Network Working Group V. Roca

Request for Comments: 5170 INRIA
Category: Standards Track C. Neumann
Thomson

D. Furodet

STMicroelectronics

June 2008

Low Density Parity Check (LDPC) Staircase and Triangle
Forward Error Correction (FEC) Schemes

Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards"™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document describes two Fully-Specified Forward Error Correction
(FEC) Schemes, Low Density Parity Check (LDPC) Staircase and LDPC
Triangle, and their application to the reliable delivery of data
objects on the packet erasure channel (i.e., a communication path
where packets are either received without any corruption or discarded
during transmission). These systematic FEC codes belong to the well-
known class of "Low Density Parity Check" codes, and are large block
FEC codes in the sense of RFC 3453.

Roca, et al. Standards Track [Page 1]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

Table of Contents

1.
2.
3

9.
10.
11.

AN Www

N WNRTADMADNR
N
N

[NO N6

N NN N [e)Ne)Ne)Ne)) [G2@)]

00 00

Introduction .
Requirements Notatlon
Definitions, Notations, and AbbreV|at|ons

.1. Definitions
.2. Notations
.3. Abbreviations

Formats and Codes

FEC Payload IDs

FEC Object Transm|SS|on Informatlon

2.1. Mandatory Element

.2.2. Common Elements .

.2.3. Scheme-Specific Elements .

Encoding Format

rocedures .

General .

Determining the MaX|mum Source Block Length (B)

of Encoding Symbols per Group (G) . .
Determining the Maximum Number of Encodlng Symbols
Generated for Any Source Block (max_n)

al

Q)

.6. Ident;f9|ng the G Symbols of an Encodlng Symbol Group-
.7. Pseudo-Random Number Generator . . .

Full Specification of the LDPC-Staircase Scheme

1. General . . .
.2. Parity Check Matrlx Creatlon .
.3. Encoding . - e e e
.4. Decoding .

Full SpeC|f|cat;on of the LDPC Trlangle Scheme :

.1. General .
.2. Parity Check Matrlx Creatlon .
.3. Encoding .
.4. Decoding .

Security ConS|derat|ons

Problem Statement .

Attacks Against the Data Flow - -
1. Access to Confidential Objects .
2. Content Corruption . -
Attacks Against the FEC Parameters .
IANA Considerations e e e
Acknowledgments

References .

1.
2.
8.2.
8.2.
3

11.1. Normative References :
11.2. Informative References . .
Appendix A. Trivial Decoding Algorlthm (Informatlve Only)

Roca, et al. Standards Track

Determining the Encoding Symbol Length (E) and Nunber-

POOO~NOOOODOOUTAWWWW

=

[
N

. 13

Determining the Number of Encoding Symbole of a Block-

. 14
. 14
. 17
. 19
. 19
. 19
.21
.21
. 22
. 22
. 23
. 23
. 24
. 24
. 24
. 24
. 25
. 26
. 27
. 27
. 27
. 27
. 27
. 30

[Page 2]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

1.

3.

3.

Introduction

[RFC3453] introduces large block FEC codes as an alternative to small
block FEC codes like Reed-Solomon. The main advantage of such large
block codes is the possibility to operate efficiently on source
blocks with a size of several tens of thousands (or more) of source
symbols. The present document introduces the Fully-Specified FEC
Encoding ID 3 that is intended to be used with the LDPC-Staircase FEC
codes, and the Fully-Specified FEC Encoding ID 4 that is intended to
be used with the LDPC-Triangle FEC codes [RNO4][MKO3]. Both schemes
belong to the broad class of large block codes. For a definition of
the term Fully-Specified Scheme, see Section 4 of [RFC5052].

LDPC codes rely on a dedicated matrix, called a "parity check
matrix™, at the encoding and decoding ends. The parity check matrix
defines relationships (or constraints) between the various encoding
symbols (i.e., source symbols and repair symbols), which are later
used by the decoder to reconstruct the original k source symbols if
some of them are missing. These codes are systematic, in the sense
that the encoding symbols include the source symbols in addition to
the repair symbols.

Since the encoder and decoder must operate on the same parity check
matrix, information must be communicated between them as part of the
FEC Object Transmission Information.

A publicly available reference implementation of these codes is
available and distributed under a GNU/LGPL (Lesser General Public
License) [LDPC-codec]. Besides, the code extracts included in this
document are directly contributed to the IETF process by the authors
of this document and by Radford M. Neal.
Requirements Notation
The key words "MUST'", "MUST NOT'", "REQUIRED'", "SHALL"™, "SHALL NOT",
""'SHOULD", ""'SHOULD NOT', "RECOMMENDED', "MAY"™, and "OPTIONAL"™ in this
document are to be interpreted as described in [RFC2119].
Definitions, Notations, and Abbreviations
1. Definitions

This document uses the same terms and definitions as those specified
in [RFC5052]. Additionally, it uses the following definitions:

Source Symbol: a unit of data used during the encoding process

Roca, et al. Standards Track [Page 3]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

3.2.

