs session (using (featurep
feature); see below). The argument feature must be a symbol.

If the feature is not present, then require loads filename with load. If filename is not
supplied, then the name of the symbol feature is used as the base file name to load. However,
in this case, require insists on finding feature with an added ‘.el’ or ‘.elc’ suffix (possibly
extended with a compression suffix); a file whose name is just feature won’t be used. (The
variable load-suffixes specifies the exact required Lisp suffixes.)

If noerror is non-nil, that suppresses errors from actual loading of the file. In that case,
require returns nil if loading the file fails. Normally, require returns feature.

If loading the file succeeds but does not provide feature, require signals an error, ‘Required
feature feature was not provided’.

featurep feature &optional subfeature [Function]
This function returns t if feature has been provided in the current Emacs session (i.e., if
feature is a member of features.) If subfeature is non-nil, then the function returns t
only if that subfeature is provided as well (i.e., if subfeature is a member of the subfeature
property of the feature symbol.)

features [Variable]
The value of this variable is a list of symbols that are the features loaded in the current
Emacs session. Each symbol was put in this list with a call to provide. The order of the
elements in the features list is not significant.

Chapter 15: Loading 207

15.8 Which File Defined a Certain Symbol

symbol-file symbol &optional type [Function]
This function returns the name of the file that defined symbol. If type is nil, then any
kind of definition is acceptable. If type is defun, defvar, or defface, that specifies function
definition, variable definition, or face definition only.

The value is normally an absolute file name. It can also be nil, if the definition is not

associated with any file. If symbol specifies an autoloaded function, the value can be a
relative file name without extension.

The basis for symbol-file is the data in the variable load-history.

load-history [Variable]
The value of this variable is an alist that associates the names of loaded library files with the

names of the functions and variables they defined, as well as the features they provided or
required.

Each element in this alist describes one loaded library (including libraries that are preloaded

at startup). It is a list whose CAR is the absolute file name of the library (a string). The rest
of the list elements have these forms:

var The symbol var was defined as a variable.

(defun . fun)
The function fun was defined.

(t . fun) The function fun was previously an autoload before this library redefined it as
a function. The following element is always (defun . fun), which represents
defining fun as a function.

(autoload . fun)
The function fun was defined as an autoload.

(defface . face)
The face face was defined.

(require . feature)
The feature feature was required.

(provide . feature)
The feature feature was provided.

The value of load-history may have one element whose CAR is nil. This element describes
definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols de-
fined to the element for the file being visited, rather than replacing that element. See Section 9.4
[Eval], page 106.

15.9 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for other
Lisp objects. To do this, use the function unload-feature:

unload-feature feature &optional force [Command|
This command unloads the library that provided feature feature. It undefines all functions,
macros, and variables defined in that library with defun, defalias, defsubst, defmacro,
defconst, defvar, and defcustom. It then restores any autoloads formerly associated with
those symbols. (Loading saves these in the autoload property of the symbol.)

Chapter 15: Loading 208

Before restoring the previous definitions, unload-feature runs remove-hook to remove func-
tions in the library from certain hooks. These hooks include variables whose names end in
‘~hook’ (or the deprecated suffix ‘~hooks’), plus those listed in unload-feature-special-
hooks, as well as auto-mode-alist. This is to prevent Emacs from ceasing to function
because important hooks refer to functions that are no longer defined.

Standard unloading activities also undoes ELP profiling of functions in that library, unpro-
vides any features provided by the library, and cancels timers held in variables defined by the
library.

If these measures are not sufficient to prevent malfunction, a library can define an explicit
unloader named feature-unload-function. If that symbol is defined as a function, unload-
feature calls it with no arguments before doing anything else. It can do whatever is appro-
priate to unload the library. If it returns nil, unload-feature proceeds to take the normal
unload actions. Otherwise it considers the job to be done.

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries de-
pend. (A library a depends on library b if a contains a require for b.) If the optional
argument force is non-nil, dependencies are ignored and you can unload any library.

The unload-feature function is written in Lisp; its actions are based on the variable load-
history.

unload-feature-special-hooks [Variable]
This variable holds a list of hooks to be scanned before unloading a library, to remove functions
defined in the library.

15.10 Hooks for Loading

You can ask for code to be executed each time Emacs loads a library, by using the variable
after-load-functions:

after-load-functions [Variable]
This abnormal hook is run after loading a file. Each function in the hook is called with a
single argument, the absolute filename of the file that was just loaded.

If you want code to be executed when a particular library is loaded, use the macro with-
eval-after-load:

with-eval-after-load library body. .. [Macro]
This macro arranges to evaluate body at the end of loading the file library, each time library
is loaded. If library is already loaded, it evaluates body right away.

You don’t need to give a directory or extension in the file name library. Normally, you just
give a bare file name, like this:
(with-eval-after-load "edebug" (def-edebug-spec c-point t))

To restrict which files can trigger the evaluation, include a directory or an extension or both
in library. Only a file whose absolute true name (i.e., the name with all symbolic links
chased out) matches all the given name components will match. In the following example,
my_inst.elc ormy_inst.elc.gz in some directory/foo/bar will trigger the evaluation,
but not my_inst.el:

(with-eval-after-load "foo/bar/my_inst.elc" ...)

library can also be a feature (i.e., a symbol), in which case body is evaluated at the end of
any file where (provide library) is called.

An error in body does not undo the load, but does prevent execution of the rest of body.

Chapter 15: Loading 209

Normally, well-designed Lisp programs should not use eval-after-load. If you need to
examine and set the variables defined in another library (those meant for outside use), you
can do it immediately—there is no need to wait until the library is loaded. If you need to
call functions defined by that library, you should load the library, preferably with require (see
Section 15.7 [Named Features], page 205).

Chapter 16: Byte Compilation 210

16 Byte Compilation

Emacs Lisp has a compiler that translates functions written in Lisp into a special representation
called byte-code that can be executed more efficiently. The compiler replaces Lisp function
definitions with byte-code. When a byte-code function is called, its definition is evaluated by
the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of being
executed directly by the machine’s hardware (as true compiled code is), byte-code is completely
transportable from machine to machine without recompilation. It is not, however, as fast as
true compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true.

If you do not want a Lisp file to be compiled, ever, put a file-local variable binding for
no-byte-compile into it, like this:

;3 —*-no-byte-compile: t; —*-

16.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs much
faster than the version written in Lisp. Here is an example:

(defun silly-loop (n)
"Return the time, in seconds, to run N iterations of a loop."
(let ((t1 (float-time)))
(while (> (setq n (1- n)) 0))
(- (float-time) t1)))
= silly-loop

(silly-loop 50000000)
= 10.235304117202759

(byte-compile ’silly-loop)
= [Compiled code not shown]

(silly-loop 50000000)
= 3.705854892730713

In this example, the interpreted code required 10 seconds to run, whereas the byte-compiled
code required less than 4 seconds. These results are representative, but actual results may vary.

16.2 Byte-Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile func-
tion. You can compile a whole file with byte-compile-file, or several files with byte-
recompile-directory or batch-byte-compile.

Sometimes, the byte compiler produces warning and/or error messages (see Section 16.6
[Compiler Errors], page 214, for details). These messages are recorded in a buffer called
xCompile-Log#, which uses Compilation mode. See Section “Compilation Mode” in The GNU
Emacs Manual.

Be careful when writing macro calls in files that you intend to byte-compile. Since macro
calls are expanded when they are compiled, the macros need to be loaded into Emacs or the byte
compiler will not do the right thing. The usual way to handle this is with require forms which
specify the files containing the needed macro definitions (see Section 15.7 [Named Features],

Chapter 16: Byte Compilation 211

page 205). Normally, the byte compiler does not evaluate the code that it is compiling, but it
handles require forms specially, by loading the specified libraries. To avoid loading the macro
definition files when someone runs the compiled program, write eval-when-compile around
the require calls (see Section 16.5 [Eval During Compile|, page 213). For more details, See
Section 13.3 [Compiling Macros|, page 174.

