Spiegel, Murray R. Mathematical Handbook of Formulas and Tables Schaum's Outline Series McGraw-Hill 1968
Each integral is computed by Axiom and compared against the published result.
Each Axiom result is differenced from the published result and reduced to a constant (usually 0).
Schaums 14.59-14.83 
source
pdf
Schaums 14.84-14.104 
source
pdf
Schaums 14.104-14.112 
source
pdf
Schaums 14.113-.119 
source
pdf
Schaums 14.120-14.124 
source
pdf
Schaums 14.125-14.143 
source
pdf
Schaums 14.144-14.162 
source
pdf
Schaums 14.163-14.181 
source
pdf
Schaums 14.182-14.209 
source
pdf
Schaums 14.210-14.236 
source
pdf
Schaums 14.237-14.264 
source
pdf
Schaums 14.265-14.279 
source
pdf
Schaums 14.280-14.298 
source
pdf
Schaums 14.299-14.310 
source
pdf
Schaums 14.311-14.324 
source
pdf
Schaums 14.325-14.338 
source
pdf
Schaums 14.339-14.368 
source
pdf
Schaums 14.369-14.398 
source
pdf
Schaums 14.399-14.428 
source
pdf
Schaums 14.429-14.439 
source
pdf
Schaums 14.440-14.450 
source
pdf
Schaums 14.451-14.460 
source
pdf
Schaums 14.461-14.470 
source
pdf
Schaums 14.471-14.508 
source
pdf
Schaums 14.509-14.524 
source
pdf
Schaums 14.525-14.539 
source
pdf
Schaums 14.540-14.561 
source
pdf
Schaums 14.562-14.589 
source
pdf
Schaums 14.590-14.603 
source
pdf
Schaums 14.604-14.614 
source
pdf
Schaums 14.615-14.625 
source
pdf
Schaums 14.626-14.635 
source
pdf
Schaums 14.636-14.645 
source
pdf
Schaums 14.646-14.677 
source
pdf
This portion of the CATS suite involves Ordinary Differential Equations. This is the Kamke test suite as published by E. S. Cheb-Terrab. They have been rewritten using Axiom syntax. Where possible we show that the particular solution actually satisfies the original ordinary differential equation.
Kamke0 source pdf
Kamke1 source pdf
Kamke2 source pdf
Kamke3 source pdf
Kamke4 source pdf
Kamke5 source pdf
Kamke6 source pdf
Kamke7 source pdf