Encoding Symbol: a unit of data generated by the encoding process
Repair Symbol: an encoding symbol that is not a source symbol

Code Rate: the k/n ratio, i.e., the ratio between the number of
source symbols and the number of encoding symbols. The code rate
belongs to a]0; 1] interval. A code rate close to 1 indicates
that a small number of repair symbols have been produced during
the encoding process

Systematic Code: FEC code in which the source symbols are part of
the encoding symbols

Source Block: a block of k source symbols that are considered
together for the encoding

Encoding Symbol Group: a group of encoding symbols that are sent
together, within the same packet, and whose relationships to the
source object can be derived from a single Encoding Symbol 1D

Source Packet: a data packet containing only source symbols
Repair Packet: a data packet containing only repair symbols
Packet Erasure Channel: a communication path where packets are
either dropped (e.g., by a congested router or because the number
of transmission errors exceeds the correction capabilities of the
physical layer codes) or received. When a packet is received, it
is assumed that this packet is not corrupted

Notations

This document uses the following notations:

L denotes the object transfer length in bytes.

k denotes the source block length in symbols, i.e., the number of
source symbols of a source block.

n denotes the encoding block length, i.e., the number of encoding
symbols generated for a source block.

E denotes the encoding symbol length in bytes.

B denotes the maximum source block length in symbols, i.e., the
maximum number of source symbols per source block.

Roca, et al. Standards Track [Page 4]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

3.3.

N denotes the number of source blocks into which the object shall
be partitioned.

G denotes the number of encoding symbols per group, i.e., the
number of symbols sent in the same packet.

CR denotes the "code rate', i.e., the k/n ratio.

max_n denotes the maximum number of encoding symbols generated for
any source block. This is in particular the number of encoding
symbols generated for a source block of size B.

H denotes the parity check matrix.

N1 denotes the target number of "1s"™ per column in the left side
of the parity check matrix.

N1m3 denotes the value N1 - 3, where N1 is the target number of
"1s" per column in the left side of the parity check matrix.

pmms_rand(m) denotes the pseudo-random number generator defined in
Section 5.7 that returns a new random integer in [0; m-1] each
time it is called.

Abbreviations

This document uses the following abbreviations:

ESI: Encoding Symbol 1D

FEC OTl: FEC Object Transmission Information
FPI1: FEC Payload ID

LDPC: Low Density Parity Check

PRNG: Pseudo-Random Number Generator

Roca, et al. Standards Track [Page 5]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

4. Formats and Codes
4.1. FEC Payload IDs

The FEC Payload ID is composed of the Source Block Number and the
Encoding Symbol ID:

The Source Block Number (12-bit field) identifies from which
source block of the object the encoding symbol(s) in the packet
payload is(are) generated. There is a maximum of 2"12 blocks per
object. Source block numbering starts at O.

The Encoding Symbol 1D (20-bit field) identifies which encoding
symbol (s) generated from the source block is(are) carried in the
packet payload. There is a maximum of 2720 encoding symbols per
block. The Ffirst k values (0 to k-1) identify source symbols, the
remaining n-k values (k to n-k-1) identify repair symbols.

There MUST be exactly one FEC Payload ID per packet. |In the case of
an Encoding Symbol Group, when multiple encoding symbols are sent in
the same packet, the FEC Payload ID refers to the first symbol of the
packet. The other symbols can be deduced from the ESI of the first
symbol thanks to a dedicated function, as explained in Section 5.6

0 1 2 3
01234567890123456789012345678901
Fott—t ottt ot ottt ottt ottt -ttt —F—F—t—F—F—F -+ —+
| Source Block Number | Encoding Symbol ID (20 bits) |
+—t—F+—+—F—F—F—F—F—F—F—F—F—F—F+—F—F—F—F—F—F—F+—F—F—F—F+—F—F—F+—F—F+—+—+

Figure 1: FEC Payload ID encoding format for FEC Encoding ID 3 and 4
4_.2. FEC Object Transmission Information
4.2.1. Mandatory Element
0 FEC Encoding ID: the LDPC-Staircase and LDPC-Triangle Fully-
Specified FEC Schemes use the FEC Encoding ID 3 (Staircase) and 4
(Triangle), respectively.
4.2.2. Common Elements
The following elements MUST be defined with the present FEC Schemes:
o0 Transfer-Length (L): a non-negative integer indicating the length

of the object in bytes. There are some restrictions on the
maximum Transfer-Length that can be supported:

Roca, et al. Standards Track [Page 6]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

maximum transfer length = 212 * B * E

For instance, if B=2"19 (because of a code rate of 1/2,

Section 5.2), and if E=1024 bytes, then the maximum transfer
length 1s 2”41 bytes (or 2 TB). The upper limit, with symbols of
size 2™"16-1 bytes and a code rate larger or equal to 1/2, amounts
to 2™"47 bytes (or 128 TB).

Encoding-Symbol-Length (E): a non-negative integer indicating the
length of each encoding symbol in bytes.

Maximum-Source-Block-Length (B): a non-negative integer indicating
the maximum number of source symbols in a source block. There are
some restrictions on the maximum B value, as explained in

Section 5.2.