Inline (defsubst) functions are less troublesome; if you compile a call to such a function
before its definition is known, the call will still work right, it will just run slower.

byte-compile symbol [Function]
This function byte-compiles the function definition of symbol, replacing the previous defi-
nition with the compiled one. The function definition of symbol must be the actual code
for the function; byte-compile does not handle function indirection. The return value is
the byte-code function object which is the compiled definition of symbol (see Section 16.7
[Byte-Code Objects|, page 215).
(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(x integer (factorial (1- integer)))))
= factorial

(byte-compile ’factorial)

=

#[(integer)
"~H\301U\203"H~@\301\207\302"H\303"HS!\"\207"
[integer 1 * factoriall]
4 "Compute factorial of INTEGER."]

If symbol’s definition is a byte-code function object, byte-compile does nothing and returns
nil. It does not “compile the symbol’s definition again”, since the original (non-compiled)
code has already been replaced in the symbol’s function cell by the byte-compiled code.

The argument to byte-compile can also be a lambda expression. In that case, the function
returns the corresponding compiled code but does not store it anywhere.

compile-defun &optional arg [Command]
This command reads the defun containing point, compiles it, and evaluates the result. If you
use this on a defun that is actually a function definition, the effect is to install a compiled
version of that function.

compile-defun normally displays the result of evaluation in the echo area, but if arg is
non-nil, it inserts the result in the current buffer after the form it compiled.

byte-compile-file filename &optional load [Command]
This function compiles a file of Lisp code named filename into a file of byte-code. The output
file’s name is made by changing the ‘.el’ suffix into ‘.elc’; if filename does not end in ‘.el’,
it adds ‘.elc’ to the end of filename.

Compilation works by reading the input file one form at a time. If it is a definition of a
function or macro, the compiled function or macro definition is written out. Other forms are
batched together, then each batch is compiled, and written so that its compiled code will be
executed when the file is read. All comments are discarded when the input file is read.

This command returns t if there were no errors and nil otherwise. When called interactively,
it prompts for the file name.
If load is non-nil, this command loads the compiled file after compiling it. Interactively,
load is the prefix argument.

Chapter 16: Byte Compilation 212

$ 1s -1 pushx
-rw-r—-r—— 1 lewis lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")
=t

$ 1s -1 pushx
-rw-r--r—-— 1 lewis lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis lewis 638 Oct 8 20:25 push.elc

byte-recompile-directory directory &optional flag force [Command|
This command recompiles every ‘.el’ file in directory (or its subdirectories) that needs
recompilation. A file needs recompilation if a ‘.elc’ file exists but is older than the ¢.el’ file.

When a ‘.el’ file has no corresponding ‘.elc’ file, flag says what to do. If it is nil, this
command ignores these files. If flag is 0, it compiles them. If it is neither nil nor 0, it asks
the user whether to compile each such file, and asks about each subdirectory as well.

Interactively, byte-recompile-directory prompts for directory and flag is the prefix argu-
ment.

If force is non-nil, this command recompiles every ‘.el’ file that has a ‘.elc’ file.

The returned value is unpredictable.

batch-byte-compile &optional noforce [Function]
This function runs byte-compile-file on files specified on the command line. This function
must be used only in a batch execution of Emacs, as it kills Emacs on completion. An error
in one file does not prevent processing of subsequent files, but no output file will be generated
for it, and the Emacs process will terminate with a nonzero status code.

4 9

If noforce is non-nil, this function does not recompile files that have an up-to-date ‘.elc

file.
$ emacs -batch -f batch-byte-compile *.el

16.3 Documentation Strings and Compilation

When Emacs loads functions and variables from a byte-compiled file, it normally does not load
their documentation strings into memory. Each documentation string is “dynamically” loaded
from the byte-compiled file only when needed. This saves memory, and speeds up loading by
skipping the processing of the documentation strings.

This feature has a drawback: if you delete, move, or alter the compiled file (such as by
compiling a new version), Emacs may no longer be able to access the documentation string
of previously-loaded functions or variables. Such a problem normally only occurs if you build
Emacs yourself, and happen to edit and/or recompile the Lisp source files. To solve it, just
reload each file after recompilation.

Dynamic loading of documentation strings from byte-compiled files is determined, at compile
time, for each byte-compiled file. It can be disabled via the option byte-compile-dynamic-
docstrings.

byte-compile-dynamic-docstrings [User Option]
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
loading of documentation strings.

To disable the dynamic loading feature for a specific file, set this option to nil in its header
line (see Section “Local Variables in Files” in The GNU Emacs Manual), like this:

Chapter 16: Byte Compilation 213

—*-byte-compile-dynamic-docstrings: nil;-*-

This is useful mainly if you expect to change the file, and you want Emacs sessions that have
already loaded it to keep working when the file changes.

Internally, the dynamic loading of documentation strings is accomplished by writing com-
piled files with a special Lisp reader construct, ‘#@count’. This construct skips the next count
characters. It also uses the ‘#$’ construct, which stands for “the name of this file, as a string”.
Do not use these constructs in Lisp source files; they are not designed to be clear to humans
reading the file.

16.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature (also
known as lazy loading). With dynamic function loading, loading the file doesn’t fully read the
function definitions in the file. Instead, each function definition contains a place-holder which
refers to the file. The first time each function is called, it reads the full definition from the file,
to replace the place-holder.

The advantage of dynamic function loading is that loading the file becomes much faster. This
is a good thing for a file which contains many separate user-callable functions, if using one of
them does not imply you will probably also use the rest. A specialized mode which provides
many keyboard commands often has that usage pattern: a user may invoke the mode, but use
only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:

e If you delete or move the compiled file after loading it, Emacs can no longer load the
remaining function definitions not already loaded.

e If you alter the compiled file (such as by compiling a new version), then trying to load any
function not already loaded will usually yield nonsense results.

These problems will never happen in normal circumstances with installed Emacs files. But
they are quite likely to happen with Lisp files that you are changing. The easiest way to prevent
these problems is to reload the new compiled file immediately after each recompilation.

The byte compiler uses the dynamic function loading feature if the variable byte-compile-
dynamic is non-nil at compilation time. Do not set this variable globally, since dynamic loading
is desirable only for certain files. Instead, enable the feature for specific source files with file-local
variable bindings. For example, you could do it by writing this text in the source file’s first line:

—*-byte-compile-dynamic: t;-*-

byte-compile-dynamic [Variable]
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
function loading.

fetch-bytecode function [Function]
If function is a byte-code function object, this immediately finishes loading the byte code
of function from its byte-compiled file, if it is not fully loaded already. Otherwise, it does
nothing. It always returns function.

16.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

eval-and-compile body. .. [Special Form]
This form marks body to be evaluated both when you compile the containing code and when
you run it (whether compiled or not).

Chapter 16: Byte Compilation 214

You can get a similar result by putting body in a separate file and referring to that file with
require. That method is preferable when body is large. Effectively require is automatically
eval-and-compile, the package is loaded both when compiling and executing.

autoload is also effectively eval-and-compile too. It’s recognized when compiling, so uses
of such a function don’t produce “not known to be defined” warnings.

Most uses of eval-and-compile are fairly sophisticated.

If a macro has a helper function to build its result, and that macro is used both locally and
outside the package, then eval-and-compile should be used to get the helper both when
compiling and then later when running.

