VISUAL BASIC FOR APPLICATIONS

 LESSON SIXTEEN: Some programming style
Throughout these lesson I have tried to simplyfy the code as much as possible to make it easy to follow what is going on. Now is the time to learn a few ways in which VBA code can be improved by using a little style that will actually reduce the amount of code and make it easier to find and fix errors. This is often called a ‘modular’ style of programming.

In Lesson 15 we used the following code to format strings for display in the ‘UserForm’ textboxes. If you look at the code, you can see that although the variables change, the actually flow of code is being repeated. In this case it is only twice, but it could involve multiple variables in a large ‘UserForm’.

‘other code
Set myTable = ActiveDocument.Tables(1)

SName = myTable.Cell(TextBox3.Value, 2)

SLength = Len(SName)

SName = Left(SName, (SLength - 2))

UserForm2.TextBox1.Value = SName

SName = myTable.Cell(TextBox3.Value, 3)

SLength = Len(SName)

SName = Left(SName, (SLength - 2))

UserForm2.TextBox2.Value = Sname

‘other code
A more ‘stylish’ or ‘elegant’ way is to pass the variables to be ‘fixed up’ to an external function to do the actual processing. The code would then look like this.

Function chopstring(str) As String

chopstring = Left(str, ((Len(str)) - 2))
‘remove the last two characters from the string
End Sub

‘other code

Set myTable = ActiveDocument.Tables(1)

UserForm2.TextBox1.Value = chopstring(myTable.Cell(TextBox3.Value, 2))

UserForm2.TextBox2.Value = chopstring(myTable.Cell(TextBox3.Value, 3))

‘other code
[image: image1.wmf]

Student Data Input

1
Gary
Radley

2
Lilly
Dal

3
Lois
Lane

4
Emma
Trotter

EXERCISE: Write your own little program that takes some variables, sends them to a function for processing, either maths or string, then displays the result.
[To Lesson Fifteen] [To Part Two Index Page] [To Lesson Seventeen]

� CONTROL Forms.CommandButton.1 \s ���

[image: image2.wmf]

Student Data Input

_987513337.unknown