Max-Number-of-Encoding-Symbols (max_n): a non-negative integer
indicating the maximum number of encoding symbols generated for
any source block. There are some restrictions on the maximum
max_n value. In particular max_n is at most equal to 2"20.

Section 5 explains how to define the values of each of these
elements.

4.2.3.

Scheme-Specific Elements

The following elements MUST be defined with the present FEC Scheme:

(0]

Roca,

N1m3: an integer between 0 (default) and 7, inclusive. The target
number of "1s" per column in the left side of the parity check
matrix, N1, is then equal to N1Im3 + 3 (see Sections 6.2 and 7.2).
Using the default value of 0 for N1m3 is recommended when the
sender has no information on the decoding scheme used by the
receivers. A value greater than 0O for N1m3 can be a good choice
in specific situations, e.g., with LDPC-staircase codes when the
sender knows that all the receivers use a Gaussian elimination
decoding scheme. Nevertheless, the current document does not
mandate any specific value. This choice is left to the codec
developer.

G: an integer between 1 (default) and 31, inclusive, indicating
the number of encoding symbols per group (i.e., per packet). The
default value is 1, meaning that each packet contains exactly one
symbol. Values greater than 1 can also be defined, as explained
in Section 5.3.

et al. Standards Track [Page 7]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

0 PRNG seed: the seed is a 32-bit unsigned integer between 1 and
OX7FFFFFFE (i.e., 2™31-2) inclusive. This value is used to
initialize the Pseudo-Random Number Generator (Section 5.7).

4.2.4. Encoding Format

This section shows two possible encoding formats of the above FEC
OTl. The present document does not specify when or how these
encoding formats should be used.

4.2.4.1. Using the General EXT_FTI Format

The FEC OTI binary format is the following when the EXT_FTI mechanism
is used (e.g., within the Asynchronous Layer Coding (ALC)
[RMT-PI-ALC] or NACK-Oriented Reliable Multicast (NORM) [RMT-PI-NORM]
protocols).

0 1 2 3
01234567890123456789012345678901

I N S S S
| HET = 64 | HEL = 5 | |
S S M S S S S +

| Transfer-Length (L) |
+—+—+—+—+—+—+—+—F+—F+—F+—F+—F—F+—F+—F+—F+—F+—+—F—F+—F+—F—F—F—F+—F -+ —+—F+—F+—+—+
| Encoding Symbol Length (E) | N1m3]| G | B (MSB) |
Fott—t ottt -ttt —F—t—t—F—F—t—F—F—F—t—F—F—F—t—F—F—F—F—F—+—+
| B (LSB) | Max Nb of Enc. Symbols (max_n) |

+—t—F+—+—F—F—F—tF—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F+—F—F—F+—F+—F+—+—+
| PRNG seed |
+—+—+—+—+—+—+—+—F+—F+—F+—F+—F—F+—F+—F+—F+—F+—+—F—F+—F+—F—F—F—F+—F -+ —+—F+—F+—+—+

Figure 2: EXT_FTI Header for FEC Encoding ID 3 and 4

In particular:

0 The Transfer-Length (L) field size (48 bits) is larger than the
size required to store the maximum transfer length (Section 4.2.2)
for field alignment purposes.

0 The Maximum-Source-Block-Length (B) field (20 bits) is split into
two parts: the 8 most significant bits (MSB) are in the third 32-

bit word of the EXT_FTI, and the remaining 12 least significant
bits (LSB) are in the fourth 32-bit word.

Roca, et al. Standards Track [Page 8]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

4.2.4.2. Using the FDT Instance (FLUTE-Specific)

When i1t is desired that the FEC OTI be carried in the File Delivery
Table (FDT) Instance of a File Delivery over Unidirectional Transport
(FLUTE) session [RMT-FLUTE], the following XML attributes must be
described for the associated object:

0 FEC-OTI-FEC-Encoding-1D

0 FEC-OTI-Transfer-length

0 FEC-0OTI-Encoding-Symbol-Length

0 FEC-OTI-Maximum-Source-Block-Length

0 FEC-0TI-Max-Number-of-Encoding-Symbols
0 FEC-0TI-Scheme-Specific-Info

The FEC-0TI-Scheme-Specific-Info contains the string resulting from
the Base64 encoding [RFC4648] of the following value:

0 1 2 3
012345678901 23456789012345678901
S S S S S S S S S S
I PRNG seed |
S S S S SO S S S S S S
| NIm3] G |
Fed ettt ==+

Figure 3: FEC OTl Scheme-Specific Information to be Included in the
FDT Instance for FEC Encoding ID 3 and 4

During Base64 encoding, the 5 bytes of the FEC OTl Scheme-Specific
Information are transformed into a string of 8 printable characters
(in the 64-character alphabet) that is added to the FEC-OTI-Scheme-
Specific-Info attribute.

5. Procedures

This section defines procedures that are common to FEC Encoding IDs 3
and 4.

5.1. General
The B (maximum source block length in symbols), E (encoding symbol

length In bytes), and G (number of encoding symbols per group)
parameters are first determined. The algorithms of Section 5.2 and

Roca, et al. Standards Track [Page 9]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

Section 5.3 MAY be used to that purpose. Using other algorithms is
possible without compromising interoperability since the B, E, and G
parameters are communicated to the receiver by means of the FEC OTI.