If functions are defined programmatically (with fset say), then eval-and-compile can be
used to have that done at compile-time as well as run-time, so calls to those functions are
checked (and warnings about “not known to be defined” suppressed).

eval-when-compile body. .. [Special Form]
This form marks body to be evaluated at compile time but not when the compiled program
is loaded. The result of evaluation by the compiler becomes a constant which appears in the
compiled program. If you load the source file, rather than compiling it, body is evaluated
normally.

If you have a constant that needs some calculation to produce, eval-when-compile can do
that at compile-time. For example,

(defvar my-regexp
(eval-when-compile (regexp-opt ’("aaa" "aba" "abb"))))

If you're using another package, but only need macros from it (the byte compiler will expand
those), then eval-when-compile can be used to load it for compiling, but not executing. For
example,

(eval-when-compile
(require ’my-macro-package))
The same sort of thing goes for macros and defsubst functions defined locally and only for
use within the file. They are needed for compiling the file, but in most cases they are not
needed for execution of the compiled file. For example,

(eval-when-compile
(unless (fboundp ’some-new-thing)
(defmacro ’some-new-thing ()
(compatibility code))))

This is often good for code that’s only a fallback for compatibility with other versions of
Emacs.

Common Lisp Note: At top level, eval-when-compile is analogous to the Common Lisp
idiom (eval-when (compile eval) ...). Elsewhere, the Common Lisp ‘#.’ reader macro
(but not when interpreting) is closer to what eval-when-compile does.

16.6 Compiler Errors

Error and warning messages from byte compilation are printed in a buffer named *Compile-
Log*. These messages include file names and line numbers identifying the location of the prob-
lem. The usual Emacs commands for operating on compiler output can be used on these
messages.

When an error is due to invalid syntax in the program, the byte compiler might get con-
fused about the errors’ exact location. One way to investigate is to switch to the buffer
Compiler Input. (This buffer name starts with a space, so it does not show up in the
Buffer Menu.) This buffer contains the program being compiled, and point shows how far the

Chapter 16: Byte Compilation 215

byte compiler was able to read; the cause of the error might be nearby. See Section 17.3 [Syntax
Errors|, page 244, for some tips for locating syntax errors.

A common type of warning issued by the byte compiler is for functions and variables that
were used but not defined. Such warnings report the line number for the end of the file, not the
locations where the missing functions or variables were used; to find these, you must search the
file manually.

If you are sure that a warning message about a missing function or variable is unjustified,
there are several ways to suppress it:

e You can suppress the warning for a specific call to a function func by conditionalizing it on
an fboundp test, like this:

(if (fboundp ’func) ...(func ...)...)

The call to func must be in the then-form of the if, and func must appear quoted in the
call to fboundp. (This feature operates for cond as well.)

e Likewise, you can suppress the warning for a specific use of a variable variable by condi-
tionalizing it on a boundp test:
(if (boundp ’variable) ...variable...)
The reference to variable must be in the then-form of the if, and variable must appear
quoted in the call to boundp.
e You can tell the compiler that a function is defined using declare-function. See
Section 12.14 [Declaring Functions|, page 170.

e Likewise, you can tell the compiler that a variable is defined using defvar with no initial
value. (Note that this marks the variable as special.) See Section 11.5 [Defining Variables],
page 128.

You can also suppress any and all compiler warnings within a certain expression using the
construct with-no-warnings:

with-no-warnings body. .. [Special Form]
In execution, this is equivalent to (progn body. . .), but the compiler does not issue warnings
for anything that occurs inside body.

We recommend that you use this construct around the smallest possible piece of code, to
avoid missing possible warnings other than one you intend to suppress.

Byte compiler warnings can be controlled more precisely by setting the variable byte-
compile-warnings. See its documentation string for details.

16.7 Byte-Code Function Objects

Byte-compiled functions have a special data type: they are byte-code function objects. When-
ever such an object appears as a function to be called, Emacs uses the byte-code interpreter to
execute the byte-code.

Internally, a byte-code function object is much like a vector; its elements can be accessed
using aref. Its printed representation is like that for a vector, with an additional ‘# before the
opening ‘[’. It must have at least four elements; there is no maximum number, but only the
first six elements have any normal use. They are:

arglist The list of argument symbols.
byte-code The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols used
as function names and variable names.

Chapter 16: Byte Compilation 216

stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 23.2 [Accessing
Documentation], page 405).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is nil
for a function that isn’t interactive.

Here’s an example of a byte-code function object, in printed representation. It is the definition
of the command backward-sexp.

#[(&optional arg)
"~H\204"F~0@\301"P\302"H[!'\207"
[arg 1 forward-sexp]
2
254435
’l“pllj
The primitive way to create a byte-code object is with make-byte-code:

make-byte-code &rest elements [Function]
This function constructs and returns a byte-code function object with elements as its ele-
ments.

You should not try to come up with the elements for a byte-code function yourself, because
if they are inconsistent, Emacs may crash when you call the function. Always leave it to the
byte compiler to create these objects; it makes the elements consistent (we hope).

16.8 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide a disassembler
to satisfy a cat-like curiosity. The disassembler converts the byte-compiled code into human-
readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values onto
a stack of its own, then pops them off to use them in calculations whose results are themselves
pushed back on the stack. When a byte-code function returns, it pops a value off the stack and
returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp variables,
by transferring values between variables and the stack.

disassemble object &optional buffer-or-name [Command|
This command displays the disassembled code for object. In interactive use, or if buffer-or-
name is nil or omitted, the output goes in a buffer named *Disassemblex*. If buffer-or-name
is non-nil, it must be a buffer or the name of an existing buffer. Then the output goes there,
at point, and point is left before the output.

The argument object can be a function name, a lambda expression (see Section 12.2
[Lambda Expressions|, page 151), or a byte-code object (see Section 16.7 [Byte-Code Ob-
jects], page 215). If it is a lambda expression, disassemble compiles it and disassembles the
resulting compiled code.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the output
of disassemble.

Chapter 16: Byte Compilation

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
= factorial

(factorial 4)
= 24

(disassemble ’factorial)

-1 byte-code for factorial:
doc: Compute factorial of an integer.
args: (integer)

0 varref integer ; Get the value of integer and
; push it onto the stack.
1 constant 1 ; Push 1 onto stack.
eqlsign ; Pop top two values off stack, compare
; them, and push result onto stack.
3 goto-if-nil 1 ; Pop and test top of stack;
; if nil, go to 1, else continue.
6 constant 1 ; Push 1 onto top of stack.
7 return ; Return the top element of the stack.
8:1 varref integer ; Push value of integer onto stack.
9 constant factorial ; Push factorial onto stack.
10 varref integer ; Push value of integer onto stack.
11 subil ; Pop integer, decrement value,
; push new value onto stack.
12 call 1 ; Call function factorial using first

; (i.e., top) stack element as argument;
; push returned value onto stack.

13 mult ; Pop top two values off stack, multiply
; them, and push result onto stack.
14 return ; Return the top element of the stack.

The silly-loop function is somewhat more complex:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist t1 (current-time-string))))
= silly-loop

(disassemble ’silly-loop)

- byte-code for silly-loop:
doc: Return time before and after N iterations of a loop.
args: (n)

0 constant current-time-string ; Push current-time-string
; onto top of stack.

217

Chapter 16: Byte Compilation 218

1 call 0 ; Call current-time-string with no
; argument, push result onto stack.
2 varbind t1 ; Pop stack and bind t1 to popped value.
3:1 varref n ; Get value of n from the environment
; and push the value on the stack.
4 subl ; Subtract 1 from top of stack.
5 dup ; Duplicate top of stack; i.e., copy the top
; of the stack and push copy onto stack.
6 varset n ; Pop the top of the stack,

; and bind n to the value.