Then, the source object MUST be partitioned using the block
partitioning algorithm specified in [RFC5052]. To that purpose, the
B, L (object transfer length in bytes), and E arguments are provided.
As a result, the object is partitioned into N source blocks. These
blocks are numbered consecutively from O to N-1. The Ffirst 1 source
blocks consist of A _large source symbols, the remaining N-1 source
blocks consist of A _small source symbols. Each source symbol is E
bytes in length, except perhaps the last symbol, which may be
shorter.

Then, the max_n (maximum number of encoding symbols generated for any
source block) parameter is determined. The algorithm in Section 5.4
MAY be used to that purpose. Using another algorithm is possible
without compromising interoperability since the max _n parameter is
communicated to the receiver by means of the FEC OTI.

For each block, the actual number of encoding symbols, n, MUST then
be determined using the "n-algorithm™ detailed in Section 5.5.

Then, FEC encoding and decoding can be done block per block,
independently. To that purpose, a parity check matrix is created,
that forms a system of linear equations between the source and repair
symbols of a given block, where the basic operator is XOR.

This parity check matrix is logically divided into two parts: the
left side (from column O to k-1) describes the occurrences of each
source symbol in the system of linear equations; the right side (from
column k to n-1) describes the occurrences of each repair symbol in
the system of linear equations. The only difference between the
LDPC-Staircase and LDPC-Triangle schemes is the construction of this
right sub-matrix. An entry (a "1") in the matrix at position (i,})
(i.e., at row i and column j) means that the symbol with ESI j
appears in equation i of the system.

When the parity symbols have been created, the sender transmits
source and parity symbols. The way this transmission occurs can
largely impact the erasure recovery capabilities of the LDPC-* FEC.
In particular, sending parity symbols in sequence is suboptimal.
Instead, it is usually recommended to shuffle these symbols. The
interested reader will find more details in [NRFFO5].

Roca, et al. Standards Track [Page 10]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

The following sections detail how the B, E, G, max_n, and n
parameters are determined (in Sections 5.2, 5.3, 5.4 and 5.5,
respectively). Section 5.6 details how Encoding Symbol Groups are
created, and finally, Section 5.7 covers the PRNG.

5.2. Determining the Maximum Source Block Length (B)
The B parameter (maximum source block length in symbols) depends on
several parameters: the code rate (CR), the Encoding Symbol 1D field
length of the FEC Payload ID (20 bits), as well as possible internal
codec limitations.

The B parameter cannot be larger than the following values, derived
from the FEC Payload ID limitations, for a given code rate:

maxl B = 2~"(20 - ceil(Log2(1/CR)))
Some common maxl B values are:
0 CR == 1 (no repair symbol): max1l_B = 220 = 1,048,576

0 1/2 <= CR < 1: max1l_B = 2™M19 = 524,288 symbols

0 1/4 <= CR < 1/2: max1_B = 2~""18 262,144 symbols

0o 1/8 <= CR < 1/4: max1l_B = 2™M17

131,072 symbols

Additionally, a codec MAY impose other limitations on the maximum
block size. For iInstance, this is the case when the codec uses
internally 16-bit unsigned integers to store the Encoding Symbol 1D,
since it does not enable to store all the possible values of a 20-bit
field. |In that case, if for instance, 1/2 <= CR < 1, then the
maximum source block length is 2™15. Other limitations may also
apply, for instance, because of a limited working memory size. This
decision MUST be clarified at implementation time, when the target
use case iIs known. This results in a max2 B limitation.

Then, B is given by:
B = min(max1_B, max2_B)

Note that this calculation is only required at the coder, since the B
parameter is communicated to the decoder through the FEC OTI.

Roca, et al. Standards Track [Page 11]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

5.3. Determining the Encoding Symbol Length (E) and Number of Encoding
Symbols per Group (G)

The E parameter usually depends on the maximum transmission unit on
the path (PMTU) from the source to each receiver. In order to
minimize the protocol header overhead (e.g., the Layered Coding
Transport (LCT), UDP, IPv4, or IPv6 headers in the case of ALC), E is
chosen to be as large as possible. In that case, E is chosen so that
the size of a packet composed of a single symbol (G=1) remains below
but close to the PMTU.

However, other considerations can exist. For instance, the E
parameter can be made a function of the object transfer length.
Indeed, LDPC codes are known to offer better protection for large
blocks. In the case of small objects, it can be advantageous to
reduce the encoding symbol length (E) in order to artificially
increase the number of symbols and therefore the block size.

In order to minimize the protocol header overhead, several symbols
can be grouped in the same Encoding Symbol Group (i.e., G > 1).
Depending on how many symbols are grouped (G) and on the packet loss
rate (G symbols are lost for each packet erasure), this strategy
might or might not be appropriate. A balance must therefore be
found.

The current specification does not mandate any value for either E or
G. The current specification only provides an example of possible
choices for E and G. Note that this choice is made by the sender,
and the E and G parameters are then communicated to the receiver
thanks to the FEC OTl. Note also that the decoding algorithm used
influences the choice of the E and G parameters. Indeed, increasing
the number of symbols will negatively impact the processing load when
decoding is based (in part or totally) on Gaussian elimination,
whereas the impacts will be rather low when decoding is based on the
trivial algorithm sketched in Section 6.4.

Example:

Let us assume that the trivial decoding algorithm sketched in
Section 6.4 is used. First, define the target packet payload size,
pkt_sz (at most equal to the PMTU minus the size of the various
protocol headers). The pkt sz must be chosen in such a way that the
symbol size is an integer. This can require that pkt sz be a
multiple of 4, 8, or 16 (see the table below). Then calculate the
number of packets in the object: nb_pkts = ceil(L 7/ pkt_sz).
Finally, thanks to nb_pkts, use the following table to find a
possible G value.

Roca, et al. Standards Track [Page 12]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

gy SRR PRy +
| Number of packets | G | Symbol size | k |
R o e +
4000 <= nb_pkts	11 pkt_sz	4000 <= k	
1000 <= nb_pkts < 4000	4	pkt.sz /7 4	4000 <= k < 16000
500 <= nb pkts <1000	8] pkt sz / 8	4000 <= k < 8000	
1 <= nb_pkts < 500	16	pkt_sz /7 16	16 <= k < 8000
PRy Fom e e +

5.4. Determining the Maximum Number of Encoding Symbols Generated for
Any Source Block (max_n)

The following algorithm MAY be used by a sender to determine the
maximum number of encoding symbols generated for any source block
(max_n) as a function of B and the target code rate. Since the max_n
parameter is communicated to the decoder by means of the FEC OTI,
another method MAY be used to determine max_n.

Input:

B: Maximum source block length, for any source block. Section 5.2
MAY be used to determine its value.

CR: FEC code rate, which is provided by the user (e.g., when
starting a FLUTE sending application). It is expressed as a
floating point value. The CR value must be such that the
resulting number of encoding symbols per block is at most equal to
27"20 (Section 4.1).

Output:

max_n: Maximum number of encoding symbols generated for any source
block.

Algorithm:
max_n = ceil(B /7 CR);
if (max_n > 2~20), then return an error ("invalid code rate™);

(NB: if B has been defined as explained in Section 5.2, this error
should never happen.)

Roca, et al. Standards Track [Page 13]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

5.5. Determining the Number of Encoding Symbols of a Block (n)

The following algorithm, also called "n-algorithm™, MUST be used by
the sender and the receiver to determine the number of encoding
symbols for a given block (n) as a function of B, k, and max_n.

Input:
B: Maximum source block length, for any source block. At a
sender, Section 5.2 MAY be used to determine its value. At a

receiver, this value MUST be extracted from the received FEC OTI.

k: Current source block length. At a sender or receiver, the
block partitioning algorithm MUST be used to determine its value.

max_n: Maximum number of encoding symbols generated for any source
block. At a sender, Section 5.4 MAY be used to determine its
value. At a receiver, this value MUST be extracted from the
received FEC OTI.
Output:
n: Number of encoding symbols generated for this source block.
Algorithm:
n = floor(k * max_n / B);
5.6. Ildentifying the G Symbols of an Encoding Symbol Group
When multiple encoding symbols are sent in the same packet, the FEC
Payload ID information of the packet MUST refer to the first encoding
symbol. It MUST then be possible to identify each symbol from this
single FEC Payload ID. To that purpose, the symbols of an Encoding
Symbol Group (i.e., packet):
0 MUST all be either source symbols or repair symbols. Therefore,
only source packets and repair packets are permitted, not mixed
ones.

o are identified by a function, sender(resp.
receiver)_ find ESIs_of group(), that takes as argument:

* for a sender, the index of the Encoding Symbol Group (i.e.,
packet) that the application wants to create,

* for a receiver, the ESI information contained in the FEC
Payload 1ID.

Roca, et al. Standards Track [Page 14]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

and returns a list of G Encoding Symbol IDs. In the case of a
source packet, the G Encoding Symbol IDs are chosen consecutively,
by incrementing the ESI. In the case of a repair packet, the G
repair symbols are chosen randomly, as explained below.

0 are stored in sequence in the packet, without any padding. In
other words, the last byte of the i-th symbol is immediately
followed by the first byte of (i+l1)-th symbol.

The system must First be initialized by creating a random permutation
of the n-k indexes. This initialization function MUST be called
immediately after creating the parity check matrix. More precisely,
since the PRNG seed is not re-initialized, there must not have been a
call to the PRNG function between the time the parity check matrix
has been initialized and the time the following initialization
function is called. This is true both at a sender and at a receiver.

int *txseqTolD;
int *IDtoTxseq;

/*
* Initialization function.
* Warning: use only when G > 1.
*/
void
initialize_tables
t
int i;
int randind;
int backup;

txseqTolD = malloc((n-k) * sizeof(int));
IDtoTxseq = malloc((n-k) * sizeof(int));
if (txseqTolD == NULL |]] IDtoTxseq == NULL)
handle the malloc failures as appropriate...
/* initialize the two tables that map ID
* (i.e., ESI-K) to/from TxSequence. */
for (i = 0; 1 <n - k; i++) {
IDtoTxseq[i] = i;
txseqTolID[i] = i;
/* now randomize everything */
for (i =0; i <n - k; i++) {
randind = pmms_rand(n - k);
backup IDtoTxseq[i];
IDtoTxseq[i] = IDtoTxseq[randind];
IDtoTxseq[randInd] = backup;
txseqTolD[IDtoTxseq[i]] = i;

Roca, et al. Standards Track [Page 15]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

txseqTolD[IDtoTxseq[randInd]] = randind;
by

return;

}

It is then possible, at the sender, to determine the sequence of G
Encoding Symbol IDs that will be part of the group.