;3 (In effect, the sequence dup varset copies the top of the stack
;3 into the value of n without popping it.)

7 constant O ; Push 0 onto stack.
8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.
9 goto-if-not-nil 1 ; Gotolifn>0
; (this continues the while loop)
; else continue.

12 varref ti ; Push value of t1 onto stack.
13 constant current-time-string ; Push current-time-string
; onto the top of the stack.
14 call 0 ; Call current-time-string again.
15 unbind 1 ; Unbind t1 in local environment.
16 1list2 ; Pop top two elements off stack, create a

; list of them, and push it onto stack.
17 return ; Return value of the top of stack.

Chapter 17: Debugging Lisp Programs 219

17 Debugging Lisp Programs

There are several ways to find and investigate problems in an Emacs Lisp program.

e If a problem occurs when you run the program, you can use the built-in Emacs Lisp debugger
to suspend the Lisp evaluator, and examine and/or alter its internal state.

e You can use Edebug, a source-level debugger for Emacs Lisp.

e If a syntactic problem is preventing Lisp from even reading the program, you can locate it
using Lisp editing commands.

e You can look at the error and warning messages produced by the byte compiler when it
compiles the program. See Section 16.6 [Compiler Errors|, page 214.

e You can use the Testcover package to perform coverage testing on the program.

e You can use the ERT package to write regression tests for the program. See ERT: Emacs
Lisp Regression Testing.

e You can profile the program to get hints about how to make it more efficient.

Other useful tools for debugging input and output problems are the dribble file (see
Section 38.12 [Terminal Input], page 827) and the open-termscript function (see Section 38.13
[Terminal Output], page 828).

17.1 The Lisp Debugger

The ordinary Lisp debugger provides the ability to suspend evaluation of a form. While evalua-
tion is suspended (a state that is commonly known as a break), you may examine the run time
stack, examine the values of local or global variables, or change those values. Since a break is a
recursive edit, all the usual editing facilities of Emacs are available; you can even run programs
that will enter the debugger recursively. See Section 20.13 [Recursive Editing], page 319.

17.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This allows you
to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
signal Lisp errors when invoked inappropriately, and during ordinary editing it would be very
inconvenient to enter the debugger each time this happens. So if you want errors to enter the
debugger, set the variable debug-on-error to non-nil. (The command toggle-debug-on-
error provides an easy way to do this.)

debug-on-error [User Option]
This variable determines whether the debugger is called when an error is signaled and not
handled. If debug-on-error is t, all kinds of errors call the debugger, except those listed in
debug-ignored-errors (see below). If it is nil, none call the debugger.

The value can also be a list of error conditions (see Section 10.5.3.1 [Signaling Errors],
page 118). Then the debugger is called only for error conditions in this list (except those
also listed in debug-ignored-errors). For example, if you set debug-on-error to the list
(void-variable), the debugger is only called for errors about a variable that has no value.

Note that eval-expression-debug-on-error overrides this variable in some cases; see be-
low.

When this variable is non-nil, Emacs does not create an error handler around process filter
functions and sentinels. Therefore, errors in these functions also invoke the debugger. See
Chapter 36 [Processes], page 691.

Chapter 17: Debugging Lisp Programs 220

debug-ignored-errors [User Option)]
This variable specifies errors which should not enter the debugger, regardless of the value of
debug-on-error. Its value is a list of error condition symbols and/or regular expressions.
If the error has any of those condition symbols, or if the error message matches any of the
regular expressions, then that error does not enter the debugger.

The normal value of this variable includes user-error, as well as several errors that happen
often during editing but rarely result from bugs in Lisp programs. However, “rarely” is not
“never”; if your program fails with an error that matches this list, you may try changing this
list to debug the error. The easiest way is usually to set debug-ignored-errors to nil.

eval-expression-debug-on-error [User Option)]
If this variable has a non-nil value (the default), running the command eval-expression
causes debug-on-error to be temporarily bound to to t. See Section “Evaluating Emacs-Lisp
Expressions” in The GNU Emacs Manual.

If eval-expression-debug-on-error is nil, then the value of debug-on-error is not
changed during eval-expression.

debug-on-signal [Variable]
Normally, errors caught by condition-case never invoke the debugger. The condition-
case gets a chance to handle the error before the debugger gets a chance.

If you change debug-on-signal to a non-nil value, the debugger gets the first chance at
every error, regardless of the presence of condition-case. (To invoke the debugger, the error
must still fulfill the criteria specified by debug-on-error and debug-ignored-errors.)

Warning: Setting this variable to non-nil may have annoying effects. Various parts of Emacs
catch errors in the normal course of affairs, and you may not even realize that errors happen
there. If you need to debug code wrapped in condition-case, consider using condition-
case-unless-debug (see Section 10.5.3.3 [Handling Errors|, page 119).

debug-on-event [User Option)]
If you set debug-on-event to a special event (see Section 20.9 [Special Events|, page 314),
Emacs will try to enter the debugger as soon as it receives this event, bypassing special-
event-map. At present, the only supported values correspond to the signals SIGUSR1 and
SIGUSR2 (this is the default). This can be helpful when inhibit-quit is set and Emacs is
not otherwise responding.

debug-on-message [Variable]
If you set debug-on-message to a regular expression, Emacs will enter the debugger if it
displays a matching message in the echo area. For example, this can be useful when trying
to find the cause of a particular message.

To debug an error that happens during loading of the init file, use the option ‘--debug-init’.
This binds debug-on-error to t while loading the init file, and bypasses the condition-case
which normally catches errors in the init file.

17.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the loop.
On most operating systems, you can do this with C-g, which causes a quit. See Section 20.11
[Quitting], page 316.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Once you have the debugger
running in the middle of the infinite loop, you can proceed from the debugger using the stepping
commands. If you step through the entire loop, you may get enough information to solve the
problem.

Chapter 17: Debugging Lisp Programs 221

Quitting with C-g is not considered an error, and debug-on-error has no effect on the
handling of C-g. Likewise, debug-on-quit has no effect on errors.

debug-on-quit [User Option]
This variable determines whether the debugger is called when quit is signaled and not han-
dled. If debug-on-quit is non-nil, then the debugger is called whenever you quit (that is,
type C-g). If debug-on-quit is nil (the default), then the debugger is not called when you
quit.

17.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is to
enter the debugger whenever a certain function is called. You can do this to the function in
which the problem occurs, and then step through the function, or you can do this to a function
called shortly before the problem, step quickly over the call to that function, and then step
through its caller.

debug-on-entry function-name [Command]
This function requests function-name to invoke the debugger each time it is called.

Any function or macro defined as Lisp code may be set to break on entry, regardless of
whether it is interpreted code or compiled code. If the function is a command, it will enter
the debugger when called from Lisp and when called interactively (after the reading of the
arguments). You can also set debug-on-entry for primitive functions (i.e., those written in C)
this way, but it only takes effect when the primitive is called from Lisp code. Debug-on-entry
is not allowed for special forms.

When debug-on-entry is called interactively, it prompts for function-name in the minibuffer.
If the function is already set up to invoke the debugger on entry, debug-on-entry does
nothing. debug-on-entry always returns function-name.

Here’s an example to illustrate use of this function:

(defun fact (n)
(if (zerop n) 1
(x n (fact (1- n)))))
= fact
(debug-on-entry ’fact)
= fact
(fact 3)

—————— Buffer: *Backtrace* —-————-
Debugger entered--entering a function:
*x fact(3)
eval ((fact 3))
eval-last-sexp-1(nil)
eval-last-sexp(nil)
call-interactively(eval-last-sexp)
—————— Buffer: *Backtracex ---—---

cancel-debug-on-entry &optional function-name [Command]
This function undoes the effect of debug-on-entry on function-name. When called interac-
tively, it prompts for function-name in the minibuffer. If function-name is omitted or nil, it
cancels break-on-entry for all functions. Calling cancel-debug-on-entry does nothing to a
function which is not currently set up to break on entry.