/*

* Determine the sequence of ESIs for the packet under construction
* at a sender.
* Warning: use only when G > 1.
* Pktldx (IN): 1index of the packet, in
* {0..ceil(k/G)+ceil ((n-k)/G)} range
* ESIs[] (OUT): list of ESIs for the packet
*
void
sender_find_ESIs of group (int Pktldx,
ESI_t ESIs[D)
t
int i;

if (Pktldx < nbSourcePkts) {
/* this is a source packet */
ESIs[0] = Pktldx * G;
for (i = 1; 1 < G; i++) {
ESIs[i] = (ESIs[0] + 1) % k;

}

} else {
/* this is a repair packet */
for (i =0; 1 <G; i++) {

ESIs[i]
k +
txseqTolID[(1 + (Pktldx - nbSourcePkts) * G)
 (n - K1;
¥
¥
return;

}

Similarly, upon receiving an Encoding Symbol Group (i.e., packet), a
receiver can determine the sequence of G Encoding Symbol IDs from the
first ESI, esiO, that is contained in the FEC Payload ID.

Roca, et al. Standards Track [Page 16]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

/*
* Determine the sequence of ESIs for the packet received.
* Warning: use only when G > 1.
* esiO (IN): : ESI contained in the FEC Payload 1D
* ESIs[] (OUT): list of ESIs for the packet
*

void
receiver_find ESIs of group (ESI_t esio,
ESI_t ESIS[D)

tr
int i;
if (esiO < k) {
/* this is a source packet */
ESIsS[0] = esiO;
for (i = 1; 1 <G; i++) {
ESIs[i] = (esiO + 1) % k;
}
} else {
/* this is a repair packet */
for (i = 0; 1 < G; i++) {
ESIs[i] =
k +
txseqTolD[(i + IDtoTxseq[esiO - k])
% (n - K3
by
}
}

5.7. Pseudo-Random Number Generator

The FEC Encoding IDs 3 and 4 rely on a pseudo-random number generator
(PRNG) that must be fully specified, in particular in order to enable
the receivers and the senders to build the same parity check matrix.

The Park-Miler "minimal standard™ PRNG [PM88] MUST be used. It
defines a simple multiplicative congruential algorithm: 1j+1 = A * 1]
(modullo M), with the following choices: A = 75 = 16807 and M =
2”31 - 1 = 2147483647. A validation criteria of such a PRNG is the
following: if seed = 1, then the 10,000th value returned MUST be
equal to 1043618065.

Several implementations of this PRNG are known and discussed in the
literature. An optimized implementation of this algorithm, using
only 32-bit mathematics, and which does not require any division, can
be found in [rand31pmc]. It uses the Park and Miller algorithm
[PM88] with the optimization suggested by D. Carta in [CA90]. The
history behind this algorithm is detailed in [WI08]. Yet, any other

Roca, et al. Standards Track [Page 17]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

implementation of the PRNG algorithm that matches the above
validation criteria, like the ones detailed in [PM88], is
appropriate.

This PRNG produces, natively, a 31-bit value between 1 and Ox7FFFFFFE
(2~"31-2) inclusive. Since it is desired to scale the pseudo-random
number between 0 and maxv-1 inclusive, one must keep the most
significant bits of the value returned by the PRNG (the least
significant bits are known to be less random, and modulo-based
solutions should be avoided [PTVF92]). The following algorithm MUST
be used:

Input:

raw_value: random integer generated by the inner PRNG algorithm,
between 1 and OX7FFFFFFE (27"31-2) inclusive.

maxv: upper bound used during the scaling operation.
Output:

scaled_value: random integer between 0 and maxv-1 inclusive.
Algorithm:

scaled_value = (unsigned long) ((double)maxv * (double)raw_value /
(double)Ox7FFFFFFF) ;

(NB: the above C type casting to unsigned long iIs equivalent to
using floor() with positive floating point values.)

In this document, pmms_rand(maxv) denotes the PRNG function that
implements the Park-Miller "minimal standard™ algorithm, defined
above, and that scales the raw value between 0 and maxv-1 inclusive,
using the above scaling algorithm. Additionally, a function should
be provided to enable the initialization of the PRNG with a seed
(i.e., a 31-bit integer between 1 and Ox7FFFFFFE inclusive) before
calling pmms_rand(maxv) the first time.

Roca, et al. Standards Track [Page 18]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

6. Full Specification of the LDPC-Staircase Scheme
6.1. General

The LDPC-Staircase scheme is identified by the Fully-Specified FEC
Encoding ID 3.