Chapter 17: Debugging Lisp Programs 222

17.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’ at
the proper place, and type C-M-x (eval-defun, a Lisp mode key binding). Warning: if you do
this for temporary debugging purposes, be sure to undo this insertion before you save the file!

The place where you insert ‘(debug)’ must be a place where an additional form can be
evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the execution
of the program!) The most common suitable places are inside a progn or an implicit progn (see
Section 10.1 [Sequencing], page 109).

If you don’t know exactly where in the source code you want to put the debug statement,
but you want to display a backtrace when a certain message is displayed, you can set debug-
on-message to a regular expression matching the desired message.

17.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window and a
buffer named *Backtrace* in another window. The backtrace buffer contains one line for each
level of Lisp function execution currently going on. At the beginning of this buffer is a message
describing the reason that the debugger was invoked (such as the error message and associated
data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in which
letters are defined as debugger commands. The usual Emacs editing commands are available;
thus, you can switch windows to examine the buffer that was being edited at the time of the
error, switch buffers, visit files, or do any other sort of editing. However, the debugger is a
recursive editing level (see Section 20.13 [Recursive Editing], page 319) and it is wise to go back
to the backtrace buffer and exit the debugger (with the g command) when you are finished
with it. Exiting the debugger gets out of the recursive edit and buries the backtrace buffer.
(You can customize what the g command does with the backtrace buffer by setting the variable
debugger-bury-or-kill. For example, set it to kill if you prefer to kill the buffer rather than
bury it. Consult the variable’s documentation for more possibilities.)

When the debugger has been entered, the debug-on-error variable is temporarily set accord-
ing to eval-expression-debug-on-error. If the latter variable is non-nil, debug-on-error
will temporarily be set to t. This means that any further errors that occur while doing a de-
bugging session will (by default) trigger another backtrace. If this is not what you want, you
can either set eval-expression-debug-on-error to nil, or set debug-on-error to nil in
debugger-mode-hook.

The backtrace buffer shows you the functions that are executing and their argument values.
It also allows you to specify a stack frame by moving point to the line describing that frame.
(A stack frame is the place where the Lisp interpreter records information about a particular
invocation of a function.) The frame whose line point is on is considered the current frame.
Some of the debugger commands operate on the current frame. If a line starts with a star, that
means that exiting that frame will call the debugger again. This is useful for examining the
return value of a function.

If a function name is underlined, that means the debugger knows where its source code is
located. You can click with the mouse on that name, or move to it and type RET, to visit the
source code.

The debugger itself must be run byte-compiled, since it makes assumptions about how many
stack frames are used for the debugger itself. These assumptions are false if the debugger is
running interpreted.

Chapter 17: Debugging Lisp Programs 223

17.1.6 Debugger Commands

The debugger buffer (in Debugger mode) provides special commands in addition to the usual
Emacs commands. The most important use of debugger commands is for stepping through code,
so that you can see how control flows. The debugger can step through the control structures of
an interpreted function, but cannot do so in a byte-compiled function. If you would like to step
through a byte-compiled function, replace it with an interpreted definition of the same function.
(To do this, visit the source for the function and type C-M-x on its definition.) You cannot use
the Lisp debugger to step through a primitive function.

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. This resumes execution of the program
as if the debugger had never been entered (aside from any side-effects that you
caused by changing variable values or data structures while inside the debugger).

d Continue execution, but enter the debugger the next time any Lisp function is called.
This allows you to step through the subexpressions of an expression, seeing what
values the subexpressions compute, and what else they do.

The stack frame made for the function call which enters the debugger in this way
will be flagged automatically so that the debugger will be called again when the
frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame is exited.
Frames flagged in this way are marked with stars in the backtrace buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b com-
mand on that frame. The visible effect is to remove the star from the line in the
backtrace buffer.

j Flag the current frame like b. Then continue execution like ¢, but temporarily
disable break-on-entry for all functions that are set up to do so by debug-on-entry.

e Read a Lisp expression in the minibuffer, evaluate it (with the relevant lexical en-
vironment, if applicable), and print the value in the echo area. The debugger alters
certain important variables, and the current buffer, as part of its operation; e tem-
porarily restores their values from outside the debugger, so you can examine and
change them. This makes the debugger more transparent. By contrast, M-: does
nothing special in the debugger; it shows you the variable values within the debug-

ger.

R Like e, but also save the result of evaluation in the buffer *Debugger-recordx*.

q Terminate the program being debugged; return to top-level Emacs command exe-
cution.

If the debugger was entered due to a C-g but you really want to quit, and not debug,
use the g command.

r Return a value from the debugger. The value is computed by reading an expression
with the minibuffer and evaluating it.

The r command is useful when the debugger was invoked due to exit from a Lisp
call frame (as requested with b or by entering the frame with d); then the value
specified in the r command is used as the value of that frame. It is also useful if
you call debug and use its return value. Otherwise, r has the same effect as ¢, and
the specified return value does not matter.

You can’t use r when the debugger was entered due to an error.

1 Display a list of functions that will invoke the debugger when called. This is a list
of functions that are set to break on entry by means of debug-on-entry.

Chapter 17: Debugging Lisp Programs 224

\%4

Toggle the display of local variables of the current stack frame.

17.1.7 Invoking the Debugger

Here we describe in full detail the function debug that is used to invoke the debugger.

debug &rest debugger-args [Command]|

This function enters the debugger. It switches buffers to a buffer named *Backtrace* (or
*Backtracex<2> if it is the second recursive entry to the debugger, etc.), and fills it with
information about the stack of Lisp function calls. It then enters a recursive edit, showing
the backtrace buffer in Debugger mode.

The Debugger mode ¢, d, j, and r commands exit the recursive edit; then debug switches
back to the previous buffer and returns to whatever called debug. This is the only way the
function debug can return to its caller.

The use of the debugger-args is that debug displays the rest of its arguments at the top of
the *Backtracex* buffer, so that the user can see them. Except as described below, this is
the only way these arguments are used.

However, certain values for first argument to debug have a special significance. (Normally,
these values are used only by the internals of Emacs, and not by programmers calling debug.)
Here is a table of these special values:

lambda A first argument of lambda means debug was called because of entry to a func-
tion when debug-on-next-call was non-nil. The debugger displays ‘Debugger
entered--entering a function:’ as a line of text at the top of the buffer.

debug debug as first argument means debug was called because of entry to a function
that was set to debug on entry. The debugger displays the string ‘Debugger
entered--entering a function:’, just as in the lambda case. It also marks the
stack frame for that function so that it will invoke the debugger when exited.

t When the first argument is t, this indicates a call to debug due to evaluation of a
function call form when debug-on-next-call is non-nil. The debugger displays
‘Debugger entered--beginning evaluation of function call form:’ as the
top line in the buffer.

exit When the first argument is exit, it indicates the exit of a stack frame previously
marked to invoke the debugger on exit. The second argument given to debug
in this case is the value being returned from the frame. The debugger displays
‘Debugger entered--returning value:’ in the top line of the buffer, followed
by the value being returned.

error When the first argument is error, the debugger indicates that it is being entered
because an error or quit was signaled and not handled, by displaying ‘Debugger
entered--Lisp error:’ followed by the error signaled and any arguments to
signal. For example,

(let ((debug-on-error t))
(/ 10))

—————— Buffer: *Backtracex ------
Debugger entered--Lisp error: (arith-error)

/(1 0)

—————— Buffer: *Backtracex —----—-

If an error was signaled, presumably the variable debug-on-error is non-nil. If
quit was signaled, then presumably the variable debug-on-quit is non-nil.