The PRNG used by the LDPC-Staircase scheme must be initialized by a
seed. This PRNG seed is an instance-specific FEC OTl attribute
(Section 4.2.3).

6.2. Parity Check Matrix Creation
The LDPC-Staircase matrix can be divided into two parts: the left
side of the matrix defines in which equations the source symbols are
involved; the right side of the matrix defines in which equations the
repair symbols are involved.

The left side MUST be generated by using the following function:

/*
* Initialize the left side of the parity check matrix.
* This function assumes that an empty matrix of size n-k * k has
* previously been allocated/reset and that the matrix_has_entry(),
* matrix_insert_entry() and degree of row() functions can access it.
* (IN): the k, n and N1 parameters.
*/
void left_matrix_init (int k, int n, int N1)
{

; /* row index or temporary variable */

; /* column index */

; /* temporary variable */

/* left limit within the list of possible choices u[] */
u[Nl*MAX K]; /7* table used to have a homogeneous 1 distrib. */

/* Initialize a list of all possible choices in order to
* guarantee a homogeneous "1" distribution */
for (h = N1*k-1; h >= 0; h--) {
u[h] = h % (n-k);

Roca, et al. Standards Track [Page 19]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

/* Initialize the matrix with N1 "1s" per column, homogeneously */
t = 0;
for g =0; j < k; j++) { /7* for each source symbol column */
for (h = 0; h < N1; h++) { /* add N1 "1s"™ */
/* check that valid available choices remain */
for (i = t; i < N1*k && matrix_has_entry(u[i], J); i++);
if (i < N1*k) {
/* choose one index within the list of possible
* choices */
do {
i =t + pmms_rand(N1*k-t);
} while (matrix_has_entry(u[i], j));
matrix_insert_entry(ulil, J);

/* replace with u[t] which has never been chosen */

u[i] = u[t];
T++;
} else {
/* no choice left, choose one randomly */
do {

i = pmms_rand(n-k);
} while (matrix_has_entry(i, j));
matrix_insert_entry(i, j);

}

/* Add extra bits to avoid rows with less than two "1s™.
* This is needed when the code rate is smaller than 2/(2+N1) */
for (i = 0; i < n-k; i++) { /* for each row */
if (degree of row(i) == 0) {
J = pmms_rand(k);
matrix_insert_entry(i, j);

}
it (degree_of row(i) == 1) {
do {
Jj = pmms_rand(k);
} while (matrix_has_entry(i, j)):
matrix_insert_entry(i, j);
}

Roca, et al. Standards Track [Page 20]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

The right side (the staircase) MUST be generated by using the
following function:

/*
* Initialize the right side of the parity check matrix with a
* stalrcase structure.
* (IN): the k and n parameters.

*/
void right_matrix_staircase_init (int k, int n)
{
int i; /* row index */
matrix_insert_entry(0, k); /* First row */

for (i = 1; 1 < n-k; i++) { /* for the following rows */
matrix_insert_entry(i, k+i); /* identity */
matrix_insert_entry(i, k+i-1); /* staircase */

}

Note that just after creating this parity check matrix, when Encoding
Symbol Groups are used (i.e., G > 1), the function initializing the
two random permutation tables (Section 5.6) MUST be called. This is
true both at a sender and at a receiver.

6.3. Encoding

Thanks to the staircase matrix, repair symbol creation is
straightforward: each repair symbol is equal to the sum of all source
symbols in the associated equation, plus the previous repair symbol
(except for the Ffirst repair symbol). Therefore, encoding MUST
follow the natural repair symbol order: start with the first repair
symbol and generate a repair symbol with ESI 1 before a symbol with
ESI i+1.

6.4. Decoding

Decoding basically consists in solving a system of n-k linear
equations whose variables are the n source and repair symbols. OF
course, the final goal is to recover the value of the k source
symbols only.

To that purpose, many techniques are possible. One of them is the
following trivial algorithm [ZP74]: given a set of linear equations,
if one of them has only one remaining unknown variable, then the
value of this variable is that of the constant term. So, replace
this variable by its value in all the remaining linear equations and
reiterate. The value of several variables can therefore be found
recursively. Applied to LDPC FEC codes working over an erasure

Roca, et al. Standards Track [Page 21]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

7.

7.

7.

channel, the parity check matrix defines a set of linear equations
whose variables are the source symbols and repair symbols. Receiving
or decoding a symbol is equivalent to having the value of a variable.
Appendix A sketches a possible implementation of this algorithm.

A Gaussian elimination (or any optimized derivative) is another
possible decoding technique. Hybrid solutions that start by using
the trivial algorithm above and finish with a Gaussian elimination
are also possible [CR08].

Because interoperability does not depend on the decoding algorithm
used, the current document does not recommend any particular
technique. This choice is left to the codec developer.

However, choosing a decoding technique will have great practical

impacts. It will impact the erasure capabilities: a Gaussian
elimination enables to solve the system with a smaller number of
known symbols compared to the trivial technique. It will also impact

the CPU load: a Gaussian elimination requires more processing than
the above trivial algorithm. Depending on the target use case, the
codec developer will favor one feature or the other.