Chapter 17: Debugging Lisp Programs 225

nil Use nil as the first of the debugger-args when you want to enter the debugger
explicitly. The rest of the debugger-args are printed on the top line of the buffer.
You can use this feature to display messages—for example, to remind yourself of
the conditions under which debug is called.

17.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

debugger [Variable]
The value of this variable is the function to call to invoke the debugger. Its value must be
a function of any number of arguments, or, more typically, the name of a function. This
function should invoke some kind of debugger. The default value of the variable is debug.

The first argument that Lisp hands to the function indicates why it was called. The conven-
tion for arguments is detailed in the description of debug (see Section 17.1.7 [Invoking the
Debugger|, page 224).

backtrace [Command]|
This function prints a trace of Lisp function calls currently active. This is the function used
by debug to fill up the *Backtrace* buffer. It is written in C, since it must have access to
the stack to determine which function calls are active. The return value is always nil.

In the following example, a Lisp expression calls backtrace explicitly. This prints the back-
trace to the stream standard-output, which, in this case, is the buffer ‘backtrace-output’.

Each line of the backtrace represents one function call. The line shows the values of the
function’s arguments if they are all known; if they are still being computed, the line says so.
The arguments of special forms are elided.

(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))
(save-excursion
(setq var (eval ’(progn
(1+ var)
(list ’testing (backtrace))))))))

= (testing nil)

----------- Buffer: backtrace-output ------------

backtrace()

(list ...computing arguments...)

(progn ...)

eval ((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)

(save-excursion ...)

(let ...)

(with-output-to-temp-buffer ...)
eval((with-output-to-temp-buffer ...))
eval-last-sexp-1(nil)
eval-last-sexp(nil)
call-interactively(eval-last-sexp)

——————————— Buffer: backtrace-output ------------

debug-on-next-call [Variable]
If this variable is non-nil, it says to call the debugger before the next eval, apply or funcall.
Entering the debugger sets debug-on-next-call to nil.

The d command in the debugger works by setting this variable.

backtrace-debug level flag [Function]
This function sets the debug-on-exit flag of the stack frame level levels down the stack, giving
it the value flag. If flag is non-nil, this will cause the debugger to be entered when that
frame later exits. Even a nonlocal exit through that frame will enter the debugger.

Ch

apter 17: Debugging Lisp Programs 226

This function is used only by the debugger.

command-debug-status [Variable]

This variable records the debugging status of the current interactive command. Each time
a command is called interactively, this variable is bound to nil. The debugger can set
this variable to leave information for future debugger invocations during the same command
invocation.

The advantage of using this variable rather than an ordinary global variable is that the data
will never carry over to a subsequent command invocation.

backtrace-frame frame-number [Function]

The function backtrace-frame is intended for use in Lisp debuggers. It returns information
about what computation is happening in the stack frame frame-number levels down.

If that frame has not evaluated the arguments yet, or is a special form, the value is (nil
function arg-forms. ..).

If that frame has evaluated its arguments and called its function already, the return value is
(t function arg-values...).

In the return value, function is whatever was supplied as the CAR of the evaluated list, or a
lambda expression in the case of a macro call. If the function has a &rest argument, that is
represented as the tail of the list arg-values.

If frame-number is out of range, backtrace-frame returns nil.

17.2 Edebug

Edebug is a source-level debugger for Emacs Lisp programs, with which you can:

Step through evaluation, stopping before and after each expression.

Set conditional or unconditional breakpoints.

Stop when a specified condition is true (the global break event).

Trace slow or fast, stopping briefly at each stop point, or at each breakpoint.
Display expression results and evaluate expressions as if outside of Edebug.

Automatically re-evaluate a list of expressions and display their results each time Edebug
updates the display.

Output trace information on function calls and returns.
Stop when an error occurs.

Display a backtrace, omitting Edebug’s own frames.
Specify argument evaluation for macros and defining forms.

Obtain rudimentary coverage testing and frequency counts.

The first three sections below should tell you enough about Edebug to start using it.

17.2.1 Using Edebug

To

debug a Lisp program with Edebug, you must first instrument the Lisp code that you want to

debug. A simple way to do this is to first move point into the definition of a function or macro and
then do C-u C-M-x (eval-defun with a prefix argument). See Section 17.2.2 [Instrumenting],
page 227, for alternative ways to instrument code.

wh
let

Once a function is instrumented, any call to the function activates Edebug. Depending on
ich Edebug execution mode you have selected, activating Edebug may stop execution and
you step through the function, or it may update the display and continue execution while

checking for debugging commands. The default execution mode is step, which stops execution.
See Section 17.2.3 [Edebug Execution Modes], page 228.

Chapter 17: Debugging Lisp Programs 227

Within Edebug, you normally view an Emacs buffer showing the source of the Lisp code you
are debugging. This is referred to as the source code buffer, and it is temporarily read-only.

An arrow in the left fringe indicates the line where the function is executing. Point initially
shows where within the line the function is executing, but this ceases to be true if you move
point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is what
you would normally see. Point is at the open-parenthesis before if.

(defun fac (n)
=>x(if (< 0 n)
(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points. These
occur both before and after each subexpression that is a list, and also after each variable refer-
ence. Here we use periods to show the stop points in the function fac:

(defun fac (n)
.(Af .(< 0nmn.).
.(xn. .(fac .(1- n.).).).
D)

The special commands of Edebug are available in the source code buffer in addition to the
commands of Emacs Lisp mode. For example, you can type the Edebug command SPC to execute
until the next stop point. If you type SPC once after entry to fac, here is the display you will
see:

(defun fac (n)
=>(if %x(< 0 n)
(* n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in the
echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute until
a breakpoint is reached, and q to exit Edebug and return to the top-level command loop. Type
? to display a list of all Edebug commands.

17.2.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instrumenting
code inserts additional code into it, to invoke Edebug at the proper places.

When you invoke command C-M-x (eval-defun) with a prefix argument on a function defi-
nition, it instruments the definition before evaluating it. (This does not modify the source code
itself.) If the variable edebug-all-defs is non-nil, that inverts the meaning of the prefix argu-
ment: in this case, C-M-x instruments the definition unless it has a prefix argument. The default
value of edebug-all-defs is nil. The command M-x edebug-all-defs toggles the value of the
variable edebug-all-defs.

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-buffer,
and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-all-forms
controls whether eval-region should instrument any form, even non-defining forms. This
doesn’t apply to loading or evaluations in the minibuffer. The command M-x edebug-all-forms
toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument any top-
level form regardless of the values of edebug-all-defs and edebug-all-forms. edebug-defun
is an alias for edebug-eval-top-level-form.

Chapter 17: Debugging Lisp Programs 228

While Edebug is active, the command I (edebug-instrument-callee) instruments the defi-
nition of the function or macro called by the list form after point, if it is not already instrumented.
This is possible only if Edebug knows where to find the source for that function; for this reason,
after loading Edebug, eval-region records the position of every definition it evaluates, even if
not instrumenting it. See also the i command (see Section 17.2.4 [Jumping], page 229), which
steps into the call after instrumenting the function.

Edebug knows how to instrument all the standard special forms, interactive forms with
an expression argument, anonymous lambda expressions, and other defining forms. However,
Edebug cannot determine on its own what a user-defined macro will do with the arguments of
a macro call, so you must provide that information using Edebug specifications; for details, see
Section 17.2.15 [Edebug and Macros|, page 237.

When Edebug is about to instrument code for the first time in a session, it runs the hook
edebug-setup-hook, then sets it to nil. You can use this to load Edebug specifications associ-
ated with a package you are using, but only when you use Edebug.

To remove instrumentation from a definition, simply re-evaluate its definition in a way that
does not instrument. There are two ways of evaluating forms that never instrument them: from
a file with load, and from the minibuffer with eval-expression (M-:).

If Edebug detects a syntax error while instrumenting, it leaves point at the erroneous code
and signals an invalid-read-syntax error.

See Section 17.2.9 [Edebug Eval|, page 233, for other evaluation functions available inside of
Edebug.

17.2.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging. We
call these alternatives Edebug execution modes; do not confuse them with major or minor
modes. The current Edebug execution mode determines how far Edebug continues execution
before stopping—whether it stops at each stop point, or continues to the next breakpoint, for
example—and how much Edebug displays the progress of the evaluation before it stops.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands; all except for S resume execution
of the program, at least for a certain distance.

S Stop: don’t execute any more of the program, but wait for more Edebug commands
(edebug-stop).

SPC Step: stop at the next stop point encountered (edebug-step-mode).

n Next: stop at the next stop point encountered after an expression (edebug-next-
mode). Also see edebug-forward-sexp in Section 17.2.4 [Jumping], page 229.

t Trace: pause (normally one second) at each Edebug stop point (edebug-trace-
mode).
T Rapid trace: update the display at each stop point, but don’t actually pause

(edebug-Trace-fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 17.2.6.1 [Break-
points|, page 230.

c Continue: pause one second at each breakpoint, and then continue (edebug-
continue-mode).

c Rapid continue: move point to each breakpoint, but don’t pause (edebug-
Continue-fast-mode).

Chapter 17: Debugging Lisp Programs 229

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still stop
the program by typing S, or any editing command.

In general, the execution modes earlier in the above list run the program more slowly or stop
sooner than the modes later in the list.

While executing or tracing, you can interrupt the execution by typing any Edebug command.
Edebug stops the program at the next stop point and then executes the command you typed.
For example, typing t during execution switches to trace mode at the next stop point. You can
use S to stop execution without doing anything else.

If your function happens to read input, a character you type intending to interrupt execution
may be read by the function instead. You can avoid such unintended results by paying attention
to when your program wants input.

Keyboard macros containing the commands in this section do not completely work: exiting
from Edebug, to resume the program, loses track of the keyboard macro. This is not easy to
fix. Also, defining or executing a keyboard macro outside of Edebug does not affect commands
inside Edebug. This is usually an advantage. See also the edebug-continue-kbd-macro option
in Section 17.2.16 [Edebug Options]|, page 242.

When you enter a new Edebug level, the initial execution mode comes from the value of the
variable edebug-initial-mode (see Section 17.2.16 [Edebug Options|, page 242). By default,
this specifies step mode. Note that you may reenter the same Edebug level several times if, for
example, an instrumented function is called several times from one command.

edebug-sit-for-seconds [User Option)]
This option specifies how many seconds to wait between execution steps in trace mode or
continue mode. The default is 1 second.

17.2.4 Jumping

The commands described in this section execute until they reach a specified location. All except
i make a temporary breakpoint to establish the place to stop, then switch to go mode. Any other
breakpoint reached before the intended stop point will also stop execution. See Section 17.2.6.1
[Breakpoints], page 230, for the details on breakpoints.

These commands may fail to work as expected in case of nonlocal exit, as that can bypass
the temporary breakpoint where you expected the program to stop.

h Proceed to the stop point near where point is (edebug-goto-here).

f Run the program for one expression (edebug-forward-sexp).

o Run the program until the end of the containing sexp (edebug-step-out).

1 Step into the function or macro called by the form after point (edebug-step-in).

The h command proceeds to the stop point at or after the current location of point, using a
temporary breakpoint.

The f command runs the program forward over one expression. More precisely, it sets a
temporary breakpoint at the position that forward-sexp would reach, then executes in go
mode so that the program will stop at breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point. If
the containing list ends before n more elements, then the place to stop is after the containing
expression.

You must check that the position forward-sexp finds is a place that the program will really
get to. In cond, for example, this may not be true.

Chapter 17: Debugging Lisp Programs 230

For flexibility, the f command does forward-sexp starting at point, rather than at the stop
point. If you want to execute one expression from the current stop point, first type w (edebug-
where) to move point there, and then type f.

The o command continues “out of” an expression. It places a temporary breakpoint at the
end of the sexp containing point. If the containing sexp is a function definition itself, o continues
until just before the last sexp in the definition. If that is where you are now, it returns from the
function and then stops. In other words, this command does not exit the currently executing
function unless you are positioned after the last sexp.

The i command steps into the function or macro called by the list form after point, and
stops at its first stop point. Note that the form need not be the one about to be evaluated. But
if the form is a function call about to be evaluated, remember to use this command before any
of the arguments are evaluated, since otherwise it will be too late.

The i command instruments the function or macro it’s supposed to step into, if it isn’t
instrumented already. This is convenient, but keep in mind that the function or macro remains
instrumented unless you explicitly arrange to deinstrument it.

17.2.5 Miscellaneous Edebug Commands

Some miscellaneous Edebug commands are described here.

? Display the help message for Edebug (edebug-help).
Cc-] Abort one level back to the previous command level (abort-recursive-edit).
q Return to the top level editor command loop (top-level). This exits all recursive

editing levels, including all levels of Edebug activity. However, instrumented code
protected with unwind-protect or condition-case forms may resume debugging.

qQ Like g, but don’t stop even for protected code (edebug-top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).

You cannot use debugger commands in the backtrace buffer in Edebug as you would
in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

You can invoke commands from Edebug that activate Edebug again recursively. Whenever
Edebug is active, you can quit to the top level with q or abort one recursive edit level with C-]J.
You can display a backtrace of all the pending evaluations with d.

17.2.6 Breaks

Edebug’s step mode stops execution when the next stop point is reached. There are three other
ways to stop Edebug execution once it has started: breakpoints, the global break condition, and
source breakpoints.

17.2.6.1 Edebug Breakpoints

While using Edebug, you can specify breakpoints in the program you are testing: these are
places where execution should stop. You can set a breakpoint at any stop point, as defined in
Section 17.2.1 [Using Edebug|, page 226. For setting and unsetting breakpoints, the stop point
that is affected is the first one at or after point in the source code buffer. Here are the Edebug
commands for breakpoints:

Chapter 17: Debugging Lisp Programs 231

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint). If
you use a prefix argument, the breakpoint is temporary—it turns off the first time
it stops the program.

u Unset the breakpoint (if any) at the stop point at or after point (edebug-unset-
breakpoint).

x condition RET
Set a conditional breakpoint which stops the program only if evaluating condition
produces a non-nil value (edebug-set-conditional-breakpoint). With a prefix
argument, the breakpoint is temporary.

B Move point to the next breakpoint in the current definition (edebug-next-
breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First move point
to the Edebug stop point of your choice, then type b or u to set or unset a breakpoint there.
Unsetting a breakpoint where none has been set has no effect.

Re-evaluating or reinstrumenting a definition removes all of its previous breakpoints.

A conditional breakpoint tests a condition each time the program gets there. Any errors
that occur as a result of evaluating the condition are ignored, as if the result were nil. To set a
conditional breakpoint, use x, and specify the condition expression in the minibuffer. Setting a
conditional breakpoint at a stop point that has a previously established conditional breakpoint
puts the previous condition expression in the minibuffer so you can edit it.

You can make a conditional or unconditional breakpoint temporary by using a prefix ar-
gument with the command to set the breakpoint. When a temporary breakpoint stops the
program, it is automatically unset.