Full Specification of the LDPC-Triangle Scheme

1. General

LDPC-Triangle is identified by the Fully-Specified FEC Encoding ID 4.
The PRNG used by the LDPC-Triangle scheme must be initialized by a
seed. This PRNG seed is an instance-specific FEC 0Tl attribute
(Section 4.2.3).
2. Parity Check Matrix Creation

The LDPC-Triangle matrix can be divided into two parts: the left side
of the matrix defines in which equations the source symbols are
involved; the right side of the matrix defines in which equations the

repair symbols are involved.

The left side MUST be generated by using the same left_matrix_init()
function as with LDPC-Staircase (Section 6.2).

Roca, et al. Standards Track [Page 22]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

The right side (the triangle) MUST be generated by using the
following function:

/*
* Initialize the right side of the parity check matrix with a
* triangle structure.
* (IN): the k and n parameters.

*/
void right_matrix_staircase_init (int k, int n)
{
int i; /* row index */
int j; /* randomly chosen column indexes in 0O..n-k-2 */
int I; /* limitation of the # of "1s" added per row */
matrix_insert_entry(0, Kk); /* first row */
for (i = 1; i < n-k; i++) { /* for the following rows */
matrix_insert_entry(i, k+i); /* identity */
matrix_insert_entry(i, k+i-1); /* staircase */
/* now fill the triangle */
J=1i-1;
for (1 =0; I < j; 1++) { /7* Llimit the # of "1s" added */
Jj = pmms_rand(j);
matrix_insert_entry(i, k+j);
}
}
by

Note that just after creating this parity check matrix, when Encoding
Symbol Groups are used (i.e., G > 1), the function initializing the
two random permutation tables (Section 5.6) MUST be called. This is
true both at a sender and at a receiver.

7.3. Encoding

Here also, repair symbol creation is straightforward: each repair
symbol of ESI i is equal to the sum of all source and repair symbols
(with ESI lower than i) in the associated equation. Therefore,
encoding MUST follow the natural repair symbol order: start with the
first repair symbol, and generate repair symbol with ESI i before
symbol with ESI i+1.

7.4. Decoding

Decoding basically consists in solving a system of n-k linear
equations, whose variables are the n source and repair symbols. Of
course, the final goal is to recover the value of the k source
symbols only. To that purpose, many techniques are possible, as
explained in Section 6.4.

Roca, et al. Standards Track [Page 23]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

Because interoperability does not depend on the decoding algorithm
used, the current document does not recommend any particular
technique. This choice is left to the codec implementer.

8. Security Considerations
8.1. Problem Statement

A content delivery system is potentially subject to many attacks:
some of them target the network (e.g., to compromise the routing
infrastructure, by compromising the congestion control component),
others target the Content Delivery Protocol (CDP) (e.g., to
compromise its normal behavior), and finally some attacks target the
content itself. Since this document focuses on an FEC building block
independently of any particular CDP (even if ALC and NORM are two
natural candidates), this section only discusses the additional
threats that an arbitrary CDP may be exposed to when using this
building block.

More specifically, several kinds of attacks exist:

0 those that are meant to give access to a confidential content
(e.g., in case of a non-free content),

0 those that try to corrupt the object being transmitted (e.g., to
inject malicious code within an object, or to prevent a receiver
from using an object), and

0 those that try to compromise the receiver’s behavior (e.g., by
making the decoding of an object computationally expensive).

These attacks can be launched either against the data flow itself
(e.g., by sending forged symbols) or against the FEC parameters that
are sent either in-band (e.g., in an EXT_FTI or FDT Instance) or out-
of-band (e.g., In a session description).

8.2. Attacks Against the Data Flow
First of all, let us consider the attacks against the data flow.
8.2.1. Access to Confidential Objects
Access control to a confidential object being transmitted is
typically provided by means of encryption. This encryption can be
done over the whole object (e.g., by the content provider, before the

FEC encoding process), or be done on a packet per packet basis (e.g.,
when IPsec/ESP is used [RFC4303]). |If confidentiality is a concern,

Roca, et al. Standards Track [Page 24]

RFC 5170 LDPC Staircase and Triangle FEC June 2008

it is RECOMMENDED that one of these solutions be used. Even if we
mention these attacks here, they are not related or facilitated by
the use of FEC.

8.2.2. Content Corruption

Protection against corruptions (e.g., after sending forged packets)
is achieved by means of a content integrity verification/sender
authentication scheme. This service can be provided at the object
level, but in that case a receiver has no way to identify which
symbol (s) is(are) corrupted if the object is detected as corrupted.
This service can also be provided at the packet level. In this case,
after removing all forged packets, the object may be, in some cases,
recovered. Several techniques can provide this source
authentication/content integrity service:

0 at the object level, the object MAY be digitally signed (with
public key cryptography), for instance, by using RSASSA-PKCS1-vl 5
[RFC3447]. This signature enables a receiver to check the object
integrity, once the latter has been fully decoded. Even if
digital signatures are computationally expensive, this calculation
occurs only once per object, which is usually acceptable;

0 at the packet level, eac