Edebug always stops or pauses at a breakpoint, except when the Edebug mode is Go-nonstop.
In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use the B command, which moves point to the next
breakpoint following point, within the same function, or to the first breakpoint if there are no
following breakpoints. This command does not continue execution—it just moves point in the
buffer.

17.2.6.2 Global Break Condition

A global break condition stops execution when a specified condition is satisfied, no matter where
that may occur. Edebug evaluates the global break condition at every stop point; if it evaluates
to a non-nil value, then execution stops or pauses depending on the execution mode, as if a
breakpoint had been hit. If evaluating the condition gets an error, execution does not stop.

The condition expression is stored in edebug-global-break-condition. You can specify a
new expression using the X command from the source code buffer while Edebug is active, or
using C-x X X from any buffer at any time, as long as Edebug is loaded (edebug-set-global-
break-condition).

The global break condition is the simplest way to find where in your code some event occurs,
but it makes code run much more slowly. So you should reset the condition to nil when not
using it.

17.2.6.3 Source Breakpoints

All breakpoints in a definition are forgotten each time you reinstrument it. If you wish to make
a breakpoint that won’t be forgotten, you can write a source breakpoint, which is simply a call
to the function edebug in your source code. You can, of course, make such a call conditional.
For example, in the fac function, you can insert the first line as shown below, to stop when the
argument reaches zero:

Chapter 17: Debugging Lisp Programs 232

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)
(* n (fac (1- n)))
1))

When the fac definition is instrumented and the function is called, the call to edebug acts
as a breakpoint. Depending on the execution mode, Edebug stops or pauses there.

If no instrumented code is being executed when edebug is called, that function calls debug.

17.2.7 Trapping Errors

Emacs normally displays an error message when an error is signaled and not handled with
condition-case. While Edebug is active and executing instrumented code, it normally responds
to all unhandled errors. You can customize this with the options edebug-on-error and edebug-
on-quit; see Section 17.2.16 [Edebug Options|, page 242.

When Edebug responds to an error, it shows the last stop point encountered before the error.
This may be the location of a call to a function which was not instrumented, and within which
the error actually occurred. For an unbound variable error, the last known stop point might be
quite distant from the offending variable reference. In that case, you might want to display a
full backtrace (see Section 17.2.5 [Edebug Misc], page 230).

If you change debug-on-error or debug-on-quit while Edebug is active, these changes will
be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s recursive edit, these
variables are bound to the values they had outside of Edebug.

17.2.8 Edebug Views

These Edebug commands let you view aspects of the buffer and window status as they were
before entry to Edebug. The outside window configuration is the collection of windows and
contents that were in effect outside of Edebug.

v Switch to viewing the outside window configuration (edebug-view-outside). Type
C-x X w to return to Edebug.

P Temporarily display the outside current buffer with point at its outside position
(edebug-bounce-point), pausing for one second before returning to Edebug. With
a prefix argument n, pause for n seconds instead.

W Move point back to the current stop point in the source code buffer (edebug-where).

If you use this command in a different window displaying the same buffer, that
window will be used instead to display the current definition in the future.

W Toggle whether Edebug saves and restores the outside window configuration
(edebug-toggle-save-windows).

With a prefix argument, W only toggles saving and restoring of the selected window.
To specify a window that is not displaying the source code buffer, you must use C-x
X W from the global keymap.

You can view the outside window configuration with v or just bounce to the point in the
current buffer with p, even if it is not normally displayed.

After moving point, you may wish to jump back to the stop point. You can do that with w
from a source code buffer. You can jump back to the stop point in the source code buffer from
any buffer using C-x X w.

Each time you use W to turn saving off, Edebug forgets the saved outside window
configuration—so that even if you turn saving back on, the current window configuration
remains unchanged when you next exit Edebug (by continuing the program). However, the

Chapter 17: Debugging Lisp Programs 233

automatic redisplay of *edebug* and *edebug-trace* may conflict with the buffers you wish
to see unless you have enough windows open.

17.2.9 Evaluation

While within Edebug, you can evaluate expressions as if Edebug were not running. Edebug tries
to be invisible to the expression’s evaluation and printing. Evaluation of expressions that cause
side effects will work as expected, except for changes to data that Edebug explicitly saves and
restores. See Section 17.2.14 [The Outside Context]|, page 236, for details on this process.

e exp RET Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). That is, Edebug tries to minimize its interference with the
evaluation.

M-: exp RET
Evaluate expression exp in the context of Edebug itself (eval-expression).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound symbols
created by the following constructs in cl.el: lexical-let, macrolet, and symbol-macrolet.

17.2.10 Evaluation List Buffer

You can use the evaluation list buffer, called *edebug+, to evaluate expressions interactively.
You can also set up the evaluation list of expressions to be evaluated automatically each time
Edebug updates the display.

E Switch to the evaluation list buffer *edebug* (edebug-visit-eval-list).

In the *edebug* buffer you can use the commands of Lisp Interaction mode (see Section
“Lisp Interaction” in The GNU Emacs Manual) as well as these special commands:

C-j Evaluate the expression before point, in the outside context, and insert the value in
the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the contents of the buffer (edebug-update-eval-
list).
C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).
C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).
You can evaluate expressions in the evaluation list window with C-j or C-x C-e, just as you
would in *scratch*; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue execu-
tion; but you can set up an evaluation list consisting of expressions to be evaluated each time
execution stops.

To do this, write one or more evaluation list groups in the evaluation list buffer. An evaluation
list group consists of one or more Lisp expressions. Groups are separated by comment lines.

The command C-c C-u (edebug-update-eval-1list) rebuilds the evaluation list, scanning
the buffer and using the first expression of each group. (The idea is that the second expression
of the group is the value previously computed and displayed.)

Each entry to Edebug redisplays the evaluation list by inserting each expression in the buffer,
followed by its current value. It also inserts comment lines so that each expression becomes its

Chapter 17: Debugging Lisp Programs 234

own group. Thus, if you type C-c C-u again without changing the buffer text, the evaluation
list is effectively unchanged.

If an error occurs during an evaluation from the evaluation list, the error message is displayed
in a string as if it were the result. Therefore, expressions using variables that are not currently
valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

(current-buffer)
#<buffer *scratch*>

(selected-window)
#<window 16 on *scratchx*>

(point)
196

)

bad-var
"Symbol’s value as variable is void: bad-var"

(recursion-depth)
0

s
this-command
eval-last-sexp

To delete a group, move point into it and type C-c C-d, or simply delete the text for the
group and update the evaluation list with C-c C-u. To add a new expression to the evaluation
list, insert the expression at a suitable place, insert a new comment line, then type C-c C-u.
You need not insert dashes in the comment line—its contents don’t matter.

After selecting *edebug*, you can return to the source code buffer with C-c C-w. The
xedebug* buffer is killed when you continue execution, and recreated next time it is needed.

17.2.11 Printing in Edebug

If an expression in your program produces a value containing circular list structure, you may
get an error when Edebug attempts to print it.

One way to cope with circular structure is to set print-length or print-level to truncate
the printing. Edebug does this for you; it binds print-length and print-level to the values
of the variables edebug-print-length and edebug-print-level (so long as they have non-nil
values). See Section 18.6 [Output Variables], page 253.

edebug-print-length [User Option]
If non-nil, Edebug binds print-length to this value while printing results. The default
value is 50.

edebug-print-level [User Option]
If non-nil, Edebug binds print-level to this value while printing results. The default value
is 50.

You can also print circular structures and structures that share elements more informatively
by binding print-circle to a non-nil value.

Here is an example of code that creates a circular structure:

(setq a ’(x y))
(setcar a a)

Chapter 17: Debugging Lisp Programs 235

Custom printing prints this as ‘Result: #1=(#1# y)’. The ‘#1=" notation labels the structure
that follows it with the